Signal Processing Blockset

For Use with Simulink ${ }^{\circledR}$

Modeling

Simulation

Implementation

User's Guide

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab
support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

508-647-7000

508-647-7001

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

Phone
Fax
Mail

For contact information about worldwide offices, see the MathWorks Web site.

Signal Processing Blockset User's Guide

© COPYRIGHT 1995-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Version 2.0
Fourth printing
Version 2.2 (Release 10)

June 2001

July 2002
April 2003
June 2004
October 2004
March 2005

Fifth printing
Online only
Sixth printing
Seventh printing
Online only
Version 3.0 (Release 12)
Version 4.0 (Release 12)
Version 4.1 (Release 12.1)
Version 5.0 (Release 13)

Online only
Online only

Version 5.1 (Release 13SP1) Version 6.0 (Release 14) (Renamed from DSP Blockset User's Guide) Version 6.0.1 (Release 14SP1) Version 6.1 (Release 14SP2)

Working with Signals

Discrete-Time Signals 1-3
Time and Frequency Terminology 1-3
Recommended Settings for Discrete-Time Simulations 1-5
Other Settings for Discrete-Time Simulations 1-7
Continuous-Time Signals 1-11
Continuous-Time Source Blocks 1-11
Continuous-Time Nonsource Blocks 1-12
Sample-Based Signals 1-13
Sample-Based Single Channel Signals 1-13
Sample-Based Multichannel Signals 1-13
Frame-Based Signals 1-15
Frame-Based Single Channel Signals 1-15
Frame-Based Multichannel Signals 1-15
Benefits of Frame-Based Processing 1-16
Creating Sample-Based Signals 1-19
Using the DSP Constant Block 1-19
Using the Signal from Workspace Block 1-22
Creating Frame-Based Signals 1-26
Using the Sine Wave Block 1-26
Using the Signal from Workspace Block 1-29
Creating Multichannel Sample-Based Signals 1-33
Combining Single-Channel Sample-Based Signals 1-33
Combining Multichannel Sample-Based Signals 1-36
Creating Multichannel Frame-Based Signals $1-39$
Combining Frame-Based Signals 1-39
Deconstructing Multichannel Sample-Based Signals 1-43
Splitting Multichannel Sample-Based Signals into Individual Signals 1-43
Splitting Multichannel Sample-Based Signals into Several Multichannel Signals 1-46
Deconstructing Multichannel Frame-Based Signals 1-49
Splitting Multichannel Frame-Based Signals into Individual Signals 1-49
Reordering Channels in Multichannel Frame-Based Signals 1-54
Importing and Exporting Sample-Based Signals 1-57
Importing Sample-Based Vector Signals 1-57
Importing Sample-Based Matrix Signals 1-60
Exporting Sample-Based Signals 1-64
Importing and Exporting Frame-Based Signals 1-69
Importing Frame-Based Signals 1-69
Exporting Frame-Based Signals 1-72
Advanced Signal Concepts
2
Inspecting Sample Rates and Frame Rates 2-2
Sample Rate and Frame Rate Concepts 2-2
Inspecting Sample-Based Signals Using the Probe Block 2-4
Inspecting Frame-Based Signals Using the Probe Block 2-6
Inspecting Sample-Based Signals Using Color Coding 2-9
Inspecting Frame-Based Signals Using Color Coding 2-10
Converting Sample and Frame Rates 2-12
Rate Conversion Blocks 2-13
Rate Conversion by Frame-Rate Adjustment 2-14
Rate Conversion by Frame-Size Adjustment 2-16
Avoiding Unintended Rate Conversion 2-19
Frame Rebuffering Blocks 2-25
Buffering with Preservation of the Signal 2-28
Buffering with Alteration of the Signal 2-31
Converting Frame Status 2-34
Buffering Sample-Based Signals into Frame-Based Signals 2-34
Buffering Sample-Based Signals into Frame-Based Signals with Overlap 2-38
Buffering Frame-Based Signals into Other Frame-Based Signals 2-41
Buffering Delay and Initial Conditions 2-44
Unbuffering Frame-Based Signals into Sample-Based Signals 2-44
Delay and Latency 2-49
Computational Delay 2-49
Algorithmic Delay 2-51
Zero Algorithmic Delay 2-51
Basic Algorithmic Delay 2-54
Excess Algorithmic Delay (Tasking Latency) 2-58
Predicting Tasking Latency 2-60
Filters
3
Digital Filter Block 3-2
Implementing a Lowpass Filter 3-3
Implementing a Highpass Filter 3-4
Filtering High-Frequency Noise 3-5
Specifying Static Filters 3-10
Specifying Time-Varying Filters 3-11
Specifying the SOS Matrix (Biquadratic Filter Coefficients) 3-16
Digital Filter Design Block 3-18
Overview of the Digital Filter Design Block 3-18
Choosing Between Filter Design Blocks 3-19
Creating a Lowpass Filter 3-21
Creating a Highpass Filter 3-24
Filtering High-Frequency Noise 3-26
Filter Realization Wizard 3-32
Designing and Implementing a Fixed-Point Filter 3-32
Setting the Filter Structure and Number of Filter Sections 3-48
Optimizing the Filter Structure 3-49
Analog Filter Design Block 3-51
Adaptive Filters 3-53
Creating an Acoustic Environment 3-53
Creating an Adaptive Filter 3-54
Customizing an Adaptive Filter 3-60
Adaptive Filtering Demos 3-65
Multirate Filters 3-67
Filter Banks 3-67
Multirate Filtering Demos 3-75
Transforms
4
Signals in the Time Domain 4-2
Displaying Time-Domain Data 4-2
Transforming Time-Domain Data into the Frequency Domain 4-5
Signals in the Frequency-Domain 4-9
Displaying Frequency-Domain Data 4-9
Transforming Frequency-Domain Data into the Time Domain 4-13
Linear and Bit-Reversed Output Order 4-18
Finding the Bit-Reversed Order of Your Frequency Indices 4-18
Scalar Quantizers 5-2
Analysis and Synthesis of Speech 5-2
Identifying Your Residual Signal and Reflection Coefficients 5-4
Creating a Scalar Quantizer 5-5
Vector Quantizers 5-11
Building Your Vector Quantizer Model 5-11
Configuring and Running Your Model 5-13
Statistics, Estimation, and Linear Algebra
6
Statistics 6-2
Basic Operations 6-2
Running Operations 6-4
Power Spectrum Estimation 6-5
Linear Algebra 6-6
Solving Linear Systems 6-6
Factoring Matrices 6-8
Inverting Matrices 6-9
Data Type Support
7
Supported Data Types and How to Convert to Them 7-2
Block Data Type Support Table 7-4
Viewing Data Types of Signals In Models 7-14
Correctly Defining Custom Data Types 7-15
Boolean Support 7-16
Advantages of Using the Boolean Data Type 7-16
Lists of Blocks Supporting Boolean Inputs or Outputs 7-16
Effects of Enabling and Disabling Boolean Support 7-18
Steps to Disabling Boolean Support 7-19
Working with Fixed-Point Data
8
Fixed-Point Signal Processing Development 8-2
Benefits of Fixed-Point Hardware 8-2
Benefits of Fixed-Point Design with the Signal Processing Blockset 8-3
Fixed-Point Signal Processing Applications 8-3
Blocks with Fixed-Point Support 8-5
Concepts and Terminology 8-7
Fixed-Point Data Types 8-7
Scaling 8-8
Precision and Range 8-9
Arithmetic Operations 8-12
Modulo Arithmetic 8-12
Two's Complement 8-13
Addition and Subtraction 8-14
Multiplication 8-15
Casts 8-17
Specifying Fixed-Point Attributes 8-21
Setting Block Parameters 8-21
Specifying System-Level Settings 8-27
Fixed-Point Filtering 8-30
Filter Implementation Blocks 8-30
Filter Design and Implementation Blocks 8-30
Interoperability with Other Products 8-32
Building Models with Other Blocks 8-35
Block Reference
9
Blocks - Categorical List 9-2
Estimation 9-3
Filtering 9-5
Math Functions 9-7
Platform-Specific I/O 9-11
Quantizers 9-12
Signal Management 9-13
Signal Operations 9-15
Signal Processing Sinks 9-16
Signal Processing Sources 9-17
Statistics 9-18
Transforms 9-18
Blocks - Alphabetical List 9-20
Function Reference
10
Functions-Alphabetical List 10-2
Glossary

Index

Working with Signals

This chapter helps you understand how sample-based and frame-based signals are represented in Simulink ${ }^{\circledR}$. You learn how to create single-channel and multichannel sample-based and frame-based signals. You also learn how to extract single-channel signals from multichannel signals. Lastly you explore how to import signals into signal processing models and export signals to the MATLAB ${ }^{\circledR}$ workspace.

Discrete-Time Signals (p. 1-3)
Continuous-Time Signals (p. 1-11)
Sample-Based Signals (p. 1-13)

Frame-Based Signals (p. 1-15)

Creating Sample-Based Signals (p. 1-19)

Creating Frame-Based Signals
(p. 1-26)

Creating Multichannel Sample-Based Signals (p. 1-33)
Creating Multichannel Frame-Based
Signals (p. 1-39)
Deconstructing Multichannel
Sample-Based Signals (p. 1-43)

Deconstructing Multichannel
Frame-Based Signals (p. 1-49)

Overview of discrete-time signals
Overview of continuous-time signals
Understand sample-based signals in both their single and multichannel form

Understand frame-based signals in both their single and multichannel form

Use the DSP Constant block and the Signal From Workspace block to generate sample-based signals

Use the Sine Wave block and the Signal From Workspace block to generate frame-based signals

Use the Matrix Concatenation block to create multichannel sample-based signals
Use the Matrix Concatenation block to create multichannel frame-based signals

Learn how to extract single-channel and multichannel sample-based signals from multichannel sample-based signals

Learn how to extract single-channel and multichannel frame-based signals from multichannel frame-based signals. Also, learn how to reorder channels in a frame-based signal

Importing and Exporting
Sample-Based Signals (p. 1-57)

Importing and Exporting Frame-Based Signals (p. 1-69)

Import sample-based signals from the MATLAB workspace into your DSP model. Export sample-based signals from your signal processing model to the MATLAB workspace
Import frame-based signals from the MATLAB workspace into your signal processing model. Export frame-based signals from your signal processing model to the MATLAB workspace

Discrete-Time Signals

Simulink models can process both discrete-time and continuous-time signals. Models built with the Signal Processing Blockset are often intended to process discrete-time signals only. This section defines basic signal terminology and describes how to set the configuration parameters for discrete-time simulations.

This section includes the following topics:

- "Time and Frequency Terminology" on page 1-3 - Review the definitions of common discrete-time signal terminology
- "Recommended Settings for Discrete-Time Simulations" on page 1-5 Learn the recommended solver algorithms for discrete-time simulations
- "Other Settings for Discrete-Time Simulations" on page 1-7 — Learn the other solver algorithms for discrete-time simulations

Time and Frequency Terminology

A discrete-time signal is a sequence of values that correspond to particular instants in time. The time instants at which the signal is defined are the signal's sample times, and the associated signal values are the signal's samples. Traditionally, a discrete-time signal is considered to be undefined at points in time between the sample times. For a periodically sampled signal, the equal interval between any pair of consecutive sample times is the signal's sample period, T_{s}. The sample rate, F_{s}, is the reciprocal of the sample period, or $1 / \mathrm{T}_{\mathrm{s}}$. The sample rate is the number of samples in the signal per second.

The 7.5 -second triangle wave segment below has a sample period of 0.5 second, and sample times of $0.0,0.5,1.0,1.5, \ldots, 7.5$. The sample rate of the sequence is therefore $1 / 0.5$, or 2 Hz .

A number of different terms are used to describe the characteristics of discrete-time signals found in Simulink models. These terms, which are listed
in the table below, are frequently used in Chapter 5, "DSP Block Reference," to describe the way that various blocks operate on sample-based and frame-based signals.

Term	Symbol	Units	Notes
Sample period	$\begin{aligned} & \mathrm{T}_{\mathrm{s}} \\ & \mathrm{~T}_{\mathrm{si}} \\ & \mathrm{~T}_{\mathrm{s} 0} \end{aligned}$	Seconds	The time interval between consecutive samples in a sequence, as the input to a block $\left(\mathrm{T}_{\mathrm{si}}\right)$ or the output from a block (T_{so}).
Frame period	$\begin{aligned} & \mathrm{T}_{\mathrm{f}} \\ & \mathrm{~T}_{\mathrm{fi}} \\ & \mathrm{~T}_{\mathrm{fo}} \end{aligned}$	Seconds	The time interval between consecutive frames in a sequence, as the input to a block (T_{fi}) or the output from a block (T_{fo}).
Signal period	T	Seconds	The time elapsed during a single repetition of a periodic signal.
Sample rate, or Sample frequency	F_{s}	Hz (samples per second)	The number of samples per unit time, $\mathrm{F}_{\mathrm{s}}=1 / \mathrm{T}_{\mathrm{s}}$.
Frequency	f	Hz (cycles per second)	The number of repetitions per unit time of a periodic signal or signal component, $f=1 / \mathrm{T}$.
Nyquist rate		Hz (cycles per second)	The minimum sample rate that avoids aliasing, usually twice the highest frequency in the signal being sampled.
Nyquist frequency	$f_{\text {nyq }}$	Hz (cycles per second)	Half the Nyquist rate.
Normalized frequency	f_{n}	Two cycles per sample	Frequency (linear) of a periodic signal normalized to half the sample rate, $f_{\mathrm{n}}=\omega / \pi=2 f / \mathrm{F}_{\mathrm{s}}$.
Angular frequency	Ω	Radians per second	Frequency of a periodic signal in angular units, $\Omega=2 \pi f$.
Digital(normalized angular) frequency	ω	Radians per sample	Frequency (angular) of a periodic signal normalized to the sample rate, $\omega=\Omega / \mathrm{F}_{\mathrm{s}}=\pi f_{\mathrm{n}}$.

Note In the Block Parameters dialog boxes, the term sample time is used to refer to the sample period, T_{S}. For example, the Sample time parameter in the Signal From Workspace block specifies the imported signal's sample period.

Recommended Settings for Discrete-Time Simulations

Simulink allows you to select from several different simulation solver algorithms. You can access these solver algorithms from a Simulink model:

1 In the Simulink model window, from the Simulation menu, select Configuration Parameters. The Configuration Parameters dialog box opens.

2 In the Select pane, click Solver.
The selections that you make here determine how discrete-time signals are processed in Simulink. The recommended Solver options settings for signal processing simulations are

- Type: Fixed-step
- Solver: discrete (no continuous states)
- Fixed step size (fundamental sample time): auto
- Tasking mode for periodic sample times: SingleTasking

You can automatically set the above solver options for all new models by running the dspstartup M-file. See "Configuring Simulink for Signal Processing Models" in Getting Started with the Signal Processing Blockset for more information.

In Fixed-step SingleTasking mode, discrete-time signals differ from the prototype described in "Time and Frequency Terminology" on page 1-3 by remaining defined between sample times. For example, the representation of the discrete-time triangle wave looks like this.

The above signal's value at $t=3.112$ seconds is the same as the signal's value at $t=3$ seconds. In Fixed-step SingleTasking mode, a signal's sample times are the instants where the signal is allowed to change values, rather than where the signal is defined. Between the sample times, the signal takes on the value at the previous sample time.

As a result, in Fixed-step SingleTasking mode, Simulink permits cross-rate operations such as the addition of two signals of different rates. This is explained further in "Cross-Rate Operations" on page 1-7.

Other Settings for Discrete-Time Simulations

It is useful to know how the other solver options available in Simulink affect discrete-time signals. In particular, you should be aware of the properties of discrete-time signals under the following settings:

- Type: Fixed-step, Mode: MultiTasking
- Type: Variable-step (the Simulink default solver)
- Type: Fixed-step, Mode: Auto

When the Fixed-step MultiTasking solver is selected, discrete signals in Simulink are undefined between sample times. Simulink generates an error when operations attempt to reference the undefined region of a signal, as, for example, when signals with different sample rates are added.

When the Variable-step solver is selected, discrete time signals remain defined between sample times, just as in the Fixed-step SingleTasking case described in "Recommended Settings for Discrete-Time Simulations" on page 1-5. When the Variable-step solver is selected, cross-rate operations are allowed by Simulink.

In the Fixed-step Auto setting, Simulink automatically selects a tasking mode, single-tasking or multitasking, that is best suited to the model. See "Simulink Tasking Mode" on page 2-58 for a description of the criteria that Simulink uses to make this decision. For the typical model containing multiple rates, Simulink selects the multitasking mode.

Cross-Rate Operations. When the Fixed-step MultiTasking solver is selected, discrete signals in Simulink are undefined between sample times. Therefore, to perform cross-rate operations like the addition of two signals with different sample rates, you must convert the two signals to a common sample rate. Several blocks in the Signal Operations and Multirate Filters libraries can accomplish this task. See "Converting Sample and Frame Rates" on page 2-12 for more information. By requiring explicit rate conversions for cross-rate operations in discrete mode, Simulink helps you to identify sample rate conversion issues early in the design process.

When the Variable-step solver or Fixed-step SingleTasking solver is selected, discrete time signals remain defined between sample times. Therefore, if you sample the signal with a rate or phase that is different from the signal's own rate and phase, you will still measure meaningful values:

1 At the MATLAB command line, type doc_sum_tut1.
The Cross-Rate Sum Example model opens. This model sums two signals with different sample periods.

2 Double-click the upper Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the Sample time parameter to 1.
This creates a fast signal, $\left(\mathrm{T}_{\mathrm{s}}=1\right)$, with sample times $1,2,3, \ldots$,
4 Double-click the lower Signal From Workspace block

5 Set the Sample time parameter to 2.
This creates a slow signal, ($\mathrm{T}_{\mathrm{s}}=2$), with sample times $1,3,5, \ldots$
6 Run the model.

Note Using the dspstartup configurations with cross-rate operations generates errors even though the Fixed-step SingleTasking solver is selected. This is due to the fact that Single task rate transition is set to error in the Sample Time pane of the Diagnostics section of the Configuration Parameters dialog box.

7 At the MATLAB command line, type dsp_examples_yout
The following output is displayed:

dsp_examples_yout $=$		
1	1	2
2	1	3
3	2	5
4	2	6
5	3	8
6	3	9
7	4	11
8	4	12
9	5	14
10	5	15
0	6	6

The first column of the matrix is the fast signal, ($\mathrm{T}_{\mathrm{s}}=1$). The second column of the matrix is the slow signal ($\mathrm{T}_{\mathrm{s}}=2$). The third column is the sum of the two signals. As expected, the slow signal changes once every 2 seconds, half as often as the fast signal. Nevertheless, the slow signal is defined at every moment because Simulink implicitly auto-promotes the rate of the slower signal to match the rate of the faster signal before the addition operation is performed.

In general, for Variable-step and Fixed-step SingleTasking modes, when you measure the value of a discrete signal between sample times, you are observing the value of the signal at the previous sample time.

Continuous-Time Signals

Most signals in a signal processing model are discrete-time signals. However, many blocks can also operate on and generate continuous-time signals, whose values vary continuously with time.

This section includes the following topics:

- "Continuous-Time Source Blocks" on page 1-11 - Learn how to set-up and use continuous-time source blocks
- "Continuous-Time Nonsource Blocks" on page 1-12 - Learn how to use continuous-time nonsource blocks

Continuous-Time Source Blocks

Source blocks are those blocks that generate or import signals in a model. Most source blocks appear in the Signal Processing Sources library. The sample period for continuous-time source blocks is set internally to zero. This indicates a continuous-time signal. The Simulink Signal Generator block and the Signal Processing Blockset DSP Constant block are examples of continuous-time source blocks. Continuous-time signals are rendered in black when, from the Format menu, you point to Port/Signal Displays and select Sample Time Colors.

When connecting continuous-time source blocks to discrete-time blocks, you might need to interpose a Zero-Order Hold block to discretize the signal. Specify the desired sample period for the discrete-time signal in the Sample time parameter of the Zero-Order Hold block.

Continuous-Time Nonsource Blocks

Most nonsource blocks in the Signal Processing Blockset accept continuous-time signals, and all nonsource blocks inherit the sample period of the input. Therefore, continuous-time inputs generate continuous-time outputs. Blocks that are not capable of accepting continuous-time signals include the Digital Filter, FIR Decimation, FIR Interpolation blocks.

Sample-Based Signals

Signals can be sample-based or frame-based, single channel or multichannel. The following section discusses sample-based signals in both their single and multichannel form.

This section includes the following topics:

- "Sample-Based Single Channel Signals" on page 1-13 - Learn about the characteristics of a sample-based single channel signal
- "Sample-Based Multichannel Signals" on page 1-13 - Learn about the characteristics of a sample-based multichannel signal

Sample-Based Single Channel Signals

The following figure shows a discrete-time signal. If this signal is propagated through a model sample-by-sample, rather than in batches of samples, it is called a sample-based signal. It is also single-channel signal, because there is only one independent sequence of numbers.

The representation of single-channel signals is actually a special case of the general multichannel signal.

Sample-Based Multichannel Signals

Sample-based multichannel signals are represented as matrices. An M-by-N sample-based matrix represents $\mathrm{M} * \mathrm{~N}$ independent channels, each containing a single value. In other words, each matrix element represents one sample from a distinct channel.

As an example, consider the 24-channel (6-by-4) sample-based signal in the figure below, where $u^{t=0}$ is the first matrix in the series, $u^{t=1}$ is the second, $u^{t=2}$ is the third, and so on.

The signal in channel 1 is composed of the following sequence:

$$
u_{11}^{t=0}, u_{11}^{t=1}, u_{11}^{t=2}, \ldots
$$

Similarly, channel 9 (counting down the columns) contains the following sequence:

$$
u_{32}^{t=0}, u_{32}^{t=1}, u_{32}^{t=2}, \ldots
$$

In practice, signal samples are frequently transmitted in batches, or frames, and several channels of data are often transmitted simultaneously in order to accelerate simulations. Hence, most signals are frame-based and multichannel signals.

Frame-Based Signals

Signals can be sample-based or frame-based, single channel or multichannel. The following section discusses frame-based signals in both their single and multichannel form. It also explains how frame-based processing accelerates real-time systems and simulations.

This section contains the following topics:

- "Frame-Based Single Channel Signals" on page 1-15 - Learn about the characteristics of a frame-based single channel signal
- "Frame-Based Multichannel Signals" on page 1-15 - Learn about the characteristics of a frame-based multichannel signal
- "Benefits of Frame-Based Processing" on page 1-16 - Understand how frame-based processing accelerates real-time systems and simulations

Frame-Based Single Channel Signals

The following figure shows a discrete-time signal. If this signal is propagated through a model in batches of samples, it is called a frame-based signal. It is also single-channel signal, because there is only one independent sequence of numbers.

Frame-based single channel signals are represented as vectors. An M-by-1 frame-based vector represents M consecutive samples from a single channel. In other words, each matrix row represents one sample, or time slice, from one distinct channel.

Frame-Based Multichannel Signals

Frame-based multichannel signals are represented as matrices. An M-by-N frame-based matrix represents M consecutive samples from each of N independent channels. In other words, each matrix row represents one sample,
or time slice, from N distinct signal channels, and each matrix column represents M consecutive samples from a single channel.

For example, this 6-by-4 matrix represents a four-channel frame-based signal with six samples per frame.

Frame matrix:
4 channels,
1 frame per channel,
6 samples per frame
ch1 ch2 ch3 ch4
Consider a sequence of frame matrices, where $u^{\mathrm{t}=0}$ is the first matrix in a series, $u^{\mathrm{t}=1}$ is the second, $u^{\mathrm{t}=2}$ is the third, and so on.

The signal in channel 1 is the following sequence:

$$
u_{11}^{t=0}, u_{21}^{t=0}, u_{31}^{t=0}, \ldots, u_{M 1}^{t=0}, u_{11}^{t=1}, u_{21}^{t=1}, u_{31}^{t=1}, \ldots, u_{M 1}^{t=1}, u_{11}^{t=2}, u_{21}^{t=2}, \ldots
$$

Similarly, the signal in channel 3 is the following sequence:

$$
u_{13}^{t=0}, u_{23}^{t=0}, u_{33}^{t=0}, \ldots, u_{M 3}^{t=0}, u_{13}^{t=1}, u_{23}^{t=1}, u_{33}^{t=1}, \ldots, u_{M 3}^{t=1}, u_{13}^{t=2}, u_{23}^{t=2}, \ldots
$$

Benefits of Frame-Based Processing

Frame-based processing is an established method of accelerating both real-time systems and simulations.

Accelerating Real-Time Systems

Frame-based data is a common format in real-time systems. Data acquisition hardware often operates by accumulating a large number of signal samples at a high rate, and propagating these samples to the real-time system as a block of data. This maximizes the efficiency of the system by distributing the fixed process overhead across many samples; the "fast" data acquisition is suspended by "slow" interrupt processes after each frame is acquired, rather than after each individual sample.

The figure below illustrates how throughput is increased by frame-based data acquisition. The thin blocks each represent the time elapsed during acquisition of a sample. The thicker blocks each represent the time elapsed during the interrupt service routine (ISR) that reads the data from the hardware.
In this example, the frame-based operation acquires a frame of 16 samples between each ISR. The frame-based throughput rate is therefore many times higher than the sample-based alternative.

It's important to note that frame-based processing introduces a certain amount of latency into a process due to the inherent lag in buffering the initial frame. In many instances, however, it is possible to select frame sizes that improve throughput without creating unacceptable latencies. For more information, see "Delay and Latency" on page 2-49.

Accelerating Simulations

The simulation of your model also benefits from frame-based processing. In this case, it is the overhead of block-to-block communications that is reduced by propagating frames rather than individual samples.

Creating Sample-Based Signals

A sample-based signal is propagated through a model one sample at a time. This section describes two ways to create a sample-based signal.

This section includes the following topics:

- "Using the DSP Constant Block" on page 1-19 - Create a six-channel, constant sample-based signal using the DSP Constant block
- "Using the Signal from Workspace Block" on page 1-22 - Create a four-channel sample-based signal using the Signal From Workspace block

Using the DSP Constant Block

A constant sample-based signal has identical successive samples. The Signal Processing Sources library provides the following blocks for creating constant sample-based signals:

- Constant Diagonal Matrix
- DSP Constant
- Identity Matrix

For information about the specific functionality of these blocks, see their respective block reference pages.

The most versatile of the blocks listed above is the DSP Constant block. This topic discusses how to create a constant sample-based signal using the DSP Constant block:

1 Create a new Simulink model.
2 From the Signal Processing Sources library, click-and-drag a DSP Constant block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Display block into the model.

4 Connect the two blocks.
5 Double-click the DSP Constant block, and set the block parameters as follows:

- Constant value = [11 2 3; 4 5 6]
- Sample mode = Discrete
- Output = Sample-based
- Sample time = 1

Based on these parameters, the DSP Constant block outputs a constant, discrete-valued, sample-based matrix signal with a sample period of 1 second.

The DSP Constant block's Constant value parameter can be any valid MATLAB variable or expression that evaluates to a matrix. See the MATLAB documentation for a thorough introduction to constructing and indexing matrices.

6 Save these parameters and close the dialog box by clicking OK.
7 From the Format menu, point to Port/ Signal Displays and select Signal Dimensions.

8 Run the model and expand the Display block so you can view the entire signal.

The model should now look similar to the following figure. You can also open the model by typing doc_usingdspenstblksb at the MATLAB command line.

You have now successfully created a six-channel, constant sample-based signal with a sample period of 1 second.

Creating a 1-D Vector Signal

You can modify the previous model in order to create a 1-D vector signal:
1 Double-click the DSP Constant block, and set the block parameters as follows:

- Constant value $=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]$
- Output = Sample-based (interpret vector as 1-D)

2 Save these parameters and close the dialog box by clicking OK.
3 Run the model and expand the Display block so you can view the entire signal.

The following figure shows the results of these two procedures.

The DSP Constant block generates a length-6 1-D vector signal. This means that the output is not a matrix. However, most nonsource signal processing blocks interpret a length-M 1-D vector as an M-by-1 matrix (column vector).

Note A 1-D vector signal must always be sample based.

Using the Signal from Workspace Block

This topic discusses how to create a a four-channel sample-based signal with a sample period of 1 second using the Signal From Workspace block:

1 Create a new Simulink model.
2 From the Signal Processing Sources library, click-and-drag a Signal From Workspace block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Signal To Workspace block into the model.

4 Connect the two blocks.

5 Double-click the Signal From Workspace block, and set the block parameters as follows:

- Signal = cat (3,[1-1;0 5],[2 -2;0 5],[3 -3;0 5])
- Sample time = 1
- Samples per frame = 1
- Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a four-channel sample-based signal with a sample period of 1 second. After the block has output the signal, all subsequent outputs have a value of zero. The four channels contain the following values:

- Channel 1: 1, 2, 3, 0, 0,...
- Channel 2: -1, $-2,-3,0,0, \ldots$
- Channel 3: $0,0,0,0,0, \ldots$
- Channel 4: 5, 5, 5, 0, 0,...

6 Save these parameters and close the dialog box by clicking OK.
7 From the Format menu, point to Port/Signal Displays, and select Signal Dimensions.

8 Run the model.
The following figure is a graphical representation of the model's behavior during simulation. You can also open the model by typing doc_usingsfwblksb at the MATLAB command line.

9 At the MATLAB command line, type yout
The following is a portion of the output:

```
yout(:,:,1) =
1 -1
0 5
yout(:,:,2) =
2 -2
0
yout(:,:,3) =
3 -3
0
```

```
yout(:,:,4) =
0
0
```

You have now successfully created a four-channel sample-based signal with sample period of 1 second using the Signal From Workspace block.

Creating Frame-Based Signals

A frame-based signal is propagated through a model in batches of samples called frames. Frame-based processing can significantly improve the performance of your model by decreasing the amount of time it takes your simulation to run. This section describes two ways to create frame-based signals.

This section includes the following topics:

- "Using the Sine Wave Block" on page 1-26 - Create a three-channel frame-based signal using the Sine Wave block
- "Using the Signal from Workspace Block" on page 1-29 - Create a two-channel frame-based signal using the Signal From Workspace block

Using the Sine Wave Block

The Signal Processing Sources library provides the following blocks for automatically generating common frame-based signals:

- Chirp
- Discrete Impulse
- Multiphase Clock
- N-Sample Enable
- Sine Wave

For information about the specific functionality of these blocks, see their respective block reference pages.

The most commonly used block in the Signal Processing Sources library is the Sine Wave block. This topic describes how to create a three-channel frame-based signal using the Sine Wave block:

1 Create a new Simulink model.
2 From the Signal Processing Sources library, click-and-drag a Sine Wave block into the model.

3 From the Matrix Operations library, click-and-drag a Matrix Sum block into the model.

4 From the Signal Processing Sinks library, click-and-drag a Signal to Workspace block into the model.

5 Connect the blocks in the order in which you added them to your model.
6 Double-click the Sine Wave block, and set the block parameters as follows:

- Amplitude = $\left.\begin{array}{lll}1 & 3 & 2\end{array}\right]$
- Frequency = $\left[\begin{array}{lll}100 & 250 & 500\end{array}\right]$
- Sample time $=1 / 5000$
- Samples per frame $=64$

Based on these parameters, the Sine Wave block outputs three sinusoids with amplitudes 1,3 , and 2 and frequencies 100,250 , and 500 hertz, respectively. The sample period, $1 / 5000$, is 10 times the highest sinusoid frequency, which satisfies the Nyquist criterion. The frame size is 64 for all sinusoids, and, therefore, the output has 64 rows.

7 Save these parameters and close the dialog box by clicking OK.
You have now successfully created a three-channel frame-based signal using the Sine Wave block. The rest of this procedure describes how to add these three sinusoids together.

8 Double-click the Matrix Sum block, and set the Sum along parameter to Rows. Click OK.

9 From the Format menu, point to Port/Signal Displays, and select Signal Dimensions.

10 Run the model.
Your model should now look similar to the following figure. You can also open the model by typing doc_usingsinwaveblkfb at the MATLAB command line.

The three signals are summed point-by-point by a Matrix Sum block. Then, they are exported to the MATLAB workspace.

11 At the MATLAB command line, type plot (yout(1:100))
You plot should look similar to the following figure.

This figure represents a portion of the sum of the three sinusoids. You have now added the channels of a three-channel frame-based signal together and displayed the results in a figure window.

Using the Signal from Workspace Block

This topic describes how to create a two-channel frame-based signal with a sample period of 1 second, a frame period of 4 seconds, and a frame size of 4 samples using the Signal From Workspace block:

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a Signal From Workspace block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Signal To Workspace block into the model.

4 Connect the two blocks.
5 Double-click the Signal From Workspace block, and set the block parameters as follows:

- Signal = [1:10; 11000110011$]^{\prime}$
- Sample time = 1
- Samples per frame $=4$
- Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a two-channel, frame-based signal has a sample period of 1 second, a frame period of 4 seconds, and a frame size of four samples. After the block outputs the signal, all subsequent outputs have a value of zero. The two channels contain the following values:

- Channel 1: $1,2,3,4,5,6,7,8,9,10,0,0, \ldots$
- Channel 2: $1,1,0,0,1,1,0,0,1,1,0,0, \ldots$

6 Save these parameters and close the dialog box by clicking OK.
7 From the Format menu, point to Port/Signal Displays, and select Signal Dimensions.

8 Run the model.
The following figure is a graphical representation of the model's behavior during simulation. You can also open the model by typing doc_usingsfwblkfb at the MATLAB command line.

9 At the MATLAB command line, type yout.

The following is the output displayed at the MATLAB command line. yout $=$

1	1
2	1
3	0
4	0
5	1
6	1
7	0
8	0
9	1
10	1
0	0
0	0

Note that zeros were appended to the end of each channel. You have now successfully created a two-channel frame-based signal and exported it to the MATLAB workspace.

Creating Multichannel Sample-Based Signals

When you want to perform the same operations on several independent signals, you can group those signals together as a multichannel signal. For example, if you need to filter each of four independent signals using the same direct-form II transpose filter, you can combine the signals into a multichannel signal, and connect the signal to a single Digital Filter Design block. The block applies the filter to each channel independently.

A sample-based signal with $\mathrm{M} * \mathrm{~N}$ channels is represented by a sequence of M-by-N matrices. Multiple sample-based signals can be combined into a single multichannel sample-based signal using the Matrix Concatenation block. In addition, several multichannel sample-based signals can be combined into a single multichannel sample-based signal using the same technique.

This section contains the following topics:

- "Combining Single-Channel Sample-Based Signals" on page 1-33 - Create a multichannel sample-based signal from several individual sample-based signals
- "Combining Multichannel Sample-Based Signals" on page 1-36 - Create a multichannel sample-based signal from several multichannel sample-based signals

Combining Single-Channel Sample-Based Signals

You can combine individual sample-based signals into a multichannel signal by using the Matrix Concatenation block in the Simulink Math Operations library:

1 Open the Matrix Concatenation Example 1 model by typing doc_cmbsnglchsbsigs
at the MATLAB command line.

2 Double-click the Signal From Workspace block, and set the Signal parameter to 1:10. Click OK.

3 Double-click the Signal From Workspace1 block, and set the Signal parameter to -1:-1:-10. Click OK.

4 Double-click the Signal From Workspace2 block, and set the Signal parameter to zeros (10,1). Click OK.

5 Double-click the Signal From Workspace3 block, and set the Signal parameter to 5 *ones (10,1). Click OK.

6 Double-click the Matrix Concatenation block. Set the block parameters as follows, and then click OK:

- Number of inputs = 4
- Concatenation method = Vertical

7 Double-click the Reshape block. Set the block parameters as follows, and then click OK:

- Output dimensionality = Customize
- Output dimensions $=[2,2]$

8 Run the model.
Four independent sample-based signals are combined into a 2 -by-2 multichannel matrix signal.

Each 4-by-1 output from the Matrix Concatenation block contains one sample from each of the four input signals at the same instant in time. The Reshape block rearranges the samples into a 2-by-2 matrix. Each element of this matrix is a separate channel. Note that the Reshape block works columnwise, so that a column vector input is reshaped as shown below.

The 4 -by- 1 matrix output by the Matrix Concatenation block and the 2-by-2 matrix output by the Reshape block in the above model represent the same four-channel sample-based signal. In some cases, one representation of the signal may be more useful than the other.

9 At the MATLAB command line, type dsp_examples_yout.
The four-channel, sample-based signal is displayed as a series of matrices in the MATLAB Command Window. Note that the last matrix contains only zeros. This is because every Signal From Workspace block in this model has its Form output after final data value by parameter set to Setting to Zero.

For more information about the Matrix Concatenation block or Reshape block, see their respective block reference pages.

Combining Multichannel Sample-Based Signals

You can combine existing multichannel sample-based signals into larger multichannel signals using the Matrix Concatenation block in the Simulink Sources library:

1 Open the Matrix Concatenation Example 2 model by typing doc_cmbmltichsbsigs
at the MATLAB command line.

2 Double-click the Signal From Workspace block, and set the Signal parameter to [1:10;-1:-1:-10]'. Click OK.

3 Double-click the Signal From Workspace1 block, and set the Signal parameter to [zeros $(10,1)$ 5*ones $(10,1)]$. Click OK.

4 Double-click the Matrix Concatenation block. Set the block parameters as follows, and then click OK:

- Number of inputs = 2
- Concatenation method = Vertical

5 Run the model.
The model combines both two-channel sample-based signals into a four-channel signal.

Each 2-by-2 output from the Matrix Concatenation block contains both samples from each of the two input signals at the same instant in time. Each element of this matrix is a separate channel.

For more information about the Matrix Concatenation block, see the Matrix Concatenation block reference page.

Creating Multichannel Frame-Based Signals

When you want to perform the same operations on several independent signals, you can group those signals together as a multichannel signal. For example, if you need to filter each of four independent signals using the same direct-form II transpose filter, you can combine the signals into a multichannel signal, and connect the signal to a single Digital Filter Design block. The block applies the filter to each channel independently.

A frame-based signal with N channels and frame size M is represented by a sequence of M-by-N matrices. Multiple individual frame-based signals, with the same frame rate and size, can be combined into a multichannel frame-based signal using the Simulink Matrix Concatenation block. Individual signals can be added to an existing multichannel signal in the same way.

This section contains the following topic:

- "Combining Frame-Based Signals" on page 1-39 - Create a multichannel frame-based signal from several individual frame-based signals

Combining Frame-Based Signals

You can combine existing frame-based signals into a larger multichannel signal by using the Matrix Concatenation block in the Simulink Sources library. All signals must have the same frame rate and frame size. In this example, a single-channel frame-based signal is combined with a two-channel frame-based signal to produce a three-channel frame-based signal:

1 Open the Matrix Concatenation Example 3 model by typing doc_combiningfbsigs
at the MATLAB command line.

2 Double-click the Signal From Workspace block. Set the block parameters as follows:

- Signal =[1:10;-1:-1:-10]'
- Sample time = 1
- Samples per frame $=4$

Based on these parameters, the Signal From Workspace block outputs a frame-based signal with a frame size of four.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the Signal From Workspace1 block. Set the block parameters as follows, and then click OK:

- Signal = 5*ones (10,1)
- Sample time = 1
- Samples per frame $=4$

The Signal From Workspace1 block has the same sample time and frame size as the Signal From Workspace block. When you combine frame-based signals into multichannel signals, the original signals must have the same frame rate and frame size.

5 Double-click the Matrix Concatenation block. Set the block parameters as follows, and then click OK:

- Number of inputs = 2
- Concatenation method = Horizontal

6 Run the model.
The figure below is a graphical representation of what happens to one input frame during simulation.

The 4-by-3 matrix output from the Matrix Concatenation block contains all three input channels, and preserves their common frame rate and frame size.

For more information about the Matrix Concatenation block, see the Matrix Concatenation block reference page.

Deconstructing Multichannel Sample-Based Signals

Multichannel signals, represented by matrices in Simulink, are frequently used in signal processing models for efficiency and compactness. Though most of the signal processing blocks can process multichannel signals, you may need to access just one channel or a particular range of samples in a multichannel signal. You can access individual channels of the multichannel signal by using the blocks in the Indexing library. This library includes the Selector, Submatrix, Variable Selector, Multiport Selector, and Submatrix blocks.

This section includes the following topics:

- "Splitting Multichannel Sample-Based Signals into Individual Signals" on page 1-43 - Use the Multiport Selector block to create three, single-channel sample-based signals from a multichannel sample-based signal
- "Splitting Multichannel Sample-Based Signals into Several Multichannel Signals" on page 1-46 - Use the Submatrix block to create a six-channel sample-based signal from a 35 -channel sample-based signal.

Splitting Multichannel Sample-Based Signals into Individual Signals

You can split multichannel sample-based signal into single-channel sample-based signals using the Multiport Selector block. This blocks allows you to select specific rows and/or columns and propagate this selection to a chosen output port. In this example, a three-channel sample-based signal is deconstructed into three independent sample-based signals:

[^0]

2 Double-click the Signal From Workspace block, and set the block parameters as follows:

- Signal $=$ randn $(3,1,10)$
- Sample time $=1$
- Samples per frame = 1

Based on these parameters, the Signal From Workspace block outputs a three-channel, sample-based signal with a sample period of 1 second.

3 Save these parameters and close the dialog box by clicking OK.
4 Double-click the Multiport Selector block. Set the block parameters as follows, and then click OK:

- Select = Rows
- Indices to output $=\{1,2,3\}$

Based on these parameters, the Multiport Selector block extracts the rows of the input. The Indices to output parameter setting specifies that row 1 of the input should be reproduced at output 1 , row 2 of the input should be reproduced at output 2 , and row 3 of the input should be reproduced at output 3 .

5 Run the model.
6 At the MATLAB command line, type dsp_examples_yout
The following is a portion of what is displayed at the MATLAB command line. Because the input signal is random, your output might be different than the output show here.

```
dsp_examples_yout(:,:,1) =
    -0.1199
dsp_examples_yout(:,:,2) =
    -0.5955
dsp_examples_yout(:, :,3) =
    -0.0793
```

This sample-based signal is the first row of the input to the Multiport Selector block. You can view the other two input rows by typing dsp_examples_yout1 and type dsp_examples_yout2, respectively.

You have now successfully created three, single-channel sample-based signals from a multichannel sample-based signal using a Multiport Selector block. For more information about this block, see the Multiport Selector block reference page.

Splitting Multichannel Sample-Based Signals into Several Multichannel Signals

You can split a multichannel sample-based signal into other multichannel sample-based signals using the Submatrix block. The Submatrix block is the most versatile of the blocks in the Indexing library because it allows arbitrary channel selections. Therefore, you can extract a portion of a multichannel sample-based signal. In this example, you extract a six-channel, sample-based signal from a 35 -channel, sample-based signal (5 -by- 7 matrix):

1 Open the Submatrix Example model by typing
doc_splitmltichsbsigsev
at the MATLAB command line.

2 Double-click the DSP Constant block, and set the block parameters as follows:

- Constant value $=\operatorname{rand}(5,7)$
- Output = Sample - based

Based on these parameters, the DSP Constant block outputs a constant-valued, sample-based signal.

3 Save these parameters and close the dialog box by clicking OK.
4 Double-click the Submatrix block. Set the block parameters as follows, and then click OK:

- Row span = Range of rows
- Starting row = Index
- Starting row index $=3$
- Ending row = Last
- Column span = Range of columns
- Starting column $=$ Offset from last
- Starting column index = 1
- Ending column = Last

Based on these parameters, the Submatrix block outputs rows three to five, the last row of the input signal. It also outputs the second to last column and the last column of the input signal.

5 Run the model.
The model should now look similar to the following figure.

Note that the output of the Submatrix block is equivalent to the matrix created by rows three through five and columns six through seven of the input matrix.

You have now successfully created a six-channel, sample-based signal from a 35 -channel sample-based signal using a Submatrix block. For more information about this block, see the Submatrix block reference page.

Deconstructing Multichannel Frame-Based Signals

Multichannel signals, represented by matrices in Simulink, are frequently used in signal processing models for efficiency and compactness. Though most of the signal processing blocks can process multichannel signals, you may need to access just one channel or a particular range of samples in a multichannel signal. You can access individual channels of the multichannel signal by using the blocks in the Indexing library. This library includes the Selector, Submatrix, Variable Selector, Multiport Selector, and Submatrix blocks. It is also possible to use the Permute Matrix block, in the Matrix operations library, to reorder the channels of a frame-based signal.

This section includes the following topics:

- "Splitting Multichannel Frame-Based Signals into Individual Signals" on page 1-49 - Use the Multiport Selector block to create a single-channel and a two-channel frame-based signal from a multichannel frame-based signal
- "Reordering Channels in Multichannel Frame-Based Signals" on page 1-54 - Use the Permute Matrix block to rearrange the channels in a frame-based signal

Splitting Multichannel Frame-Based Signals into Individual Signals

You can use the Multiport Selector block in the Indexing library to extract the individual channels of a multichannel frame-based signal. These signals form single-channel frame-based signals that have the same frame rate and size of the multichannel signal. The figure below is a graphical representation of this process.

In this example, you use the Multiport Selector block to extract a single-channel and a two channel frame-based signal from a multichannel frame-based signal:

1 Open the Multiport Selector Example 2 model by typing doc_splitmltichfbsigsind at the MATLAB command line.

2 Double-click the Signal From Workspace block, and set the block parameters as follows:

- Signal = [1:10;-1:-1:-10;5*ones (1,10) $]^{\prime}$
- Samples per frame $=4$

Based on these parameters, the Signal From Workspace block outputs a three-channel, frame-based signal with a frame size of four.

3 Save these parameters and close the dialog box by clicking OK.
4 Double-click the Multiport Selector block. Set the block parameters as follows, and then click OK:

- Select = Columns
- Indices to output =\{[llll $\left.\left.\begin{array}{ll}1 & 3\end{array}\right], 2\right\}$

Based on these parameters, the Multiport Selector block outputs the first and third columns at the first output port and the second column at the second output port of the block. Setting the Select parameter to Columns ensures that the block preserves the frame rate and frame size of the input.

5 Run the model.
The figure below is a graphical representation of how the Multiport Selector block splits one frame of the three-channel frame-based signal into a single-channel signal and a two-channel signal.

The Multiport Selector block outputs a two-channel frame-based signal, comprised of the first and third column of the input signal, at the first port. It outputs a single-channel frame-based signal, comprised of the second column of the input signal, at the second port.
You have now successfully created a single-channel and a two-channel frame-based signal from a multichannel frame-based signal using the Multiport Selector block. For more information about this block, see the Multiport Selector block reference page.

Reordering Channels in Multichannel Frame-Based Signals

Some blocks in the Signal Processing Blockset have the ability to process the interaction of channels. Typically, Signal Processing Blockset blocks compare channel one of signal A to channel one of signal B. However, you might want to correlate channel one of signal A with channel three of signal B. In this case, in order to compare the correct signals, you need to use the Permute Matrix block to rearrange the channels of your frame-based signals. This example explains how to accomplish this task:

1 Open the Permute Matrix Example model by typing
doc_reordermltichfbsigs
at the MATLAB command line.

2 Double-click the Signal From Workspace block, and set the block parameters as follows:

- Signal = [1:10;-1:-1:-10;5*ones $(1,10)]^{\prime}$
- Sample time $=1$

- Samples per frame $=4$

Based on these parameters, the Signal From Workspace block outputs a three-channel, frame-based signal with a sample period of 1 second and a frame size of 4 . The frame period of this block is 4 seconds.

3 Save these parameters and close the dialog box by clicking OK.
4 Double-click the DSP Constant block. Set the block parameters as follows, and then click OK:

- Constant value = $\left.\begin{array}{lll}1 & 3 & 2\end{array}\right]$
- Sample mode = Discrete
- Output = Frame - based
- Frame period $=4$

The discrete-time, frame-based vector output by the DSP Constant block tells the Permute Matrix block to swap the second and third columns of the input signal. Note that the frame period of the DSP Constant block must match the frame period of the Signal From Workspace block.

5 Double-click the Permute Matrix block. Set the block parameters as follows, and then click OK:

- Permute = Columns
- Index mode = One - based

Based on these parameters, the Permute Matrix block rearranges the columns of the input signal, and the index of the first column is now one.

6 Run the model.
The figure below is a graphical representation of what happens to the first input frame during simulation.

The second and third channel of the frame-based input signal are swapped.
7 At the MATLAB command line, type yout
You can now verify that the second and third columns of the input signal are rearranged.
You have now successfully reordered the channels of a frame-based signal using the Permute Matrix block. For more information about this block, see the Permute Matrix block reference page.

Importing and Exporting Sample-Based Signals

Although a number of signal generation blocks are available in both the Simulink and the Signal Processing Blockset libraries, it is also possible to import custom signals from the MATLAB workspace into your Simulink model. The Signal From Workspace block in the Signal Processing Sources library is the key block for importing sample-based signals of all dimensions from the MATLAB workspace. The Signal To Workspace block in the Signal Processing Sinks library can be used to export sample-based signals to the MATLAB workspace

This section includes the following topics:

- "Importing Sample-Based Vector Signals" on page 1-57 - Use the Signal From Workspace block to import a sample-based vector signal into your signal processing model
- "Importing Sample-Based Matrix Signals" on page 1-60 - Use the Signal From Workspace block to import a sample-based matrix signal into your signal processing model
- "Exporting Sample-Based Signals" on page 1-64 - Use the Signal To Workspace block to export a sample-based matrix signal to your MATLAB workspace

Importing Sample-Based Vector Signals

The Signal From Workspace block generates a sample-based vector signal when the variable or expression in the Signal parameter is a matrix and the Samples per frame parameter is set to 1 . Each column of the input matrix represents a different channel. Beginning with the first row of the matrix, the block outputs one row of the matrix at each sample time. Therefore, if the Signal parameter specifies an M-by-N matrix, the output of the Signal From Workspace block is M 1-by-N row vectors representing N channels.
The figure below is a graphical representation of this process for a 6-by-4 workspace matrix, A.

1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6

ch1 ch2 ch3 ch4

MATLAB workspace matrix, A:

 4 channels, 6 samples each

In the following example, you use the Signal From Workspace block to import a sample-based vector signal into your model:

1 Open the Signal From Workspace Example 3 model by typing doc_importsbvectorsigs
at the MATLAB command line.

2 At the MATLAB command line, type $A=[1: 100 ;-1:-1:-100]^{\prime}$;
The matrix A represents a two column signal, where each column is a different channel.

3 At the MATLAB command line, type B = 5*ones $(100,1)$;
The vector B represents a single-channel signal.
4 Double-click the Signal From Workspace block, and set the block parameters as follows:

- Signal = [A B]
- Sample time = 1
- Samples per frame = 1
- Form output after final data value $=$ Setting to zero

The Signal expression [A B] uses the standard MATLAB syntax for horizontally concatenating matrices and appends column vector B to the right of matrix A. The Signal From Workspace block outputs a sample-based signal with a sample period of 1 second. After the block has output the signal, all subsequent outputs have a value of zero.

5 Save these parameters and close the dialog box by clicking OK.
6 Run the model.
The following figure is a graphical representation of the model's behavior during simulation.

The first row of the input matrix $[A B]$ is output at time $t=0$, the second row of the input matrix is output at time $t=1$, and so on.

You have now successfully imported a sample-based vector signal into your signal processing model using the Signal From Workspace block. For more information about this block, see the Signal From Workspace block reference page.

Importing Sample-Based Matrix Signals

The Signal From Workspace block generates a sample-based matrix signal when the variable or expression in the Signal parameter is a three-dimensional array and the Samples per frame parameter is set to 1 . Beginning with the first page of the array, the block outputs a single page of the array to the output at each sample time. Therefore, if the Signal parameter specifies an M-by-N-by-P array, the output of the Signal From Workspace block is P M-by-N matrices representing $\mathrm{M} * \mathrm{~N}$ channels.

The figure below is a graphical illustration of this process for a 6-by-4-by-5 workspace array A.

In the following example, you use the Signal From Workspace block to import a four-channel, sample-based matrix signal into a Simulink model:

1 Open the Signal From Workspace Example 4 model by typing doc_importsbmatrixsigs
at the MATLAB command line.

Also, the following variables are loaded into the MATLAB workspace:

Fs	1×1	8	double array
dsp_examples_A	$2 \times 2 \times 100$	3200	double array
dsp_examples_sig1	$1 \times 1 \times 100$	800	double array
dsp_examples_sig12	$1 \times 2 \times 100$	1600	double array
dsp_examples_sig2	$1 \times 1 \times 100$	800	double array
dsp_examples_sig3	$1 \times 1 \times 100$	800	double array
dsp_examples_sig34	$1 \times 2 \times 100$	1600 double array	
dsp_examples_sig4	$1 \times 1 \times 100$	800 double array	
mtlb	4001×1	32008 double array	

2 Double-click the Signal From Workspace block. Set the block parameters as follows, and then click OK:

- Signal = dsp_examples_A
- Sample time $=1$

- Samples per frame = 1

- Form output after final data value $=$ Setting to zero.

The dsp_examples_A array represents a four-channel, sample-based signal with 100 samples in each channel. This is the signal that you want to import, and it was created in the following way:

```
dsp_examples_sig1 = reshape(1:100,[11 1 100])
dsp_examples_sig2 = reshape(-1:-1:-100,[11 1 100])
dsp_examples_sig3 = zeros(1,1,100)
dsp_examples_sig4 = 5*ones(1,1,100)
dsp_examples_sig12 = cat(2,sig1,sig2)
dsp_examples_sig34 = cat(2,sig3,sig4)
dsp_examples_A = cat(1,sig12,sig34) % 2-by-2-by-100 array
```

3 Run the model.
The figure below is a graphical representation of the model's behavior during simulation.

The Signal From Workspace block imports the four-channel sample based signal from the MATLAB workspace into the Simulink model one matrix at a time.

You have now successfully imported a sample-based matrix signal into your model using the Signal From Workspace block. For more information about this block, see the Signal From Workspace block reference page.

Exporting Sample-Based Signals

The Signal To Workspace and Triggered To Workspace blocks are the primary blocks for exporting signals of all dimensions from a Simulink model to the MATLAB workspace.

A sample-based signal, with $\mathrm{M} * \mathrm{~N}$ channels, is represented in Simulink as a sequence of M-by-N matrices. When the input to the Signal To Workspace block is a sample-based signal, the block creates an M-by-N-by-P array in the MATLAB workspace containing the P most recent samples from each channel. The number of pages, P, is specified by the Limit data points to last parameter. The newest samples are added at the back of the array.

The figure below is the graphical illustration of this process using a 6-by-4 sample-based signal exported to workspace array A.

The workspace array always has time running along its third dimension, P . Samples are saved along the P dimension whether the input is a matrix, vector, or scalar (single channel case).

In the following example you use a Signal To Workspace block to export a sample-based matrix signal to the MATLAB workspace:

1 Open the Signal From Workspace Example 6 model by typing doc_exportsbsigs
at the MATLAB command line.

Also, the following variables are loaded into the MATLAB workspace:

Fs	1×1	8	double array
dsp_examples_A	$2 \times 2 \times 100$	3200	double array
dsp_examples_sig1	$1 \times 1 \times 100$	800	double array
dsp_examples_sig12	$1 \times 2 \times 100$	1600	double array
dsp_examples_sig2	$1 \times 1 \times 100$	800	double array
dsp_examples_sig3	$1 \times 1 \times 100$	800	double array
dsp_examples_sig34	$1 \times 2 \times 100$	1600	double array
dsp_examples_sig4	$1 \times 1 \times 100$	800	double array
mtlb	4001×1	32008	double array

In this model, the Signal From Workspace block imports a four-channel sample-based signal called dsp_examples_A. This signal is then exported to the MATLAB workspace using a Signal to Workspace block

2 Double-click the Signal From Workspace block. Set the block parameters as follows, and then click OK:

- Signal = dsp_examples_A
- Sample time = 1
- Samples per frame = 1
- Form output after final data value $=$ Setting to zero

Based on these parameters, the Signal From Workspace block outputs a sample-based signal with a sample period of 1 second. After the block has output the signal, all subsequent outputs have a value of zero.

3 Double-click the Signal To Workspace block. Set the block parameters as follows, and then click OK:

- Variable name = dsp_examples_yout
- Limit data points to last parameter to inf
- Decimation $=1$

Based on these parameters, the Signal To Workspace block exports its sample-based input signal to a variable called dsp_examples_yout in the MATLAB workspace. The workspace variable can grow indefinitely large in order to capture all of the input data. The signal is not decimated before it is exported to the MATLAB workspace.

4 Run the model.
5 At the MATLAB command line, type dsp_examples_yout
The four-channel sample-based signal, dsp_examples_A, is output at the MATLAB command line. The following is a portion of the output that is displayed.

```
dsp_examples_yout(:,:,1) =
    1 -1
    0
dsp_examples_yout(:,:,2) =
    2 -2
    0
```

```
dsp_examples_yout(:,: 3) =
    \(3-3\)
    \(0 \quad 5\)
dsp_examples_yout(:, : 4) =
    \(4-4\)
    05
```

Each page of the output represents a different sample time, and each element of the matrices is in a separate channel.

You have now successfully exported a four-channel sample-based signal from a Simulink model to the MATLAB workspace using the Signal To Workspace block. For more information about this block, see the Signal To Workspace block reference page.

Importing and Exporting Frame-Based Signals

Although a number of signal generation blocks are available in both the Simulink and the Signal Processing Blockset libraries, it is also possible to import frame-based signals from the MATLAB workspace into your Simulink model. The Signal From Workspace block in the Signal Processing Sources library is the key block for importing frame-based signals of all dimensions from the MATLAB workspace. The Signal To Workspace block in the Signal Processing Sinks library can be used to export frame-based signals to the MATLAB workspace

This section includes the following topics:

- "Importing Frame-Based Signals" on page 1-69 - Use the Signal From Workspace block to create a three-channel, frame-based signal and import it into your model.
- "Exporting Frame-Based Signals" on page 1-72 — Use the Signal To Workspace block to export a three-channel, frame-based signal into the MATLAB workspace.

Importing Frame-Based Signals

The Signal From Workspace block creates a frame-based multichannel signal when the Signal parameter is a matrix, and the Samples per frame parameter, M, is greater than 1. Beginning with the first M rows of the matrix, the block releases M rows of the matrix (that is, one frame from each channel) to the output port every $\mathrm{M} * \mathrm{~T}_{\mathrm{s}}$ seconds. Therefore, if the Signal parameter specifies a W-by-N workspace matrix, the Signal From Workspace block outputs a series of M-by-N matrices representing N channels. The workspace matrix must be oriented so that its columns represent the channels of the signal.

The figure below is a graphical illustration of this process for a 6-by-4 workspace matrix, A, and a frame size of 2 .

Note Although independent channels are generally represented as columns, a single-channel signal can be represented in the workspace as either a column vector or row vector. The output from the Signal From Workspace block is a column vector in both cases.

In the following example, you use the Signal From Workspace block to create a three-channel frame-based signal and import it into the model:

1 Open the Signal From Workspace Example 5 model by typing doc_importfbsigs
at the MATLAB command line.

Also, the following variables are defined in the MATLAB workspace:

```
dsp_examples_A = [1:100;-1:-1:-100]';% 100-by-2 matrix
dsp_examples_B = 5*ones(100,1);% 100-by-1 column vector
```

The variable called dsp_examples_A represents a two-channel signal with 100 samples, and the variable called dsp_examples_B represents a one-channel signal with 100 samples.

2 Double-click the Signal From Workspace block. Set the block parameters as follows, and then click OK:

- Signal parameter to [dsp_examples_A dsp_examples_B]
- Sample time parameter to 1
- Samples per frame parameter to 4
- Form output after final data value parameter to Setting to zero

Based on these parameters, the Signal From Workspace block outputs a frame-based signal with a frame size of 4 and a sample period of 1 second. The signal's frame period is 4 seconds. The Signal parameter uses the standard MATLAB syntax for horizontally concatenating matrices to append column vector dsp_examples_B to the right of matrix
dsp_examples_A. After the block has output the signal, all subsequent outputs have a value of zero.

3 Run the model.
The figure below is a graphical representation of how your three-channel, frame-based signal is imported into your model.

You have now successfully imported a three-channel frame-based signal into your model using the Signal From Workspace block. For more information about this block, see the Signal From Workspace block reference page.

Exporting Frame-Based Signals

The Signal To Workspace and Triggered To Workspace blocks are the primary blocks for exporting signals of all dimensions from a Simulink model to the MATLAB workspace.

A frame-based signal with N channels and frame size M is represented by a sequence of M-by-N matrices. When the input to the Signal To Workspace block is a frame-based signal, the block creates an P-by-N array in the MATLAB workspace containing the P most recent samples from each channel. The number of rows, P, is specified by the Limit data points to last parameter. The newest samples are added at the bottom of the matrix.

The figure below is a graphical illustration of this process for three consecutive frames of a frame-based signal with a frame size of 2 that is exported to matrix A in the MATLAB workspace.

In the following example, you use a Signal To Workspace block to export a frame-based signal to the MATLAB workspace:

1 Open the Signal From Workspace Example 7 model by typing doc_exportfbsigs
at the MATLAB command line.

Also, the following variables are defined in the MATLAB workspace:

```
dsp_examples_A = [1:100;-1:-1:-100]';% 100-by-2 matrix
dsp_examples_B = 5*ones(100,1);% 100-by-1 column vector
```

The variable called dsp_examples_A represents a two-channel signal with 100 samples, and the variable called dsp_examples_B represents a one-channel signal with 100 samples.

2 Double-click the Signal From Workspace block. Set the block parameters as follows, and then click OK:

- Signal = [dsp_examples_A dsp_examples_B]
- Sample time = 1
- Samples per frame $=4$
- Form output after final data value $=$ setting to zero

Based on these parameters, the Signal From Workspace block outputs a frame-based signal with a frame size of 4 and a sample period of 1 second. The signal's frame period is 4 seconds. The Signal parameter uses the standard MATLAB syntax for horizontally concatenating matrices to append column vector dsp_examples_B to the right of matrix
dsp_examples_A. After the block has output the signal, all subsequent outputs have a value of zero.

3 Double-click the Signal To Workspace block. Set the block parameters as follows, and then click OK:

- Variable name = dsp_examples_yout
- Limit data points to last = inf
- Decimation 1
- Frames $=$ Concatenate frame (2-D array)

Based on these parameters, the Signal To Workspace block exports its frame-based input signal to a variable called dsp_examples_yout in the MATLAB workspace. The workspace variable can grow indefinitely large in order to capture all of the input data. The signal is not decimated before it is exported to the MATLAB workspace, and each input frame is vertically concatenated to the previous frame to produce a 2-D array output.

4 Run the model.
The following figure is a graphical representation of the model's behavior during simulation.

5 At the MATLAB command line, type dsp_examples_yout.
The output is shown below:

dsp_examples_yout $=$		
1	-1	5
2	-2	5
3	-3	5
4	-4	5
5	-5	5
6	-6	5
7	-7	5
8	-8	5
9	-9	5
10	-10	5
11	-11	5
12	-12	5

The frames of the signal are concatenated to form a two-dimensional array.

You have now successfully output a frame-based signal to the MATLAB workspace using the Signal To Workspace block. For more information about this block, see the Signal To Workspace block reference page.

Advanced Signal Concepts

This chapter helps you understand how to inspect and convert sample and frame rates. It also explains how to change a sample-based signal into a frame-based signal. Finally, it discusses the concept of delay and describes how this delay can be minimized.

Inspecting Sample Rates and Frame Rates (p. 2-2)

Converting Sample and Frame Rates (p. 2-12)

Converting Frame Status (p. 2-34)

Delay and Latency (p. 2-49)

Learn how to determine the sample rates and frame rates of your model

Learn how operations such as direct rate conversion and frame rebuffering impact the sample and frame rates of your signal

Convert sample-based signals into frame-based signals and vice versa

Configure Simulink to minimize delay and increase simulation performance

Inspecting Sample Rates and Frame Rates

When constructing a frame-based or multirate model, it is often helpful to check the rates that Simulink computes for different signals. The two basic ways to inspect the sample rates and frame rates in a Simulink model are the Probe block and sample time color coding. Use the Probe block if you want to view the sample or frame period of a signal. Use sample time color coding if you want to view the sample or frame rate of a signal.

This section includes the following topics:

- "Sample Rate and Frame Rate Concepts" on page 2-2 - Review the definitions of frame period, sample period, frame rate, and sample rate
- "Inspecting Sample-Based Signals Using the Probe Block" on page 2-4 Display the sample period of a sample-based signal
- "Inspecting Frame-Based Signals Using the Probe Block" on page 2-6 Display the frame period of a frame-based signal
- "Inspecting Sample-Based Signals Using Color Coding" on page 2-9 Display the sample rate of a sample-based signal
- "Inspecting Frame-Based Signals Using Color Coding" on page 2-10 Display the frame rate of a frame-based signal

Sample Rate and Frame Rate Concepts

Sample rates and frame rates are important issues in most signal processing models. This is especially true with systems that incorporate rate conversions. Fortunately, in most cases when you build a Simulink model, you only need to set sample rates for the source blocks. Simulink automatically computes the appropriate sample rates for the blocks that are connected to the source blocks. Nevertheless, it is important to become familiar with the sample rate and frame rate concepts as they apply to Simulink models.

The input frame period $\left(\mathrm{T}_{\mathrm{fi}}\right)$ of a frame-based signal is the time interval between consecutive vector or matrix inputs to a block. Similarly, the output frame period $\left(\mathrm{T}_{\mathrm{fo}_{0}}\right)$ is the time interval at which the block updates the frame-based vector or matrix value at the output port.

In contrast, the sample period, T_{s}, is the time interval between individual samples in a frame, this value is shorter than the frame period when the frame
size is greater than 1 . The sample period of a frame-based signal is the quotient of the frame period and the frame size, M:

$$
T_{s}=T_{f} / M
$$

More specifically, the sample periods of inputs (T_{si}) and outputs (T_{so}) are related to their respective frame periods by

$$
\begin{aligned}
& T_{s i}=T_{f i} / M_{i} \\
& T_{s o}=T_{f o} / M_{o}
\end{aligned}
$$

where M_{i} and M_{o} are the input and output frame sizes, respectively.
The illustration below shows a single-channel, frame-based signal with a frame size $\left(M_{i}\right)$ of 4 and a frame period (T_{fi}) of 1 . The sample period, T_{si}, is therefore $1 / 4$, or 0.25 second.

The frame rate of a signal is the reciprocal of the frame period. For instance, the input frame rate would be $1 / T_{f i}$. Similarly, the output frame rate would be $1 / T_{f o}$.
The sample rate of a signal is the reciprocal of the sample period. For instance, the sample rate would be $1 / T_{s}$.

In most cases, the sequence sample period T_{si} is most important, while the frame rate is simply a consequence of the frame size that you choose for the signal. For a sequence with a given sample period, a larger frame size corresponds to a slower frame rate, and vice versa.

Inspecting Sample-Based Signals Using the Probe Block

You can use the Probe block to display the sample period of a sample-based signal. For sample-based signals, the Probe block displays the label Ts, the sample period of the sequence, followed by a two-element vector. The left element is the period of the signal being measured. The right element is the signal's sample time offset, which is usually 0 .

Note Simulink offers the ability to shift a signal's sample times by an arbitrary value, which is equivalent to shifting the signal's phase by a fractional sample period. However, sample-time offsets are rarely used in signal processing systems, and blocks from the Signal Processing Blockset do not support them.

In this example, you use the Probe block to display the sample period of a sample-based signal:

1 At the MATLAB command prompt, type doc_probe_tut1.
The Probe Example 1 model opens.

Probe Example 1 In this example, the Probe blocks display the sample period of a signal that is repeatedly upsampled by a factor of 2 .

Note: This model created workspace variables called "dsp_examples_yout".

2 Run the model.
The figure below illustrates how the Probe blocks display the sample period of the signal before and after each upsample operation.

As displayed by the Probe blocks, the output from the Signal From Workspace block is a sample-based signal with a sample period of 1 second. The output from the first Upsample block has a sample period of 0.5 second, and the output from the second Upsample block has a sample period of 0.25 second.

For more information about the Probe block, see the Probe block reference page.

Inspecting Frame-Based Signals Using the Probe Block

You can use the Probe block to display the frame period of a frame-based signal. For frame-based signals, the block displays the label Tf, the frame period of the sequence, followed by a two-element vector. The left element is the period of the signal being measured. The right element is the signal's sample time offset, which is usually 0 .

Note Simulink offers the ability to shift a signal's sample times by an arbitrary value, which is equivalent to shifting the signal's phase by a fractional sample period. However, sample-time offsets are rarely used in signal processing systems, and blocks from the Signal Processing Blockset do not support them.

In this example, you use the Probe block to display the frame period of a frame-based signal:

1 At the MATLAB command prompt, type doc_probe_tut2.
The Probe Example 2 model opens.

2 Run the model.
The figure below illustrates how the Probe blocks display the frame period of the signal before and after each upsample operation.

As displayed by the Probe blocks, the output from the Signal From Workspace block is a frame-based signal with a frame period of 16 seconds. The output from the first Upsample block has a frame period of 8 seconds, and the output from the second Upsample block has a sample period of 4 seconds.

Note that the sample rate conversion is implemented through a change in the frame period rather than the frame size. This is because the Frame-based mode parameter in the Upsample blocks is set to Maintain input frame size rather than Maintain input frame rate. See "Converting Frame Rates" for more information. For more information about the Probe block, see the Probe block reference page.

Inspecting Sample-Based Signals Using Color Coding

In the following example, you use sample time color coding to view the sample rate of a sample-based signal:

1 At the MATLAB command prompt, type doc_color_tut1.
The Sample Time Color Example 1 model opens.

2 From the Format menu, point to Port/Signal Displays, and select Sample Time Colors.

This selection turns on sample time color coding. Simulink now assigns each sample rate a different color.

3 Run the model.

The model should now look similar to the following figure:

Every sample-based signal in this model has a different sample rate. Therefore, each signal is assigned a different color.

For more information about sample time color coding, see "Sample Time Colors" in the Simulink documentation.

Inspecting Frame-Based Signals Using Color Coding

In this example, you use sample time color coding to view the frame rate of a frame-based signal:

1 At the MATLAB command prompt, type doc_color_tut2.
The Sample Time Color Example 2 model opens.

2 To turn on sample time color coding, from the Format menu, point to Port/Signal Displays, and select Sample Time Colors.

Simulink now assigns each frame rate a different color.
3 Run the model.
The model should now look similar to the following figure:

Because the Frame-based mode parameter in the Upsample blocks is set to Maintain input frame size rather than Maintain input frame rate, each Upsample block changes the frame rate. Therefore, each frame-based signal in the model is assigned a different color.

4 Double-click on each Upsample block and change the Frame-based mode parameter to Maintain input frame rate.

5 Run the model.
Every signal is coded with the same color. Therefore, every signal in the model now has the same frame rate.

For more information about sample time color coding, see "Sample Time Colors" in the Simulink documentation.

Converting Sample and Frame Rates

There are two common types of operations that impact the frame and sample rates of a signal: direct rate conversion and frame rebuffering. Direct rate conversions, such as upsampling and downsampling, can be implemented by altering either the frame rate or the frame size of a signal. Frame rebuffering, which is used alter the frame size of a signal in order to improve simulation throughput, usually changes either the sample rate or frame rate of the signal as well.

This section includes the following topics:

- "Rate Conversion Blocks" on page 2-13 — List of the principal rate conversion blocks in the Signal Processing Blockset
- "Rate Conversion by Frame-Rate Adjustment" on page 2-14 - Use the Downsample block to downsample a signal by changing its frame rate
- "Rate Conversion by Frame-Size Adjustment" on page 2-16 - Use the Downsample block to downsample a signal by changing its frame size
- "Avoiding Unintended Rate Conversion" on page 2-19 - Learn where rate conversions can occur in a model in order to avoid misleading results
- "Frame Rebuffering Blocks" on page 2-25 - List and descriptions of the principal frame rebuffering blocks in the Signal Processing Blockset
- "Buffering with Preservation of the Signal" on page 2-28 - Use the Buffer block to rebuffer a signal from a smaller to a larger frame size
- "Buffering with Alteration of the Signal" on page 2-31 - Use the Buffer block to rebuffer a signal from a smaller to a larger frame size using overlapping frames

Rate Conversion Blocks

The following table lists the principal rate conversion blocks in the Signal Processing Blockset. Blocks marked with an asterisk (*) offer the option of changing the rate by either adjusting the frame size or frame rate.

Block	Library
Downsample *	Signal Operations
Dyadic Analysis Filter Bank	Filtering / Multirate Filters
Dyadic Synthesis Filter Bank	Filtering / Multirate Filters
FIR Decimation *	Filtering / Multirate Filters,
FIR Interpolation *	Filtering / Multirate Filters
FIR Rate Conversion	Filtering / Multirate Filters
Repeat *	Signal Operations
Upsample *	Signal Operations

Direct Rate Conversion

Rate conversion blocks accept an input signal at one sample rate, and propagate the same signal at a new sample rate. Several of these blocks contain a Frame-based mode parameter offering two options for adjusting the sample rate of the signal:

- Maintain input frame rate: Change the sample rate by changing the frame size (that is $M_{o} \neq M_{i}$), but keep the frame rate constant ($T_{f o}=T_{f i}$).
- Maintain input frame size: Change the sample rate by changing the output frame rate (that is $\mathrm{T}_{\mathrm{fo}} \neq \mathrm{T}_{\mathrm{fi}}$), but keep the frame size constant $\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}}\right)$.

The setting of this parameter does not affect sample-based inputs.

Note When a Simulink model contains signals with various frame rates, the model is called multirate. You can find a discussion of multirate models in "Excess Algorithmic Delay (Tasking Latency)" on page 2-58. Also refer to the topic on discrete-time systems in the Simulink documentation and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Rate Conversion by Frame-Rate Adjustment

One way to change the sample rate of a signal, $1 / \mathrm{T}_{\mathrm{so}}$, is to change the output frame rate ($\mathrm{T}_{\mathrm{fo}} \neq \mathrm{T}_{\mathrm{fi}}$), while keeping the frame size constant $\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}}\right.$). Note that the sample rate of a signal is defined as $1 / \mathrm{T}_{\mathrm{so}}=\mathrm{M}_{\mathrm{o}} / \mathrm{T}_{\mathrm{fo}}$:

1 At the MATLAB command prompt, type doc_downsample_tut1.
The Downsample Example T1 model opens.

2 From the Format menu, point to Port/Signal Displays, and select Signal Dimensions.

When you run the model, the dimensions the signals appear next to the lines connecting the blocks.

3 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

4 Set the block parameters as follows:

- Sample time $=0.125$.
- Samples per frame $=8$

Based on these parameters, the Signal From Workspace block outputs a frame-based signal with a sample period of 0.125 second and a frame size of 8.

5 Save these parameters and close the dialog box by clicking OK.
6 Double-click the Downsample block. The Block Parameters: Downsample dialog box opens.

7 Set the Frame-based mode parameter to Maintain input frame size, and then click OK.

The Downsample block is configured to downsample the signal by changing the frame rate rather than the frame size.

8 Run the model.
After the simulation, the model should look similar to the following figure.

Because $T_{f i}=M_{i} \times T_{s i}$, the input frame period, $T_{f i}$, is $T_{f i}=8 \times 0.125=1$ second. This value is displayed by the first Probe block. Therefore the input frame rate, $1 / T_{f i}$, is also 1 second.

The second Probe block in the model verifies that the output from the Downsample block has a frame period, $T_{f o}$, of 2 seconds, twice the frame period of the input. However, because the frame rate of the output, $1 / T_{f_{o}}$, is 0.5 second, the Downsample block actually downsampled the original signal to half its original rate. As a result, the output sample period, $T_{s o}=T_{f o} / M_{o}$, is doubled to 0.25 second without any change to the frame size. The signal dimensions in the model confirm that the frame size did not change. For more information about the Downsample block, see the Downsample block reference page.

Rate Conversion by Frame-Size Adjustment

One way to change the sample rate of a signal is by changing the frame size (that is $\mathrm{M}_{\mathrm{o}} \neq \mathrm{M}_{\mathrm{i}}$), but keep the frame rate constant $\left(\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{fi}}\right)$. Note that the sample rate of a signal is defined as $1 / \mathrm{T}_{\mathrm{s} 0}=\mathrm{M}_{0} / \mathrm{T}_{\mathrm{fo}}$:

1 At the MATLAB command prompt, type doc_downsample_tut2.
The Downsample Example T2 model opens.

2 From the Format menu, point to Port/Signal Displays, and select Signal Dimensions.

When you run the model, the dimensions the signals appear next to the lines connecting the blocks.

3 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

4 Set the block parameters as follows:

- Sample time $=0.125$.
- Samples per frame $=8$.

Based on these parameters, the Signal From Workspace block outputs a frame-based signal with a sample period of 0.125 second and a frame size of 8.

5 Save these parameters and close the dialog box by clicking OK.
6 Double-click the Downsample block. The Block Parameters: Downsample dialog box opens.

7 Set the Frame-based mode parameter to Maintain input frame rate, and then click OK.

The Downsample block is configured to downsample the signal by changing the frame size rather than the frame rate.

8 Run the model.
After the simulation, the model should look similar to the following figure.

Because $T_{f i}=M_{i} \times T_{s i}$, the input frame period, $T_{f i}$, is $T_{f i}=8 \times 0.125=1$ second. This value is displayed by the first Probe block. Therefore the input frame rate, $1 / T_{f i}$, is also 1 second.

The Downsample block downsampled the input signal to half its original frame size. The signal dimensions of the output of the Downsample block confirm that the downsampled output has a frame size of 4, half the frame
size of the input. As a result, the sample period of the output, $T_{s o}=T_{f o} / M_{o}$, now has a sample period of 0.25 second. This process occurred without any change to the frame rate ($T_{f i}=T_{f o}$). For more information about the Downsample block, see the Downsample block reference page.

Avoiding Unintended Rate Conversion

It is important to be aware of where rate conversions occur in a model. In a few cases, unintentional rate conversions can produce misleading results:

1 At the MATLAB command prompt, type doc_vectorscope_tut1.
The Vector Scope Example model opens.
2 Double-click the upper Sine Wave block. The Block Parameters: Sine Wave dialog box opens.

3 Set the block parameters as follows:

- Frequency (Hz) = 1
- Sample time $=0.1$.
- Samples per frame $=128$.

Based on the Sample time and the Samples per frame parameters, the Sine Wave outputs a sinusoid with a frame period of $128 * 0.1$ or 12.8 seconds.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the lower Sine Wave block.

6 Set the block parameters as follows, and then click OK:

- Frequency (Hz) = 2
- Sample time $=0.1$.
- Samples per frame $=128$.

Based on the Sample time and the Samples per frame parameters, the Sine Wave outputs a sinusoid with a frame period of $128 * 0.1$ or 12.8 seconds.

7 Double-click the Magnitude FFT block. The Block Parameters: Magnitude FFT dialog box opens.

8 Select the Inherit FFT length from input dimensions check box, and then click OK.

This setting instructs the block to use the input frame size (128) as the FFT length (which is also the output size).

9 Double-click the Vector Scope block.
10 Set the block parameters as follows, and then click OK:

- Click the Scope properties tab.
- Input domain = Frequency.
- Click the Axis Properties tab.
- Minimum Y-limit $=-10$.
- Maximum Y-limit $=40$.

11 Run the model.
The model should now look similar to the following figure. Note that the signal leaving the Magnitude FFT block is 128 -by- 1 .

The Vector Scope window displays the magnitude FFT of a signal composed of two sine waves, with frequencies of 1 Hz and 2 Hz .

The Vector Scope block uses the input frame size (128) and period (12.8) to deduce the original signal's sample period (0.1), which allows it to correctly display the peaks at 1 Hz and 2 Hz .

12 Double-click the Magnitude FFT block. The Block Parameters: Magnitude FFT dialog box opens.

13 Set the block parameters as follows:

- Clear the Inherit FFT length from input dimensions check box.
- Set the FFT length parameter to 256.

Based on these parameters, the Magnitude FFT block zero-pads the length- 128 input frame to a length of 256 before performing the FFT.

14 Run the model.
The model should now look similar to the following figure. Note that the signal leaving the Magnitude FFT block is 256-by-1.

The Vector Scope window displays the magnitude FFT of a signal composed of two sine waves, with frequencies of 2 Hz and 4 Hz .

In this case, based on the input frame size (256) and frame period (12.8), the Vector Scope block incorrectly calculates the original signal's sample period to be ($12.8 / 256$) or 0.05 second. As a result, the spectral peaks appear incorrectly at 2 Hz and 4 Hz rather than 1 Hz and 2 Hz .

The source of the error described above is unintended rate conversion. The zero-pad operation performed by the Magnitude FFT block halves the sample period of the sequence by appending 128 zeros to each frame. To calculate the spectral peaks correctly, the Vector Scope block needs to know the sample period of the original signal.

15 To correct for the unintended rate conversion, double-click the Vector Scope block.

16 Set the block parameters as follows:

- Click the Axis Properties tab.
- Clear the Inherit sample time from input check box.
- Set the Sample time of original time series parameter to the actual sample period of 0.1.

17 Run the model.
The Vector Scope block now accurately plots the spectral peaks at 1 Hz and 2 Hz .

In general, when you zero-pad or overlap buffers, you are changing the sample period of the signal. If you keep this in mind, you can anticipate and correct problems such as unintended rate conversion.

Frame Rebuffering Blocks

Sometimes you might need to rebuffer a signal to a new frame size at some point in a model. For example, your data acquisition hardware may internally buffer the sampled signal to a frame size that is not optimal for the signal processing algorithm in the model. In this case, you would want to rebuffer the signal to a frame size more appropriate for the intended operations without introducing any change to the data or sample rate.
The following table lists the principal buffering blocks in the Signal Processing Blockset.

Block	Library
Buffer	Signal Management / Buffers
Delay Line	Signal Management / Buffers
Unbuffer	Signal Management / Buffers
Variable Selector	Signal Management / Indexing
Zero Pad	Signal Operations

Blocks for Frame Rebuffering with Preservation of the Signal

Buffering operations provide another mechanism for rate changes in signal processing models. The purpose of many buffering operations is to adjust the frame size of the signal, M, without altering the signal's sample rate T_{s}. This usually results in a change to the signal's frame rate, T_{f}, according to the following equation:

$$
T_{f}=M T_{s}
$$

However, the equation above is only true if no samples are added or deleted from the original signal. Therefore, the equation above does not apply to buffering operations that generate overlapping frames, that only partially unbuffer frames, or that alter the data sequence by adding or deleting samples.

There are two blocks in the Buffers library that can be used to change a signal's frame size without altering the signal itself:

- Buffer - redistributes signal samples to a larger or smaller frame size
- Unbuffer - unbuffers a frame-based signal to a sample-based signal (frame size $=1$)

The Buffer block preserves the signal's data and sample period only when its Buffer overlap parameter is set to 0 . The output frame period, $\mathrm{T}_{\mathrm{f} 0}$, is

$$
T_{f o}=\frac{M_{o} T_{f i}}{M_{i}}
$$

where $T_{f i}$ is the input frame period, M_{i} is the input frame size, and M_{0} is the output frame size specified by the Output buffer size (per channel) parameter.
The Unbuffer block unbuffers a frame-based signal to its sample-based equivalent, and always preserves the signal's data and sample period

$$
T_{s o}=T_{f i} / M_{i}
$$

where T_{fi} and M_{i} are the period and size, respectively, of the frame-based input.
Both the Buffer and Unbuffer blocks preserve the sample period of the sequence in the conversion $\left(\mathrm{T}_{\mathrm{so}}=\mathrm{T}_{\mathrm{si}}\right)$.

Blocks for Frame Rebuffering with Alteration of the Signal

Some forms of buffering alter the signal's data or sample period in addition to adjusting the frame size. This type of buffering is desirable when you want to create sliding windows by overlapping consecutive frames of a signal, or select a subset of samples from each input frame for processing.

The blocks that alter a signal while adjusting its frame size are listed below. In this list, T_{si} is the input sequence sample period, and T_{fi} and T_{fo} are the input and output frame periods, respectively:

- The Buffer block adds duplicate samples to a sequence when the Buffer overlap parameter, L, is set to a nonzero value. The output frame period is related to the input sample period by

$$
T_{f o}=\left(M_{o}-L\right) T_{s i}
$$

where M_{0} is the output frame size specified by the Output buffer size (per channel) parameter. As a result, the new output sample period is

$$
T_{s o}=\frac{\left(M_{o}-L\right) T_{s i}}{M_{o}}
$$

- The Delay Line block adds duplicate samples to the sequence when the Delay line size parameter, M_{0}, is greater than 1 . The output and input frame periods are the same, $\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{fi}}=\mathrm{T}_{\mathrm{si}}$, and the new output sample period is

$$
T_{s o}=\frac{T_{s i}}{M_{o}}
$$

- The Variable Selector block can remove, add, and/or rearrange samples in the input frame when Select is set to Rows. The output and input frame periods are the same, $\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{fi}}$, and the new output sample period is

$$
T_{s o}=\frac{M_{i} T_{s i}}{M_{o}}
$$

where M_{o} is the length of the block's output, determined by the Elements vector.

- The Zero Pad block adds samples to the sequence by appending zeros to each frame when Pad along is set to Columns. The output and input frame periods are the same, $\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{fi}}$, and the new output sample period is

$$
T_{s o}=\frac{M_{i} T_{s i}}{M_{o}}
$$

where M_{0} is the length of the block's output, determined by the Number of output rows parameter.
In all of these cases, the sample period of the output sequence is not equal to the sample period of the input sequence.

Buffering with Preservation of the Signal

In the following example, a signal with a sample period of 0.125 second is rebuffered from a frame size of 8 to a frame size of 16 . This rebuffering process doubles the frame period from 1 to 2 seconds, but does not change the sample period of the signal $\left(\mathrm{T}_{\mathrm{s} 0}=\mathrm{T}_{\mathrm{si}}=0.125\right)$. The process also does not add or delete samples from the original signal:

1 At the MATLAB command prompt, type doc_buffer_tut1.
The Buffer Example T1 model opens.

2 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the parameters as follows:

- Signal = 1:1000
- Sample time $=0.125$
- Samples per frame $=8$
- Form output after final data value $=$ Setting to zero

Based on these parameters, the Signal from Workspace block outputs a frame-based signal with a sample period of 0.125 second. Each output frame contains eight samples.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Buffer block. The Block Parameters: Buffer dialog box opens.

6 Set the parameters as follows, and then click OK:

- Output buffer size $($ per channel $)=16$
- Buffer overlap = 0
- Initial conditions $=0$

Based on these parameters, the Buffer block rebuffers the signal from a frame size of 8 to a frame size of 16 .

7 Run the model.
The following figure shows the model after the simulation has stopped.

Note that the input to the Buffer block has a frame size of 8 and the output of the block has a frame size of 16 . As shown by the Probe blocks, the rebuffering process doubles the frame period from 1 to 2 seconds.

For more information about the Buffer block, see the Buffer block reference page.

Buffering with Alteration of the Signal

Some forms of buffering alter the signal's data or sample period in addition to adjusting the frame size. In the following example, a signal with a sample period of 0.125 second is rebuffered from a frame size of 8 to a frame size of 16 with a buffer overlap of 4 :

1 At the MATLAB command prompt, type doc_buffer_tut2.
The Buffer Example T2 model opens.

2 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the parameters as follows:

- Signal = 1: 1000
- Sample time $=0.125$
- Samples per frame $=8$
- Form output after final data value $=$ Setting to zero

Based on these parameters, the Signal from Workspace block outputs a frame-based signal with a sample period of 0.125 second. Each output frame contains eight samples.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Buffer block. The Block Parameters: Buffer dialog box opens.

6 Set the parameters as follows, and then click OK:

- Output buffer size (per channel) $=16$
- Buffer overlap = 4
- Initial conditions $=0$

Based on these parameters, the Buffer block rebuffers the signal from a frame size of 8 to a frame size of 16 . Also, after the initial output, the first four samples of each output frame are made up of the last four samples from the previous output frame.

7 Run the model.
The following figure shows the model after the simulation has stopped.

Note that the input to the Buffer block has a frame size of 8 and the output of the block has a frame size of 16 . The relation for the output frame period for the Buffer block is

$$
T_{f o}=\left(M_{o}-L\right) T_{s i}
$$

T_{fo} is (16-4)*0.125, or 1.5 seconds, as confirmed by the second Probe block. The sample period of the signal at the output of the Buffer block is no longer 0.125 second. It is now $T_{s o}=T_{f o} / M_{o}=1.5 / 16=0.0938$ second. Thus, both the signal's data and the signal's sample period have been altered by the buffering operation.

For more information about the Buffer block, see the Buffer block reference page.

Converting Frame Status

The frame status of a signal refers to whether the signal is sample based or frame based. In a Simulink model, the frame status is symbolized by a single line, \rightarrow, for a sample-based signal and a double line, \Rightarrow, for a frame-based signal. One way to convert a sample-based signal to a frame-based signal is by using the Buffer block. You can convert a frame-based signal to a sample-based signal using the Unbuffer block. To change the frame status of a signal without performing a buffering operation, use the Frame Conversion block in the Signal Attributes library.

This section includes the following topics:

- "Buffering Sample-Based Signals into Frame-Based Signals" on page 2-34 Use the Buffer block to buffer a two-channel sample-based signal into a two-channel frame-based signal
- "Buffering Sample-Based Signals into Frame-Based Signals with Overlap" on page 2-38 - Use the Buffer block to buffer a four-channel, sample-based signal into a four-channel frame-based signal. Because of the buffer overlap, the input sample period is not conserved.
- "Buffering Frame-Based Signals into Other Frame-Based Signals" on page 2-41 - Use the Buffer block to buffer a two-channel frame-based signal with frame size 4 into a frame-based signal with frame size 3 . Because of the buffer overlap, the input sample period is not conserved.
- "Buffering Delay and Initial Conditions" on page 2-44 - Learn how to use the rebuffer_delay function to calculate the delay introduced by the Buffer and Unbuffer blocks during multitasking operations
- "Unbuffering Frame-Based Signals into Sample-Based Signals" on page 2-44 - Use the Unbuffer block to unbuffer a two-channel frame-based signal into a two-channel sample-based signal

Buffering Sample-Based Signals into Frame-Based Signals

Multichannel sample-based and frame-based signals can be buffered into multichannel frame-based signals using the Buffer block. The following figure is a graphical representation of a sample-based signal being converted into a frame-based signal by the Buffer block.

In the following example, a two-channel sample-based signal is buffered into a two-channel frame-based signal using a Buffer block:

1 At the MATLAB command prompt, type doc_buffer_tut.
The Buffer Example model opens.

2 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the parameters as follows:

- Signal = [1:10;-1:-1:-10]'
- Sample time = 1
- Samples per frame = 1
- Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a sample-based signal with a sample period of 1 second. Because you set the Samples per frame parameter setting to 1, the Signal From Workspace block outputs one two-channel sample at each sample time.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog box opens.

6 Set the parameters as follows:

- Output buffer size $($ per channel $)=4$
- Buffer overlap = 0
- Initial conditions $=0$

Because you set the Output buffer size parameter to 4, the Buffer block outputs a frame-based signal with frame size 4.

7 Run the model.
Note that the input to the Buffer block is sample based (represented as a single line) while the output is frame-based (represented by a double line). The figure below is a graphical interpretation of the model behavior during simulation.

Note Alternatively, you can set the Samples per frame parameter of the Signal From Workspace block to 4 and create the same frame-based signal shown above without using a Buffer block. The Signal From Workspace block performs the buffering internally, in order to output a two-channel frame-based signal.

For more information about the Buffer block, see the Buffer block reference page.

Buffering Sample-Based Signals into Frame-Based Signals with Overlap

In some cases it is useful to work with data that represents overlapping sections of an original sample-based or frame-based signal. For example, in estimating the power spectrum of a signal, it is often desirable to compute the FFT of overlapping sections of data. Overlapping buffers are also needed in computing statistics on a sliding window, or for adaptive filtering.

The Buffer overlap parameter of the Buffer block specifies the number of overlap points, L. In the overlap case ($L>0$), the frame period for the output is $\left(M_{0}-L\right) * T_{s i}$, where $T_{s i}$ is the input sample period and M_{0} is the Buffer size.

Note Set the Buffer overlap parameter to a negative value to achieve output frame rates slower than in the nonoverlapping case. The output frame period is still $\mathrm{T}_{\mathrm{si}} *\left(\mathrm{M}_{0}-\mathrm{L}\right)$, but now with $\mathrm{L}<0$. Only the M_{o} newest inputs are included in the output buffers. The previous L inputs are discarded.

In the following example, a four-channel sample-based signal with sample period 1 is buffered to a frame-based signal with frame size 3 and frame period 2. Because of the buffer overlap, the input sample period is not conserved, and the output sample period is $2 / 3$:

1 At the MATLAB command prompt, type doc_buffer_tut3.
The Buffer Example T3 model opens.

Also, the variable dsp_examples_A is loaded into the MATLAB workspace. This variable is defined as dsp_examples_A =

2 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

- Signal = dsp_examples_A
- Sample time = 1
- Samples per frame = 1
- Form output after final data value by = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a sample-based signal with a sample period of 1 second. Because you set the Samples per frame parameter setting to 1 , the Signal From Workspace block outputs one four-channel sample at each sample time.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Buffer block. The Block Parameters: Buffer dialog box opens.

6 Set the block parameters as follows, and then click OK:

- Output buffer size (per channel) $=3$
- Buffer overlap = 1
- Initial conditions $=0$

Because you set the Output buffer size parameter to 3, the Buffer block outputs a frame-based signal with frame size 3 . Also, because you set the Buffer overlap parameter to 1, the last sample from the previous output frame is the first sample in the next output frame.

7 Run the model.
Note that the input to the Buffer block is sample based (represented as a single line) while the output is frame based (represented by a double line). The figure below is a graphical interpretation of the model's behavior during simulation.

8 At the MATLAB command prompt, type dsp_examples_yout
The following is displayed in the MATLAB Command Window.

```
dsp_examples_yout =
```

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
1	1	5	-1
2	1	5	-2
2	1	5	-2
3	0	5	-3
4	0	5	-4
4	0	5	-4
5	1	5	-5
6	1	5	-6
6	1	5	-6
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Note that the inputs do not begin appearing at the output until the fifth row, the second row of the second frame. This is due to the block's latency.

See "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 for general information about algorithmic delay. For instructions on how to calculate buffering delay, see "Buffering Delay and Initial Conditions" on page 2-44. For more information about the Buffer block, see the Buffer block reference page.

Buffering Frame-Based Signals into Other Frame-Based Signals

In the following example, a two-channel frame-based signal with frame size 4 is rebuffered to a frame-based signal with frame size 3 and frame period 2. Because of the overlap, the input sample period is not conserved, and the output sample period is $2 / 3$:

1 At the MATLAB command prompt, type doc_buffer_tut4.
The Buffer Example T4 model opens.

Also, the variable dsp_examples_A is loaded into the MATLAB workspace. This variable is defined as dsp_examples_A = [1 1;2 1;3 0;4 0;5 1;6 1;7 0;8 0]

2 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

- Signal = dsp_examples_A
- Sample time $=1$
- Samples per frame $=4$

Based on these parameters, the Signal From Workspace block outputs a two-channel, frame-based signal with a sample period of 1 second and a frame size of 4 .

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Buffer block. The Block Parameters: Buffer dialog box opens.

6 Set the block parameters as follows, and then click OK:

- Output buffer size (per channel) $=3$
- Buffer overlap = 1
- Initial conditions $=0$

Based on these parameters, the Buffer block outputs a two-channel, frame-based signal with a frame size of 3.

7 Run the model.
The following figure is a graphical representation of the model's behavior during simulation.

Note that the inputs do not begin appearing at the output until the last row of the third output matrix. This is due to the block's latency.

See "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 for general information about algorithmic delay. For instructions on how to calculate buffering delay, and see "Buffering Delay and Initial Conditions" on page 2-44. For more information about the Buffer block, see the Buffer block reference page.

Buffering Delay and Initial Conditions

In the examples "Buffering Sample-Based Signals into Frame-Based Signals with Overlap" on page 2-38 and "Buffering Frame-Based Signals into Other Frame-Based Signals" on page 2-41, the input signal is delayed by a certain number of samples. The initial output samples correspond to the value specified for the Initial condition parameter. The initial condition is zero in both examples mentioned above.
Under most conditions, the Buffer and Unbuffer blocks have some amount of delay or latency. This latency depends on both the block parameter settings and the Simulink tasking mode. You can use the rebuffer_delay function to determine the length of the block's latency for any combination of frame size and overlap.

The syntax rebuffer_delay (f, n, m) returns the delay, in samples, introduced by the buffering and unbuffering blocks during multitasking operations, where f is the input frame size, n is the Output buffer size parameter setting, and m is the Buffer overlap parameter setting.

For example, you can calculate the delay for the model discussed in the "Buffering Frame-Based Signals into Other Frame-Based Signals" on page 2-41 using the following command at the MATLAB command line:

```
d = rebuffer_delay (4, 3,1)
d = 8
```

This result agrees with the block's output in that example. Note that this model was simulated in Simulink multitasking mode.

For more information about delay, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58. For delay information about a specific block, see the "Latency" section of the block reference page. For more information about the rebuffer_delay function, see "rebuffer_delay" on page 10-8.

Unbuffering Frame-Based Signals into Sample-Based Signals

You can unbuffer multichannel frame-based signals into multichannel sample-based signals using the Unbuffer block. The Unbuffer block performs the inverse operation of the Buffer block's "sample-based to frame-based" buffering process, and generates an N -channel sample-based output from an N -channel frame-based input. The first row in each input matrix is always the
first sample-based output. The following figure is a graphical representation of this process.

The sample period of the sample-based output, $\mathrm{T}_{\mathrm{s} 0}$, is related to the input frame period, T_{f}, by the input frame size, M_{i}.

$$
T_{s o}=T_{f i} / M_{i}
$$

The Unbuffer block always preserves the signal's sample period ($\mathrm{T}_{\mathrm{so}}=\mathrm{T}_{\mathrm{si}}$). See "Converting Sample and Frame Rates" on page 2-12 for more information about rate conversions.

In the following example, a two-channel frame-based signal is unbuffered into a two-channel sample-based signal:

1 At the MATLAB command prompt, type doc_unbuffer_tut.
The Unbuffer Example model opens.

2 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

- Signal = [1:10;-1:-1:-10]'
- Sample time = 1
- Samples per frame $=4$
- Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a two-channel, frame based-signal with frame size 4.

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Unbuffer block. The Block Parameters: Unbuffer dialog box opens.

6 Set the Initial conditions parameter to 0, and then click OK.
The Unbuffer block unbuffers the frame-based signal into a two-channel sample-based signal.

7 Run the model.
The figure below is a graphical representation of what happens during the model simulation.

Note The Unbuffer block generates initial conditions not shown in the figure below with the value specified by the Initial conditions parameter. See the Unbuffer reference page for information about the number of initial conditions that appear in the output.

8 At the MATLAB command prompt, type dsp_examples_yout.
The following is a portion of the output.
dsp_examples_yout(:,:,1) =
00

```
dsp_examples_yout(:,:,2) =
    0
dsp_examples_yout(:,:,3) =
    0
dsp_examples_yout(:,:,4) =
    0
dsp_examples_yout(:, :,5) =
    1-1
dsp_examples_yout(:,:,6) =
    2-2
dsp_examples_yout(:,:,7) =
    3-3
```

The Unbuffer block unbuffers the frame-based signal into a two-channel, sample-based signal. Each page of the output matrix represents a different sample time.

For more information about the Unbuffer block, see the Unbuffer block reference page.

Delay and Latency

The two types of delay that affect Simulink models are computational delay and algorithmic delay. This section explains the cause of each variety of delay. It describes how you can configure Simulink to minimize delay and increase simulation performance. It also discusses how to accurately predict the tasking latency of a particular model.

This section includes the following topics:

- "Computational Delay" on page 2-49 - Learn the cause of computational delay and how to reduce it
- "Algorithmic Delay" on page 2-51 - Learn the cause of algorithmic delay
- "Zero Algorithmic Delay" on page 2-51 — Work with a block that has no algorithmic delay
- "Basic Algorithmic Delay" on page 2-54 - Work with a block that has algorithmic delay
- "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 - Explore the block and model characteristics that can affect the tasking latency of a particular block
- "Predicting Tasking Latency" on page 2-60 — Use the Upsample block's block reference page to predict the tasking latency of a model

Computational Delay

The computational delay of a block or subsystem is related to the number of operations involved in executing that block or subsystem. For example, an FFT block operating on a 256 -sample input requires Simulink to perform a certain number of multiplications for each input frame. The actual amount of time that these operations consume depends heavily on the performance of both the computer hardware and underlying software layers, such as MATLAB and the operating system. Therefore, computational delay for a particular model can vary from one computer platform to another.

The simulation time represented on a model's status bar, which can be accessed via the Simulink Digital Clock block, does not provide any information about computational delay. For example, according to the Simulink timer, the FFT mentioned above executes instantaneously, with no delay whatsoever. An input to the FFT block at simulation time $t=25.0$ is
processed and output at simulation time $t=25.0$, regardless of the number of operations performed by the FFT algorithm. The Simulink timer reflects only algorithmic delay, not computational delay.

Reducing Computational Delay

There are a number of ways to reduce computational delay without actually running the simulation on faster hardware. To begin with, you should familiarize yourself with "Improving Simulation Performance and Accuracy" in the Simulink documentation, which describes some basic strategies. The following information discusses several additional options for improving performance.

A first step in improving performance is to analyze your model, and eliminate or simplify elements that are adding excessively to the computational load.
Such elements might include scope displays and data logging blocks that you had put in place for debugging purposes and no longer require. In addition to these model-specific adjustments, there are a number of more general steps you can take to improve the performance of any model:

- Use frame-based processing wherever possible. It is advantageous for the entire model to be frame based. See "Benefits of Frame-Based Processing" on page 1-16 for more information.
- Use the dspstartup file to tailor Simulink for signal processing models, or manually make the adjustments described in "Settings in dspstartup.m" in Getting Started with the Signal Processing Blockset.
- Turn off the Simulink status bar by deselecting the Status bar option in the View menu. Simulation speed will improve, but the time indicator will not be visible.
- Run your simulation from the MATLAB command line by typing sim(gcs)
This method of starting a simulation can greatly increase the simulation speed, but also has several limitations:
- You cannot interact with the simulation (to tune parameters, for instance).
- You must press Ctrl+C to stop the simulation, or specify start and stop times.
- There are no graphics updates in M-file S-functions, which include blocks such as Vector Scope, etc.
- Use Real-Time Workshop ${ }^{\circledR}$ to generate generic real-time (GRT) code targeted to your host platform, and run the model using the generated executable file. See the Real-Time Workshop documentation for more information.

Algorithmic Delay

Algorithmic delay is delay that is intrinsic to the algorithm of a block or subsystem and is independent of CPU speed. In Chapter 9, "Block Reference" and elsewhere in this guide, the algorithmic delay of a block is referred to simply as the block's delay. It is generally expressed in terms of the number of samples by which a block's output lags behind the corresponding input. This delay is directly related to the time elapsed on the Simulink timer during that block's execution.

The algorithmic delay of a particular block may depend on both the block parameter settings and the general Simulink settings. To simplify matters, it is helpful to categorize a block's delay using the following categories:

- Zero Algorithmic Delay
- Basic Algorithmic Delay
- Excess Algorithmic Delay (Tasking Latency)

The following topics explain the different categories of delay, and how the simulation and parameter settings can affect the level of delay that a particular block experiences.

Zero Algorithmic Delay

The FFT block is an example of a component that has no algorithmic delay. The Simulink timer does not record any passage of time while the block computes the FFT of the input, and the transformed data is available at the output in the same time step that the input is received. There are many other blocks that have zero algorithmic delay, such as the blocks in the Matrices and Linear Algebra libraries. Each of those blocks processes its input and generates its output in a single time step.

In Chapter 9, "Block Reference" blocks are assumed to have zero delay unless otherwise indicated. If a block has zero delay for one combination of parameter settings but nonzero delay for another, the block reference page contains this fact.

The Normalization block is an example of a block with zero algorithmic delay:

1 At the MATLAB command prompt, type doc_normalization_tut.
The Normalization Example T1 model opens.

2 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

- Signal = 1:100
- Sample time = $1 / 4$
- Samples per frame $=4$

4 Save these parameters and close the dialog box by clicking $\mathbf{O K}$.
5 Double-click the Frame Conversion block. The Block Parameters: Frame Conversion dialog box opens.

6 Set the Output signal parameter to Sample based, and then click OK.
7 Run the model.
The model prepends the current value of the Simulink timer output from the Digital Clock block to each output frame. The Frame Conversion block converts the frame-based signal to a sample-based signal so that the output in the MATLAB Command Window is more easily readable.

The Signal From Workspace block generates a new frame containing four samples once every second ($\mathrm{T}_{\mathrm{fo}}=1 / 4 * 4$). The first few output frames are shown below:

0)	[1	2	3	
1)	5	6	7	8]
(9	10	11	12]'
$t=3)$	[13	14	15	16]
($t=4$)	[17	18	19	20]

8 At the MATLAB command prompt, type squeeze(dsp_examples_yout)'.
The normalized output, dsp_examples_yout, is converted to an easier-to-read matrix format. The result, ans, is shown in the figure below:

ans $=$				
0	0.0333	0.0667	0.1000	0.1333
1.0000	0.0287	0.0345	0.0402	0.0460
2.0000	0.0202	0.0224	0.0247	0.0269
3.0000	0.0154	0.0165	0.0177	0.0189
4.0000	0.0124	0.0131	0.0138	0.0146
5.0000	0.0103	0.0108	0.0113	0.0118

The first column of ans is the Simulink time provided by the Digital Clock block. You can see that the squared 2 -norm of the first input,

```
[1 2 3 4]' ./ sum([1 2 3 4]'.^2)
```

appears in the first row of the output (at time $t=0$), the same time step that the input was received by the block. This indicates that the Normalization block has zero algorithmic delay.

Zero Algorithmic Delay and Algebraic Loops

When several blocks with zero algorithmic delay are connected in a feedback loop, Simulink may report an algebraic loop error and performance may generally suffer. You can prevent algebraic loops by injecting at least one sample of delay into a feedback loop (for example, by including a Delay block with Delay >0). See the Simulink documentation for more information about algebraic loops.

Basic Algorithmic Delay

The Variable Integer Delay block is an example of a block with algorithmic delay. In the following example, you use this block to demonstrate this concept:

1 At the MATLAB command prompt, type doc_variableintegerdelay_tut.
The Variable Integer Delay Example T1 opens.

2 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

- Signal = 1: 100
- Sample time = 1
- Samples per frame = 1

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the DSP Constant block. The Block Parameters: DSP Constant dialog box opens.

6 Set the Constant value parameter to 3, and then click OK.
The input to the Delay port of the Variable Integer Delay block specifies the number of sample periods that should elapse before an input to the In port is released to the output. This value represents the block's algorithmic delay. In this example, since the input to the Delay port is 3, and the sample period at the In and Delay ports is 1, then the sample that arrives at the block's In port at time $t=0$ is released to the output at time $t=3$.

7 Double-click the Variable Integer Delay block. The Block Parameters: Variable Integer Delay dialog box opens.

8 Set the Initial conditions parameter to-1, and then click OK.
9 From the Format menu, point to Port/Signal Displays, and select Signal Dimensions and Wide Nonscalar Lines.

10 Run the model.
The model should look similar to the following figure.

11 At the MATLAB command prompt, type dsp_examples_yout
The output is shown below:
dsp_examples_yout =

0	-1
1	-1
2	-1
3	1
4	2
5	3

The first column is the Simulink time provided by the Digital Clock block. The second column is the delayed input. As expected, the input to the block at $t=0$ is delayed three samples and appears as the fourth output sample, at $t=3$. You can also see that the first three outputs from the Variable Integer Delay block inherit the value of the block's Initial conditions parameter, -1 . This period of time, from the start of the simulation until the
first input is propagated to the output, is sometimes called the initial delay of the block.

Many blocks in the Signal Processing Blockset have some degree of fixed or adjustable algorithmic delay. These include any blocks whose algorithms rely on delay or storage elements, such as filters or buffers. Often, but not always, such blocks provide an Initial conditions parameter that allows you to specify the output values generated by the block during the initial delay. In other cases, the initial conditions are internally set to 0 .

Consult the block reference pages for the delay characteristics of specific Signal Processing Blockset blocks.

Excess Algorithmic Delay (Tasking Latency)

Under certain conditions, Simulink may force a block to delay inputs longer than is strictly required by the block's algorithm. This excess algorithmic delay is called tasking latency, because it arises from synchronization requirements of the Simulink tasking mode. A block's overall algorithmic delay is the sum of its basic delay and tasking latency.

Algorithmic delay $=$ Basic algorithmic delay + Tasking latency

The tasking latency for a particular block may be dependent on the following block and model characteristics:

- Simulink Tasking Mode
- Block Rate Type
- Model Rate Type
- Block Sample Mode

Simulink Tasking Mode

Simulink has two tasking modes:

- Single-tasking
- Multitasking

To select a mode, from the Simulation menu, select Configuration Parameters. In the Select pane, click Solver. From the Type list, select Fixed-step. From the Tasking mode for periodic sample times list, choose SingleTasking or MultiTasking. If, from the Tasking mode for periodic
sample times list you select Auto, the simulation runs in single-tasking mode if the model is single-rate, or multitasking mode if the model is multirate.

Note Many multirate blocks have reduced latency in the Simulink single-tasking mode. Check the "Latency" section of a multirate block's reference page for details. Also refer to the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Block Rate Type

A block is called single-rate when all of its input and output ports operate at the same frame rate. A block is called multirate when at least one input or output port has a different frame rate than the others.

Many blocks are permanently single-rate. This means that all input and output ports always have the same frame rate. For other blocks, the block parameter settings determine whether the block is single-rate or multirate. Only multirate blocks are subject to tasking latency.

Note Simulink may report an algebraic loop error if it detects a feedback loop composed entirely of multirate blocks. To break such an algebraic loop, insert a single-rate block with nonzero delay, such as a Unit Delay block. For more information about algebraic loops, see "Algebraic Loops" in the Simulink documentation.

Model Rate Type

When all ports of all blocks in a model operate at a single frame rate, the model is called single-rate. When the model contains blocks with differing frame rates, or at least one multirate block, the model is called multirate. Note that Simulink prevents a single-rate model from running in multitasking mode by generating an error.

Block Sample Mode

Many blocks can operate in either sample-based or frame-based modes. In source blocks, the mode is usually determined by the Samples per frame
parameter. If, for the Samples per frame parameter, you enter 1, the block operates in sample-based mode. If you enter a value greater than 1, the block operates in frame-based mode. In nonsource blocks, the sample mode is determined by the input signal. See the block reference pages for additional information about specific blocks.

Predicting Tasking Latency

The specific amount of tasking latency created by a particular combination of block parameter and simulation settings is discussed in the "Latency" section of a block's reference page. In this topic, you use the Upsample block's reference page to predict the tasking latency of a model:

1 At the MATLAB command prompt, type doc_upsample_tut1.
The Upsample Example T1 opens.

2 From the Simulation menu, select Configuration Parameters.
3 In the Solver pane, from the Type list, select Fixed-step. From the Solver list, select discrete (no continuous states).

4 From the Tasking mode for periodic sample times list, select MultiTasking, and then click OK.

Most multirate blocks experience tasking latency only in the Simulink multitasking mode.

5 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

6 Set the block parameters as follows, and then click OK:

- Signal = 1:100
- Sample time = $1 / 4$
- Samples per frame $=4$

7 Double-click the Upsample block. The Block Parameters: Upsample dialog box opens.

8 Set the block parameters as follows, and then click OK:

- Upsample factor $=4$
- Sample offset = 0
- Initial condition =-1
- Frame-based mode = Maintain input frame size

The Frame-based mode parameter makes the model multirate, since the input and output frame rates will not be equal.

9 Double-click the Digital Clock block. The Block Parameters: Digital Clock dialog box opens.

10 Set the Sample time parameter to 0.25 , and then click OK.
This matches the sample period of the Upsample block's output.
11 Double-click the Frame Conversion block. The Block Parameters: Frame Conversion dialog box opens.

12 Set the Output signal parameter of the to Sample based, and then click OK.

13 Run the model.
The model should now look similar to the following figure.

The model prepends the current value of the Simulink timer, from the Digital Clock block, to each output frame. The Frame Conversion block converts the frame-based signal into a sample-based signal so that the output in the MATLAB Command Window is easily readable.

In the example, the Signal From Workspace block generates a new frame containing four samples once every second ($\mathrm{T}_{\mathrm{fo}}=1 / 4 * 4$). The first few output frames are shown below:

($t=0$)	[1	2	3	4
($t=1$)	5	6	7	8
(t=2)	[9	10	11	12
($t=3$)	[13	14	15	16
($t=4$)	[17	18	19	20

The Upsample block upsamples the input by a factor of 4, inserting three zeros between each input sample. The change in rates is confirmed by the

Probe blocks in the model, which show a decrease in the frame period from $\mathrm{T}_{\mathrm{fi}}=1$ to $\mathrm{T}_{\mathrm{fo}}=0.25$.

14 At the MATLAB command prompt, type squeeze(dsp_examples_yout)'
The output from the simulation is displayed in a matrix format. The first few samples of the result, ans, are shown below:
ans $=$

0	-1.0000	0	0	0
0.2500	-1.0000	0	0	0
0.5000	-1.0000	0	0	0
0.7500	-1.0000	0	0	0
1.0000	1.0000	0	0	0
1.2500	2.0000	0	0	0
1.5000	3.0000	0	0	0
1.7500	4.0000	0	0	0
2.0000	5.0000	0	0	0
time output frame				

The "Latency and Initial Conditions" section of the Upsample block's reference page indicates that when Simulink is in multitasking mode, the first sample of the block's frame-based input appears in the output as sample $M_{i} L+D+1$, where M_{i} is the input frame size, L is the Upsample factor, and D is the Sample offset. This formula predicts that the first input in this example should appear as output sample 17 (that is, $4 * 4+0+1$).

The first column of the output is the Simulink time provided by the Digital Clock block. The four values to the right of each time are the values in the output frame at that time. You can see that the first sample in each of the first four output frames inherits the value of the Upsample block's Initial conditions parameter. As a result of the tasking latency, the first input value appears as the first sample of the 5th output frame (at $t=1$). This is sample 17.

Now try running the model in single-tasking mode.
15 From the Simulation menu, select Configuration Parameters.

16 In the Solver pane, from the Type list, select Fixed-step. From the Solver list, select discrete (no continuous states)

17 From the Tasking mode for periodic sample times list, select SingleTasking.

18 Run the model.
The model now runs in single-tasking mode.
19 At the MATLAB command prompt, type squeeze (dsp_examples_yout)'.
The first few samples of the result, ans, are shown below:

ans $=$					
0	1.0000	0	0	0	lst output frame
0.2500	2.0000	0	0	0	
0.5000	3.0000	0	0	0	
0.7500	4.0000	0	0	0	
1.0000	5.0000	0	0	0	5th output frame
1.2500	6.0000	0	0	0	
1.5000	7.0000	0	0	0	
1.7500	8.0000	0	0	0	
2.0000	9.0000	0	0	0	
time					

The "Latency and Initial Conditions" section of the Upsample block's reference page indicates that the block has zero latency for all multirate operations in the Simulink single-tasking mode.

The first column of the output is the Simulink time provided by the Digital Clock block. The four values to the right of each time are the values in the output frame at that time. The first input value appears as the first sample of the first output frame (at $t=0$). This is the expected behavior for the zero-latency condition. For the particular parameter settings used in this example, running upsample_tut1 in single-tasking mode eliminates the 17 -sample delay that is present when you run the model in multitasking mode.

You have now successfully used the Upsample block's reference page to predict the tasking latency of a model.

Filters

The Signal Processing Blockset Filtering library provides an extensive array of filtering blocks for designing and implementing filters in your models.
Digital Filter Block (p. 3-2) Implement your filter design using the Digital Filter block
Digital Filter Design Block (p. 3-18) Create and implement filters using the Digital Filter Design block
Filter Realization Wizard (p. 3-32) Create and implement filters using the Filter Realization WizardAnalog Filter Design Block (p. 3-51) Design analog IIR filters using the Analog Filter Designblock
Adaptive Filters (p. 3-53)
Create and customize an adaptive filter using an LMS Filter block
Multirate Filters (p. 3-67)
Review filter bank concepts and explore the multirate filtering demos in the Signal Processing Blockset

Digital Filter Block

You can use the Digital Filter block to implement digital FIR and IIR filters in your models. Use this block if you have already performed the design and analysis and know your desired filter coefficients. You can use this block to filter single-channel and multichannel signals, and to simulate floating-point and fixed-point filters. Then, you can use Real-Time Workshop to generate highly optimized C code from your filter block.

Required Parameters. To implement a filter with the Digital Filter block, you must provide the following basic information about the filter:

- Whether the filter transfer function is FIR with all zeros, IIR with all poles, or IIR with poles and zeros
- The desired filter structure
- The filter coefficients

Note Use the Digital Filter Design block to design and implement a filter. Use the Digital Filter block to implement a predesigned filter. Both blocks implement a filter in the same manner and have the same behavior during simulation and code generation.

This section includes the following topics:

- "Implementing a Lowpass Filter" on page 3-3 - Create a lowpass filter using the Digital Filter block
- "Implementing a Highpass Filter" on page 3-4 - Create a highpass filter using the Digital Filter block
- "Filtering High-Frequency Noise" on page 3-5 - Build a system capable of filtering high-frequency noise using a highpass and lowpass filter
- "Specifying Static Filters" on page 3-10 - Use the Digital Filter block to create a static filter
- "Specifying Time-Varying Filters" on page 3-11 - Use the Digital Filter block to create a time-varying filter
- "Specifying the SOS Matrix (Biquadratic Filter Coefficients)" on page 3-16 Use the Digital Filter block to create a static biquadratic direct form II transposed filter

Implementing a Lowpass Filter

You can use the Digital Filter block to implement a digital FIR or IIR filter. In this topic, you use it to implement an FIR lowpass filter:

1 Define the lowpass filter coefficients in the MATLAB workspace by typing

```
lopassNum = [-0.0021-0.0108-0.0274-0.0409-0.0266 0.0374 0.1435
0.2465 0.2896 0.2465 0.1435 0.0374 -0.0266 -0.0409 -0.0274
-0.0108 -0.0021];
```

2 Open Simulink and create a new model file.
3 From the Signal Processing Blockset Filtering library, and then from the Filter Designs library, click-and-drag a Digital Filter block into your model.

4 Double-click the Digital Filter block. Set the block parameters as follows, and then click OK:

- Transfer function type = FIR (all zeros)
- Filter structure = Direct form transposed
- Coefficient source = Specify via dialog
- Numerator coefficients = lopassNum
- Initial conditions $=0$

Note that you can provide the filter coefficients in several ways:

- Type in a variable name from the MATLAB workspace, such as lopassNum.
- Type in filter design commands from the Signal Processing Toolbox or the Filter Design Toolbox, such as fir1(5, 0.2, 'low').
- Type in a vector of the filter coefficient values.

5 Rename your block Digital Filter - Lowpass.

The Digital Filter block in your model now represents a lowpass filter. In the next topic, you use a Digital Filter block to implement a highpass filter. For
more information about the Digital Filter block, see the Digital Filter block reference page. For more information about designing and implementing a new filter, see "Digital Filter Design Block" on page 3-18.

Implementing a Highpass Filter

In this topic, you implement an FIR highpass filter using the Digital Filter block:

1 If the model you created in "Implementing a Lowpass Filter" on page 3-3 is not open on your desktop, you can open an equivalent model by typing doc_filter_ex1
at the MATLAB command prompt.
2 Define the highpass filter coefficients in the MATLAB workspace by typing
hipassNum $=\left[\begin{array}{llll}-0.0051 & 0.0181-0.0069-0.0283-0.0061 ~ 0.0549 ~ & 0.0579\end{array}\right.$
-0.0826-0.2992 0.5946-0.2992-0.0826 0.0579 0.0549-0.0061
-0.0283 -0.0069 0.0181-0.0051];
3 From the Signal Processing Blockset Filtering library, and then from the Filter Designs library, click-and-drag a Digital Filter block into your model.

4 Double-click the Digital Filter block. Set the block parameters as follows, and then click OK:

- Transfer function type = FIR (all zeros)
- Filter structure = Direct form transposed
- Coefficient source = Specify via dialog
- Numerator coefficients = hipassNum
- Initial conditions $=0$

Note that you can provide the filter coefficients in several ways:

- Type in a variable name from the MATLAB workspace, such as hipassNum.
- Type in filter design commands from the Signal Processing Toolbox or the Filter Design Toolbox, such as fir1(5, 0.2, 'low').
- Type in a vector of the filter coefficient values.

5 Rename your block Digital Filter - Highpass.

You have now successfully implemented a highpass filter. In the next topic, you use these Digital Filter blocks to create a model capable of removing high frequency noise from a signal. For more information about the Digital Filter block, see the Digital Filter block reference page. For more information about designing and implementing a new filter, see "Digital Filter Design Block" on page 3-18.

Filtering High-Frequency Noise

In the previous topics, you used Digital Filter blocks to implement FIR lowpass and highpass filters. In this topic, you use these blocks to build a model that removes high frequency noise from a signal. In this model, you use the highpass filter, which is excited using a uniform random signal, to create high-frequency noise. After you add this noise to a sine wave, you use the lowpass filter to filter out the high-frequency noise:

1 If the model you created in "Implementing a Highpass Filter" on page 3-4 is not open on your desktop, you can open an equivalent model by typing doc_filter_ex2
at the MATLAB command prompt.
2 If you have not already done so, define the lowpass and highpass filter coefficients in the MATLAB workspace by typing

```
lopassNum = [-0.0021-0.0108-0.0274-0.0409-0.0266 0.0374 0.1435
0.2465 0.2896 0.2465 0.1435 0.0374 -0.0266 -0.0409 -0.0274
-0.0108 -0.0021];
hipassNum = [ -0.0051 0.0181-0.0069-0.0283-0.0061 0.0549 0.0579
-0.0826 -0.2992 0.5946-0.2992-0.0826 0.0579 0.0549 -0.0061
-0.0283 -0.0069 0.0181-0.0051];
```

3 Click-and-drag the following blocks into your model file.

Block	Library	Quantity
Matrix Concatenation	Math Functions / Matrices and Linear Algebra / Matrix Operations	1
Random Source	Signal Processing Sources	1
Sine Wave	Signal Processing Sources	1
Sum	Simulink / Math Operations library	1
Vector Scope	Signal Processing Sinks	1

4 Set the parameters for the rest of the blocks as indicated in the following table. For any parameters not listed in the table, leave them at their default settings.

Parameter Settings for the Other Blocks

Block	Parameter Setting
Matrix Concatenation	• Number of inputs $=3$
	- Concatenation method $=$ Hor izontal
Random Source	- Source type $=$ Uniform
	- Minimum $=0$
	- Maximum $=4$
	- Sample mode $=$ Discrete
	- Sample time $=1 / 1000$
	- Samples per frame $=50$
	- Frequency $(\mathbf{H z})=75$
	- Sample time $=1 / 1000$
	- Samples per frame $=50$
Sine Wave	

Parameter Settings for the Other Blocks	
Block	Parameter Setting
Sum	• Icon shape $=$ rectangular • List of signs $=++$
Vector Scope	Scope Properties:

5 Connect the blocks and label your signals as shown in the following figure. You need to resize some of your blocks to accomplish this task.

6 From the Simulation menu, select Configuration Parameters.
The Configuration Parameters dialog box opens.
7 In the Solver pane, set the parameters as follows, and then click OK:

- Start time = 0
- Stop time $=5$
- Type = Fixed-step
- Solver = discrete (no continuous states)

8 In the model window, from the Simulation menu, choose Start.
The model simulation begins and the Scope displays the three input signals.
9 Double-click the Vector Scope block and click the Display Properties tab. Select the Channel legend check box and click OK. Next time you run the simulation, a legend appears in the Vector Scope window.

You can also set the color, style, and marker of each channel.
10 In the Vector Scope window, from the Channels menu, point to Ch 1 and set the Style to -, Marker to None, and Color to Black.

Point to Ch 2 and set the Style to -, Marker to Diamond, and Color to Red.
Point to Ch 3 and set the Style to None, Marker to *, and Color to Blue.

11 Rerun the simulation and compare the original sine wave, noisy sine wave, and filtered noisy sine wave in the Vector Scope display.

You can see that the lowpass filter filters out the high-frequency noise in the noisy sine wave.

You have now used Digital Filter blocks to build a model that removes high frequency noise from a signal. For more information about these blocks, see the Digital Filter block reference page. For more information about designing and implementing a new filter, see "Digital Filter Design Block" on page 3-18.

Specifying Static Filters

You can use the Digital Filter block to specify a static filter by setting the Coefficient source parameter to Specify via dialog. Depending on the filter structure, you need to enter your filter coefficients into one or more of the following parameters. The block disables all the irrelevant parameters. To see which of these parameters correspond to each filter structure, see "Supported Filter Structures" on page 9-236:

- Numerator coefficients - Column or row vector of numerator coefficients, [b0, b1, b2, ..., bn].
- Denominator coefficients - Column or row vector of denominator coefficients, [a0, a1, a2, ..., am].
- Reflection coefficients - Column or row vector of reflection coefficients, [k1, k2, ..., kn].
- SOS matrix (Mx6) - M-by-6 SOS matrix. To learn about SOS matrices, see "Specifying the SOS Matrix (Biquadratic Filter Coefficients)" on page 3-16.
- Scale values - Scalar or vector of M+1 scale values to be used between SOS stages.

Tuning the Filter Coefficient Values During Simulation

To change the static filter coefficients during simulation, double-click the block, type in the new vector(s) of filter coefficients, and click OK. You cannot change the filter order, so you cannot change the number of elements in the vector(s) of filter coefficients.

Specifying Time-Varying Filters

Note This block does not support time-varying Biquadratic (SOS) filters.

Time-varying filters are filters whose coefficients change with time. You can specify a time-varying filter that changes once per frame or once per sample and you can filter multiple channels with each filter. However, you cannot apply different filters to each channel; all channels must be filtered with the same filter.

To specify a time-varying filter
1 Set the Coefficient source parameter to Input port (s), which enables extra block input ports for the time-varying filter coefficients. The following diagram shows one block with an extra port for reflection coefficients, and another with extra ports for numerator and denominator coefficients.

2 Set the Coefficient update rate parameter to One filter per frame or One filter per sample depending on how often you want to update the filter coefficients. To learn more, see "Setting the Coefficient Update Rate" on page 3-12.
3 Provide vectors of numerator, denominator, or reflection coefficients to the block input ports for filter coefficients. The series of vectors must arrive at their ports at a specific rate, and must be of certain lengths. To learn more, see "Providing Filter Coefficient Vectors at Block Input Ports" on page 3-13.
4 Select or clear the First denominator coefficient $=1$, remove a0 term in the structure parameter depending on whether your first denominator coefficient is always 1 . To learn more, see "Removing the a0 Term in the Filter Structure" on page 3-15.

Setting the Coefficient Update Rate

When the input is frame based, the block updates time-varying filters once every input frame, or once for every sample in an input frame, depending on the Coefficient update rate parameter:

- One filter per frame - Each coefficient vector represents one filter that is applied to all samples in the current frame.
- One filter per sample - Each coefficient vector represents a concatenation of filter coefficients. When you have N samples per frame and M coefficients for each filter, then the coefficient vector length is $\mathrm{M}^{*} \mathrm{~N}$. All the coefficient vectors must be of equal length.

The following figure shows the block filtering one channel; however, the block can filter multiple channels. Note that the block can apply a single filter to multiple channels, but cannot apply a different filter to each channel.

Update filter coefficients once per frame:
At time tl , the block applies the filter [11] to all three samples in the first frame of input data.
At time t2, the block updates the filter to [2 2] and applies it to the second frame of data, and so on.

Update filter coefficients once per sample:

At time tl , the block applies filter [11] to the first sample in the first frame of data, filter [2 2] to the second sample, and filter [3] to the third sample. At time +2 , the block updates the filter for each sample in the next input frame, and applies each filter to the corresponding sample, and so on. The block preserves state from sample to sample.

Providing Filter Coefficient Vectors at Block Input Ports

As illustrated in the previous figure, the filter coefficient vectors for filters that update once per frame are different from coefficient vectors for filters that update once per sample. See the following tables to meet the rate and length requirements of the filter coefficient vectors:

- Length requirements - See the table "Length Requirements for Time-Varying Filter Coefficient Vectors" on page 3-14.
- Rate requirements - See the table "Rate Requirements for Time-Varying Filter Coefficient Vectors" on page 3-15.

The output size, frame status, and dimension always match those of the input signal that is filtered, not the vector of filter coefficients.

Coefficient Update Rate	How to Specify Filter Coefficient Vectors (Also see the previous figure)	Length Requirements
Once per frame	Each coefficient vector corresponds to one input frame and represents one filter. Specify each vector as you would any static filter: [b0, b1, b2, bn], [a0, a1, a2, ..., am], or [k1, k2, ..., kn]	None
Once per sample	Each coefficient vector corresponds to one input frame. However, the vector represents multiple filters of the same length with one filter for each sample in the current frame. To create such a vector, concatenate all the filters for each sample within the input frame. For instance, the following vector specifies length-2 numerator coefficients for each sample in a three-sample frame $\left[b_{0} b_{1} B_{0} B_{1} \beta_{0} \beta_{1}\right]$ where $\left[b_{0} b_{1}\right]$ filters the first sample in the input frame, $\left[B_{0} B_{1}\right]$ filters the second sample, and so on.	All filters must be the same length, L . The length of each filter coefficient vector must be L times the number of samples per frame in the input. (Each sample in the frame has one set of filter coefficients.)

The time-varying filter coefficient vectors can be sample- or frame-based row or column vectors. The vectors of filter coefficients must arrive at their input port at the same times that the frames of input data arrive at their input port, as indicated in the following table.

Rate Requirements for Time-Varying Filter Coefficient Vectors		
Input Signal	Time-Varying Filter Coefficient Vectors	Rate Requirements (Also see the previous figure)
Sample based	Sample based	Sample rates of input and filter coefficients must be equal.
Sample based	Frame based	Input sample rate must equal filter coefficient frame rate.
Frame based	Sample based	Input frame rate must equal filter coefficient sample rate.
Frame based	Frame based	Frame rates of input and filter coefficients must be equal.

Removing the a0 Term in the Filter Structure

When you know that the first denominator filter coefficient (a_{0}) is always 1 for your time-varying filter, select the First denominator coefficient = 1, remove a0 term in the structure parameter. Selecting this parameter reduces the number of computations the block must make to produce the output (the block omits the $1 / a_{0}$ term in the filter structure, as illustrated in the following figure). The block output is invalid if you select this parameter when the first denominator filter coefficient is not always 1 for your time-varying filter. Note that the block ignores the First denominator coefficient = 1, remove a0 term in the structure parameter for fixed-point inputs, since this block does not support nonunity a_{0} coefficients for fixed-point inputs.

The block omits this term in the structure when you set the First denominator coefficient $=1$, remove a 0 term in the structure parameter.

Specifying the SOS Matrix (Biquadratic Filter Coefficients)

The Digital Filter block does not support time-varying biquadratic filters. To specify a static biquadratic filter (also known as a second-order section or SOS filter), you need to set the following parameters as indicated:

```
- Transfer function type - IIR (poles & zeros)
- Filter structure - Biquad direct form I (SOS), or
Biquad direct form I transposed (SOS),or
Biquad direct form II (SOS), or
Biquad direct form II transposed (SOS)
```

- SOS matrix (Mx6) - M-by-6 SOS matrix

The SOS matrix is an M-by-6 matrix, where M is the number of sections in the second-order section filter. Each row of the SOS matrix contains the numerator and denominator coefficients ($b_{i k}$ and $a_{i k}$) of the corresponding section in the filter.

- Scale values - Scalar or vector of M+1 scale values to be used between SOS stages

If you enter a scalar, the value is used as the gain value before the first section of the second-order filter. The rest of the gain values are set to 1 .
If you enter a vector of $M+1$ values, each value is used for a separate section of the filter. For example, the first element is the first gain value, the second element is the second gain value, and so on.

You can use the ss2sos and tf2sos functions from the Signal Processing Toolbox to convert a state-space or transfer-function description of your filter into the second-order section description used by this block.

$$
\left[\begin{array}{cccccc}
b_{11} & b_{21} & b_{31} & a_{11} & a_{21} & a_{31} \\
b_{12} & b_{22} & b_{32} & a_{12} & a_{22} & a_{32} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_{1 M} & b_{2 M} & b_{3 M} & a_{1 M} & a_{2 M} & a_{3 M}
\end{array}\right]
$$

Note The block normalizes each row by $a_{1 i}$ to ensure a value of 1 for the zero-delay denominator coefficients.

Digital Filter Design Block

You can use the Digital Filter Design block to design and implement a digital filter. The filter you design can filter single-channel or multichannel signals. The Digital Filter Design block is ideal for simulating the numerical behavior of your filter on a floating-point system, such as a personal computer or DSP chip. You can use Real-Time Workshop to generate C code from your filter block. For more information on generating C code from models, see "Code Generation" in the Getting Started with Signal Processing Blockset documentation.

This section includes the following topics:

- "Overview of the Digital Filter Design Block" on page 3-18 — Learn the basic functionality of the Digital Filter Design block
- "Choosing Between Filter Design Blocks" on page 3-19 - Determine whether the Digital Filter Design block or the Filter Realization Wizard is right for your application
- "Creating a Lowpass Filter" on page 3-21 - Use the Digital Filter Design block to design and implement a lowpass filter
- "Creating a Highpass Filter" on page 3-24 - Use the Digital Filter Design block to design and implement a highpass filter
- "Filtering High-Frequency Noise" on page 3-26 - Create a system capable of filtering high-frequency noise using a highpass and a lowpass filter

Alternatively, you can use other MathWorks products, such as the Signal Processing Toolbox and Filter Design Toolbox, to design your filters. Once you design a filter using either toolbox, you can use one of the Signal Processing Blockset's filter implementation blocks, such as the Digital Filter block, to realize the filters in your models. For more information, see the Signal Processing Toolbox documentation and Filter Design Toolbox documentation. To learn how to import and export your filter designs, see the "Importing and Exporting Quantized Filters" section of the Filter Design Toolbox documentation.

Overview of the Digital Filter Design Block

Filter Design and Analysis. You perform all filter design and analysis within the Filter Design and Analysis Tool (FDATool) GUI, which opens when you
double-click the Digital Filter Design block. FDATool provides extensive filter design parameters and analysis tools such as pole-zero and impulse response plots.

Filter Implementation. Once you have designed your filter using FDATool, the block automatically realizes the filter using the filter structure you specified. You can then use the block to filter signals in your model. You can also fine-tune the filter by changing the filter specification parameters during a simulation. The outputs of the Digital Filter Design block numerically match the outputs of the filter function in the Filter Design Toolbox and the filter function in MATLAB.

Saving, Exporting, and Importing Filters. The Digital Filter Design block allows you to save the filters you design, export filters (to the MATLAB workspace, MAT-files, etc.), and import filters designed elsewhere.

To learn how to save your filter designs, see the "Saving and Opening Filter Design Sessions" section of the Signal Processing Toolbox documentation. To learn how to import and export your filter designs, see the "Importing and Exporting Quantized Filters" section of the Filter Design Toolbox documentation.

Note Use the Digital Filter Design block to design and implement a filter. Use the Digital Filter block to implement a predesigned filter. Both blocks implement a filter design in the same manner and have the same behavior during simulation and code generation.

See the Digital Filter Design block reference page for more information. For information on choosing between the Digital Filter Design block and the Filter Realization Wizard, see "Choosing Between Filter Design Blocks" on page 3-19.

Choosing Between Filter Design Blocks

You can design and implement digital filters using the Digital Filter Design block and Filter Realization Wizard. This topic explains the similarities and differences between these blocks. In addition, you learn how to choose the block that is best suited for your needs.

Similarities

The Digital Filter Design block and Filter Realization Wizard are similar in the following ways:

- Filter design and analysis options - Both blocks use the Filter Design and Analysis Tool (FDATool) GUI for filter design and analysis.
- Output values - If the output of both blocks is double-precision floating point, single-precision floating point, or fixed point, the output values of both blocks numerically match the output of the filter method of the dfilt object.

Differences

The Digital Filter Design block and Filter Realization Wizard handle the following things differently:

- Filter implementation method
- The Digital Filter Design block opens the FDATool GUI to the Design Filter panel. It implements filters using the Digital Filter block. These filters are optimized for both speed and memory use in simulation and in C code generation. For more information on code generation, see "Code Generation" in Getting Started with the Signal Processing Blockset.
- The Filter Realization Wizard opens the FDATool GUI to the Realize Model panel. The block can implement filters in two different ways. It can use Sum, Gain, and Delay blocks from Simulink, or it can use the Digital Filter block. If you choose to implement your filter using the Digital Filter block, your filter is bound by the type of filters this block supports.

Note If your filter is implemented by the Filter Realization Wizard using Sum, Gain, and Delay blocks, inputs to the filter must be sample based.

- Supported filter structures - Both blocks support many of the same basic filter structures, but the Filter Realization Wizard supports more structures than the Digital Filter Design block. This is because the block can implement filters using Sum, Gain, and Delay blocks. See the Filter Realization Wizard and Digital Filter Design block reference pages for a list of all the structures they support.
- Multichannel filtering - The Digital Filter Design block can filter multichannel signals. Filters implemented by the Filter Realization Wizard can only filter single-channel signals.
- Data type support - The Digital Filter block supports single- and double-precision floating-point computation for all filter structures and fixed-point computation for some filter structures. The Digital Filter Design block only supports single- and double-precision floating-point computation.

When to Use Each Block

The following are specific situations where only the Digital Filter Design block or the Filter Realization Wizard is appropriate.

- Digital Filter Design

- Use to simulate single- and double-precision floating-point filters.
- Use to filter multichannel signals.
- Use to generate highly optimized ANSI/ISO C code that implements floating-point filters for embedded systems. For more information on code generation, see "Code Generation" in Getting Started with the Signal Processing Blockset.
- Filter Realization Wizard
- Use to simulate numerical behavior of fixed-point filters in a DSP chip, a field-programmable gate array (FPGA), or an application-specific integrated circuit (ASIC).
- Use to simulate single- and double-precision floating-point filters with structures that the Digital Filter Design block does not support.
- Use to visualize the filter structure, as the block can build the filter from Sum, Gain, and Delay blocks.
- Use to generate multiple filter blocks rapidly.

See "Filter Realization Wizard" on page 3-32 and the Filter Realization Wizard block reference page for information.

Creating a Lowpass Filter

You can use the Digital Filter Design block to design and implement a digital FIR or IIR filter. In this topic, you use it to create an FIR lowpass filter:

1 Open Simulink and create a new model file.
2 From the Signal Processing Blockset Filtering library, and then from the Filter Designs library, click-and-drag a Digital Filter Design block into your model

3 Double-click the Digital Filter Design block.
The Filter Design and Analysis Tool (FDATool) GUI opens.
4 Set the parameters as follows, and then click OK:

- Response Type = Lowpass
- Design Method = FIR, Equiripple
- Filter Order = Minimum order
- Units = Normalized (0 to 1)
- wpass $=0.2$
- wstop $=0.5$

When you are finished, the GUI should look similar to the following figure:

5 Click Design Filter at the bottom of the GUI to design the filter.
Your Digital Filter Design block now represents a filter with the parameters you specified.

6 From the Edit menu, select Convert Structure.
The Convert Structure dialog box opens.

7 Select Direct-Form FIR Transposed and click OK.
8 Rename your block Digital Filter Design - Lowpass.
The Digital Filter Design block now represents a lowpass filter with a Direct-Form FIR Transposed structure. The filter passes all frequencies up to 20% of the Nyquist frequency (half the sampling frequency), and stops frequencies greater than or equal to 50% of the Nyquist frequency as defined by the wpass and wstop parameters. In the next topic, you use a Digital Filter Design block to create a highpass filter. For more information about this block, see the Digital Filter Design block reference page. For more information about implementing a predesigned filter, see "Digital Filter Block" on page 3-2.

Creating a Highpass Filter

In this topic, you create a highpass filter using the Digital Filter Design block:
1 If the model you created in "Creating a Lowpass Filter" on page 3-21 is not open on your desktop, you can open an equivalent model by typing doc_filter_ex4
at the MATLAB command prompt.
2 From the Signal Processing Blockset Filtering library, and then from the Filter Designs library, click-and-drag a second Digital Filter Design block into your model

3 Double-click the Digital Filter Design block.
The Filter Design and Analysis Tool (FDATool) GUI opens.
4 Set the parameters as follows:

- Response Type = Highpass
- Design Method = FIR, Equiripple
- Filter Order = Minimum order
- Units = Normalized (0 to 1)
- wstop $=0.2$
- wpass $=0.5$

When you are finished, the GUI should look similar to the following figure.

5 Click the Design Filter button at the bottom of the GUI to design the filter.
Your Digital Filter Design block now represents a filter with the parameters you specified.

6 In the Edit menu, select Convert Structure.

The Convert Structure dialog box opens.
7 Select Direct-Form FIR Transposed and click OK.
8 Rename your block Digital Filter Design - Highpass.

The block now implements a highpass filter with a direct form FIR transpose structure. The filter passes all frequencies greater than or equal to 50% of the Nyquist frequency (half the sampling frequency), and stops frequencies less than or equal to 20% of the Nyquist frequency as defined by the wpass and wstop parameters. This highpass filter is the opposite of the lowpass filter described in "Creating a Lowpass Filter" on page 3-21. The highpass filter passes the frequencies stopped by the lowpass filter, and stops the frequencies passed by the lowpass filter. In the next topic, you use these Digital Filter Design blocks to create a model capable of removing high frequency noise from a signal. For more information about these blocks, see the Digital Filter Design block reference page. For more information about implementing a predesigned filter, see "Digital Filter Block" on page 3-2.

Filtering High-Frequency Noise

In the previous topics, you used Digital Filter Design blocks to create FIR lowpass and highpass filters. In this topic, you use these blocks to build a model that removes high frequency noise from a signal. In this model, you use the highpass filter, which is excited using a uniform random signal, to create high-frequency noise. After you add this noise to a sine wave, you use the lowpass filter to filter out the high-frequency noise:

1 If the model you created in "Creating a Highpass Filter" on page 3-24 is not open on your desktop, you can open an equivalent model by typing
doc_filter_ex5
at the MATLAB command prompt.

2 Click-and-drag the following blocks into your model file.

Block	Library	Quantity
Matrix Concatenation	Math Functions / Matrices and Linear Algebra / Matrix Operations	1
Random Source	Signal Processing Sources	1
Sine Wave	Signal Processing Sources	1
Sum	Simulink Math Operations library	1
Vector Scope	Signal Processing Sinks	1

3 Set the parameters for these blocks as indicated in the following table. Leave the parameters not listed in the table at their default settings.

Parameter Settings for the Other Blocks

Block	Parameter Setting
Matrix Concatenation	• Number of inputs $=3$
	- Concatenation method $=$ Horizontal
Random Source	- Source type $=$ Uniform
	- Minimum $=0$
	- Maximum $=4$
	- Sample mode $=$ Discrete
	- Sample time $=1 / 1000$
	- Samples per frame $=50$
	- Frequency $(\mathbf{H z})=75$
	- Sample time $=1 / 1000$
	- Samples per frame $=50$
Sine Wave	

Parameter Settings for the Other Blocks (Continued)

Block	Parameter Setting
Sum	\bullet Icon shape $=$ rectangular \bullet List of signs $=++$
Vector Scope	Scope Properties: • Input domain $=$ Time \bullet - Time display span (number of frames) = 1

4 Connect the blocks and label the signals as shown in the following figure. You might need to resize some of the blocks to accomplish this task.

5 From the Simulation menu, select Configuration Parameters.
The Configuration Parameters dialog box opens.
6 In the Solver pane, set the parameters as follows, and then click OK:

- Start time $=0$
- Stop time $=5$
- Type = Fixed-step
- Solver = discrete (no continuous states)

7 In the model window, from the Simulation menu, choose Start.
The model simulation begins and the Scope displays the three input signals.
8 Double-click the Vector Scope block and click the Display Properties check box. Select the Channel legend check box and click OK. Next time you run the simulation, a legend appears in the Vector Scope window.

You can also set the color, style, and marker of each channel.
9 In the Vector Scope window, from the Channels menu, point to Ch 1 and set the Style to -, Marker to None, and Color to Black.

Point to Ch 2 and set the Style to -, Marker to Diamond, and Color to Red.
Point to Ch 3 and set the Style to None, Marker to *, and Color to Blue.

10 Rerun the simulation and compare the original sine wave, noisy sine wave, and filtered noisy sine wave in the Vector Scope display.

You can see that the lowpass filter filters out the high-frequency noise in the noisy sine wave.

You have now used Digital Filter Design blocks to build a model that removes high frequency noise from a signal. For more information about these blocks, see the Digital Filter Design block reference page. For information on another block capable of designing and implementing filters, see "Filter Realization Wizard" on page 3-32. To learn how to save your filter designs, see the "Saving and Opening Filter Design Sessions" section of the Signal Processing Toolbox documentation. To learn how to import and export your filter designs, see the "Importing and Exporting Quantized Filters" section of the Filter Design Toolbox documentation.

Filter Realization Wizard

The Filter Realization Wizard is another Signal Processing Blockset block that can be used to design and implement digital filters. You can use this tool to filter single-channel floating-point or fixed-point signals. Like the Digital Filter Design block, double-clicking a Filter Realization Wizard block opens FDATool. Unlike the Digital Filter Design block, the Filter Realization Wizard starts FDATool with the Realize Model panel selected. This panel is optimized for use with the Signal Processing Blockset.

For more information, see the Filter Realization Wizard block reference page. For information on choosing between the Digital Filter Design block and the Filter Realization Wizard, see "Choosing Between Filter Design Blocks" on page 3-19.

This section includes the following topics:

- "Designing and Implementing a Fixed-Point Filter" on page 3-32 - Create a fixed-point filter with the Filter Realization Wizard
- "Setting the Filter Structure and Number of Filter Sections" on page 3-48 Learn how to change the filter structure and the number of second-order sections in the filter
- "Optimizing the Filter Structure" on page 3-49 - Optimize your filter structure for zero, unity, and negative gains

Alternatively, you can use other MathWorks products, such as the Signal Processing Toolbox and Filter Design Toolbox, to design your filters. Once you design a filter using either toolbox, you can use one of the Signal Processing Blockset's filter implementation blocks, such as the Digital Filter block, to realize the filters in your models. For more information, see the Signal Processing Toolbox documentation and Filter Design Toolbox documentation. To learn how to import and export your filter designs, see the "Importing and Exporting Quantized Filters" section of the Filter Design Toolbox documentation.

Designing and Implementing a Fixed-Point Filter

In this section, a tutorial guides you through creating a fixed-point filter with the Filter Realization Wizard. You will use the Filter Realization Wizard to remove noise from a signal. This tutorial has the following parts:

- "Part 1 - Creating a Signal with Added Noise" on page 3-33
- "Part 2 - Creating a Fixed-Point Filter with the Filter Realization Wizard" on page 3-35
- "Part 3 - Building a Model to Filter a Signal" on page 3-43
- "Part 4 - Looking at Filtering Results" on page 3-46

Part 1 - Creating a Signal with Added Noise

In this section of the tutorial, you will create a signal with added noise. Later in the tutorial, you will filter this signal with a fixed-point filter that you design with the Filter Realization Wizard.

1 Type
load mtlb
soundsc (mtlb,Fs)
at the MATLAB command line. You should hear a voice say "MATLAB." This is the signal to which you will add noise.

2 Create a noise signal by typing

```
noise = cos(2*pi*3*Fs/8*(0:length(mtlb)-1)/Fs)';
```

at the command line. You can hear the noise signal by typing

```
soundsc(noise,Fs)
```

3 Add the noise to the original signal by typing

```
u = mtlb + noise;
```

at the command line.
4 Scale the signal with noise by typing

$$
u=u / \max (\operatorname{abs}(u)) ;
$$

at the command line. You scale the signal to try to avoid overflows later on. You can hear the scaled signal with noise by typing

```
soundsc(u,Fs)
```

5 View the scaled signal with noise by typing spectrogram(u,256,Fs);colorbar
at the command line.
The spectrogram appears as follows.

In the spectrogram, you can see the noise signal as a horizontal line at about 2800 Hz , which is equal to $3^{*} \mathrm{Fs} / 8$.

Part 2 - Creating a Fixed-Point Filter with the Filter Realization Wizard

Next you will create a fixed-point filter using the Filter Realization Wizard.
You will create a filter that reduces the effects of the noise on the signal.
6 Open a new Simulink model, and drag-and-drop a Filter Realization Wizard block from the Filtering / Filter Designs library into the model.

Note You do not have to place a Filter Realization Wizard block in a model in order to use it. You can open the GUI from within a library. However, for purposes of this tutorial, we will keep the Filter Realization Wizard block in the model.

7 Double-click the Filter Realization Wizard block in your model. The Realize Model panel of the Filter Design and Analysis Tool (FDATool) appears.

8 Click the Design Filter button on the bottom left of FDATool. This brings forward the Design Filter panel of the tool.

Design Filter button
9 Set the following fields in the Design Filter panel:

- Set Design Method to IIR - Constrained Least Pth-norm
- Set Fs to Fs
- Set Fpass to 0.2*Fs
- Set Fstop to 0.25*Fs
- Set Max pole radius to 0.8
- Click the Design Filter button

The Design Filter panel should now appear as follows.

10 Click the Set Quantization Parameters button on the bottom left of FDATool. This brings forward the Set Quantization Parameters panel of the tool.

11 Set the following fields in the Set Quantization Parameters panel:

- Select Fixed - point for the Filter arithmetic parameter.
- Make sure the Best precision fraction lengths check box is selected on the Coefficients pane.

The Set Quantization Parameters panel should appear as follows.

Copy is obsolete, use QE COPY instead.

12 Click the Realize Model button on the left side of FDATool. This brings forward the Realize Model panel of the tool.

13 Click the Realize Model button on the bottom of FDATool. A block for the new filter appears in your model.

Note You do not have to keep the Filter Realization Wizard block in the same model as your Filter block. However, for this tutorial, we will keep the blocks in the same model.

14 Double-click the Filter block in your model. This will bring up the realization of the filter being represented by the block.

Part 3 - Building a Model to Filter a Signal

In this section of the tutorial, you will build and run a model with the filter you just designed, in order to filter the noise from your signal.

15 Connect a Signal From Workspace block from the Signal Processing Sources library to the input port of your filter block.

16 Connect a Signal To Workspace block from the Signal Processing Sinks library to the output port of your filter block. Your model should now appear as follows.

17 Change the Signal parameter of the Signal From Workspace block to u by double-clicking on the block.

18 Click the OK button.

19 Open the Configuration Parameters dialog box from the Simulation menu of the model. In the Solver pane of the dialog, set the following fields:

- Stop time = length (u) - 1 .
- Type = Fixed-step.

The Configuration Parameters dialog box should now appear as follows.

20 Click the OK button.
21 Run the model.

22 Select Port/Signal Displays > Port Data Types from the Format menu. You can you see that a signal of type double is entering your Filter block, and a signal of type sfix16_En11 is exiting your Filter block.

Part 4 - Looking at Filtering Results

Now you can listen to and look at the results of the fixed-point filter you designed and implemented.

23 Type

```
soundsc(yout,Fs)
```

at the command line to hear the output of the filter. You should hear a voice say "MATLAB." The noise portion of the signal should be close to inaudible.

24 Type

figure
spectrogram(yout, 256, Fs); colorbar
at the command line. You can compare the input and output signals side-by-side.

From the colorbars at the side of each spectrogram, you can see that the noise has been reduced by about 40 dB .

Setting the Filter Structure and Number of Filter Sections

The Current Filter Information region of FDATool shows the structure and the number of second-order sections in your filter.

Change the filter structure and number of filter sections of your filter as follows:

- Select Convert Structure from the Edit menu to open the Convert Structure dialog box. For details, see "Converting to a New Structure" in the Signal Processing Toolbox documentation.
- Select Convert to Second-order Sections from the Edit menu to open the Convert to SOS dialog box. For details, see "Converting to Second-Order Sections" in the Signal Processing Toolbox documentation.

Note You might not be able to directly access some of the supported structures through the Convert Structure dialog of FDATool. However, you
can access all of the structures by creating a dfilt filter object with the desired structure, and then importing the filter into FDATool. (To learn more about the Import Filter panel, see "Importing a Filter Design" in the Signal Processing Toolbox documentation.)

Optimizing the Filter Structure

The Filter Realization Wizard can implement a digital filter using a Digital Filter block or by creating a subsystem block that implements the filter using Sum, Gain, and Delay blocks. The following procedure shows you how to optimize the filter implementation:

1 Open the Realize Model pane of FDATool by clicking the Realize Model button in the lower-left corner of FDATool \qquad
2 Select the desired optimizations in the Optimization region of the Realize Model pane. See the following descriptions and illustrations of each optimization option.

- Optimize for zero gains - Remove zero-gain paths.
- Optimize for unity gains - Substitute gains equal to one with a wire (short circuit).
- Optimize for negative gains - Substitute gains equal to -1 with a wire (short circuit), and change the corresponding sums to subtractions.
- Optimize delay chains - Substitute any delay chain made up of n unit delays with a single delay by n.
The following diagram illustrates the results of each of these optimizations.

Analog Filter Design Block

The Analog Filter Design block designs and implements analog IIR filters with standard band configurations. All of the analog filter designs let you specify a filter order. The other available parameters depend on the filter type and band configuration, as shown in the following table.

Configuration	Butterworth	Chebyshev I	Chebyshev II	Elliptic
Lowpass	Ω_{p}	$\Omega_{\mathrm{p}}, \mathrm{R}_{\mathrm{p}}$	$\Omega_{\mathrm{s}}, \mathrm{R}_{\mathrm{s}}$	$\Omega_{\mathrm{p}}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$
Highpass	Ω_{p}	$\Omega_{\mathrm{p}}, \mathrm{R}_{\mathrm{p}}$	$\Omega_{\mathrm{s}}, \mathrm{R}_{\mathrm{s}}$	$\Omega_{\mathrm{p}}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$
Bandpass	$\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$	$\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}, \mathrm{R}_{\mathrm{p}}$	$\Omega_{\mathrm{s} 1}, \Omega_{\mathrm{s} 2}, \mathrm{R}_{\mathrm{s}}$	$\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$
Bandstop	$\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$	$\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}, \mathrm{R}_{\mathrm{p}}$	$\Omega_{\mathrm{s} 1}, \Omega_{\mathrm{s} 2}, \mathrm{R}_{\mathrm{s}}$	$\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$

The table parameters are
$\Omega_{p}=$ passband edge frequency
$\Omega_{\mathrm{p} 1}=$ lower passband edge frequency
$\Omega_{\mathrm{p} 2}=$ upper cutoff frequency
$\Omega_{\mathrm{s}}=$ stopband edge frequency
$\Omega_{\mathrm{s} 1}=$ lower stopband edge frequency
$\Omega_{\mathrm{s} 2}=$ upper stopband edge frequency
$R_{p}=$ passband ripple in decibels
$\mathrm{R}_{\mathrm{s}}=$ stopband attenuation in decibels
For all of the analog filter designs, frequency parameters are in units of radians per second.

The Analog Filter Design block uses a state-space filter representation, and applies the filter using the State-Space block in the Simulink Continuous library. All of the design methods use Signal Processing Toolbox functions to design the filter:

- The Butterworth design uses the toolbox function butter.
- The Chebyshev type I design uses the toolbox function cheby 1 .
- The Chebyshev type II design uses the toolbox function cheby2.
- The elliptic design uses the toolbox function ellip.

The Analog Filter Design block is built on the filter design capabilities of the Signal Processing Toolbox. For more information on the filter design algorithms, see the "Filter Designs" section of the Signal Processing Toolbox documentation.

Note The Analog Filter Design block does not work with the Simulink discrete solver, which is enabled when the Solver list is set to discrete (no continuous states) in the Solver pane of the Configuration Parameters dialog box. Select one of the continuous solvers (such as ode4) instead.

Adaptive Filters

Adaptive filters are filters whose coefficients or weights change over time to adapt to the statistics of a signal. They are used in a variety of fields including communications, controls, radar, sonar, seismology, and biomedical engineering.

This section includes the following topics:

- "Creating an Acoustic Environment" on page 3-53 - Build a subsystem that models white noise and colored noise added to an input signal
- "Creating an Adaptive Filter" on page 3-54 - Build an adaptive filter using an LMS Filter block
- "Customizing an Adaptive Filter" on page 3-60 - Modify your adaptive filter and change its parameters during simulation
- "Adaptive Filtering Demos" on page 3-65 - Explore the adaptive filtering demos in the Signal Processing Blockset

Creating an Acoustic Environment

In this topic, you learn how to create an acoustic environment that simulates both white noise and colored noise added to an input signal. You later use this environment to build a model capable of adaptive noise cancellation:

1 At the MATLAB command line, type dspanc.
The Signal Processing Blockset Acoustic Noise Cancellation demo opens.

2 Copy and paste the subsystem called Acoustic Environment into a new model file.

3 Double-click the Acoustic Environment subsystem.
Gaussian noise is used to create the signal sent to the Exterior Mic output port. If the input to the Filter port changes from 0 to 1, the Digital Filter block changes from a lowpass filter to a bandpass filter. The filtered noise output from the Digital Filter block is added to signal coming from a .wav file to produce the signal sent to the Pilot's Mic output port.

You have now created an acoustic environment. In the following topics, you use this acoustic environment to produce a model capable of adaptive noise cancellation.

Creating an Adaptive Filter

In the previous topic, "Creating an Acoustic Environment" on page 3-53, you created a system that produced two output signals. The signal output at the Exterior Mic port is composed of white noise. The signal output at the Pilot's

Mic port is composed of colored noise added to a signal from a . wav file. In this topic, you create an adaptive filter to remove the noise from the Pilot's Mic signal. This topic assumes that you are working on a Windows operating system:

1 If the model you created in "Creating an Acoustic Environment" on page 3-53 is not open on your desktop, you can open an equivalent model by typing

```
doc_adapt1_win32
```

at the MATLAB command prompt.
2 From the Signal Processing Blockset Filtering library, and then from the Adaptive Filters library, click-and-drag an LMS Filter block into the model that contains the Acoustic Environment subsystem.

3 Double-click the LMS Filter block. Set the block parameters as follows, and then click OK:

- Algorithm = Normalized LMS
- Filter length $=40$
- Step size (mu) $=0.002$
- Leakage factor (0 to $\mathbf{1}$) $=1$

The block uses the normalized LMS algorithm to calculate the forty filter coefficients. Setting the Leakage factor (0 to 1) parameter to 1 means that the current filter coefficient values depend on the filter's initial conditions and all of the previous input values.

4 Click-and-drag the following blocks into your model.

Block	Library	Quantity
Constant	Simulink/Sources	2
Manual Switch	Simulink/Signal Routing	1
Terminator	Simulink/Sinks	1
To Wave Device	Platform Specific I/O/ Windows	1

Block	Library	Quantity
Downsample	Signal Operations	1
Waterfall Scope	Signal Processing Sinks	1

5 Connect the blocks so that your model resembles the following figure.

6 Double-click the Constant block. Set the Constant value parameter to 0 and then click $\mathbf{O K}$.

7 Double-click the To Wave Device block. Set the block parameters as follows, and then click OK:

- Queue duration (seconds) $=0.4$
- Initial output delay (seconds) $=0.05$
- Select the Use default audio device check box.

8 Double-click the Downsample block. Set the Downsample factor, K parameter to 32. Click OK.

The filter weights are being updated so often that there is very little change from one update to the next. To see a more noticeable change, you need to downsample the output from the Wts port.

9 Double-click the Waterfall Scope block. The Waterfall scope window opens.
10 Click on the Scope parameters button.

The Parameters window opens.

11 Click on the Axes tab. Set the parameters as follows:

- \mathbf{Y} Min = - 0.188
- Y Max = 0.179

12 Click on the Data history tab. Set the parameters as follows:

- History traces $=50$
- Data logging = All visible

13 Close the Parameters window leaving all other parameters at their default values.

You might need to adjust the axes in the Waterfall scope window in order to view the plots.

14 Click on the Fit to view button in the Waterfall scope window. Then, click-and-drag the axes until they resemble the following figure.

15 In the model window, from the Simulation menu, select Configuration Parameters. In the Select pane, click Solver. Set the parameters as follows, and then click OK:

- Stop time = inf
- Type = Fixed-step
- Solver = discrete (no continuous states).

16 Run the simulation and view the results in the Waterfall scope window. You can also listen to the simulation using the speakers attached to your computer.

17 Experiment with changing the Manual Switch so that the input to the Acoustic Environment subsystem is either 0 or 1.

When the value is 0 , the Gaussian noise in the signal is being filtered by a lowpass filter. When the value is 1 , the noise is being filtered by a bandpass filter. The adaptive filter can remove the noise in both cases.

You have now created a model capable of adaptive noise cancellation. The adaptive filter in your model is able to filter out both low frequency noise and noise within a frequency range. In the following topic, "Customizing an Adaptive Filter" on page 3-60, you modify the LMS Filter block and change its parameters during simulation.

Customizing an Adaptive Filter

In the previous topic, "Creating an Adaptive Filter" on page 3-54, you created an adaptive filter and used it to remove the noise generated by the Acoustic Environment subsystem. In this topic, you modify the adaptive filter and adjust its parameters during simulation. This topic assumes that you are working on a Windows operating system:

1 If the model you created in "Creating an Acoustic Environment" on page 3-53 is not open on your desktop, you can open an equivalent model by typing
doc_adapt2_win32
at the MATLAB command prompt.

2 Double-click the LMS filter block. Set the block parameters as follows, and then click OK:

- Specify step size via = Input port
- Initial value of filter weights $=0$
- Select the Adapt port check box.
- Reset port = Non-zero sample.

The Block Parameters: LMS Filter dialog box should now look similar to the following figure.

Step-size, Adapt, and Reset ports appear on the LMS Filter block.
3 Click-and-drag the following blocks into your model.

Block	Library	Quantity
Constant	Simulink/Sources	6
Manual Switch	Simulink/Signal Routing	3

4 Connect the blocks as shown in the following figure.

5 Double-click the Constant2 block. Set the block parameters as follows, and then click OK:

- Constant value $=0.002$
- Select the Interpret vector parameters as 1-D check box.
- Select the Show additional parameters check box.
- Output data type mode = Inherit via back propagation
- Sample time (-1 for inherited) = inf

6 Double-click the Constant3 block. Set the block parameters as follows, and then click OK:

- Constant value $=0.04$
- Select the Interpret vector parameters as 1-D check box.
- Select the Show additional parameters check box.
- Output data type mode = Inherit via back propagation
- Sample time ($\mathbf{- 1}$ for inherited) = inf.

7 Double-click the Constant4 block. Set the Constant value parameter to 0 and then click OK.

8 Double-click the Constant6 block. Set the Constant value parameter to 0 and then click OK.

9 In the model window, from the Format menu, point to Port/Signal Displays, and select Wide Nonscalar Lines and Signal Dimensions.

10 Double-click Manual Switch2 so that the input to the Adapt port is 1 .
11 Run the simulation and view the results in the Waterfall scope window. You can also listen to the simulation using the speakers attached to your computer.

12 Double-click the Manual Switch so that the input to the Acoustic Environment subsystem is 1 . Then, double-click Manual Switch2 so that the input to the Adapt port to 0 .

The filter weights displayed in the Waterfall scope window remain constant. When the input to the Adapt port is 0 , the filter weights are not updated.

13 Double-click Manual Switch2 so that the input to the Adapt port is 1 .
The LMS Filter block updates the coefficients.

14 Connect the Manual Switch1 block to the Constant block that represents 0.002 . Then, change the input to the Acoustic Environment subsystem. Repeat this procedure with the Constant block that represents 0.04 .

You can see that the system reaches steady state faster when the step size is larger.

15 Double-click Manual Switch3 so that the input to the Reset port is 1.
The block resets the filter weights to their initial values. In the Block Parameters: LMS Filter dialog box, from the Reset port list, you chose Non-zero sample. This means that any nonzero input to the Reset port triggers a reset operation.

You have now experimented with adaptive noise cancellation using the LMS Filter block. You adjusted the parameters of your adaptive filter and viewed the effects of your changes while the model was running.

For more information about adaptive filters, see the following block reference pages: "LMS Filter" on page 9-563, "RLS Filter" on page 9-809, "Block LMS Filter" on page 9-45, and "Fast Block LMS Filter" on page 9-372.

Adaptive Filtering Demos

The Signal Processing Blockset provides a collection of adaptive filtering demos that illustrate typical applications of the adaptive filtering blocks, listed in the following table.

Adaptive Filtering Demos	Commands for Opening Demos in MATLAB
LMS Adaptive Equalization	lmsadeq
LMS Adaptive Linear Prediction	lmsadlp
LMS Adaptive Noise Cancellation	lmsdemo
LMS Adaptive Time-Delay Estimation	lmsadtde
Nonstationary Channel Estimation	kalmnsce
RLS Adaptive Noise Cancellation	rlsdemo

Opening Demos. To open the adaptive filter demos, click on the links in the following table in the MATLAB Help browser (not in a Web browser), or type the demo names provided in the table at the MATLAB command line. To access all Signal Processing Blockset demos, type demo blockset dsp at the MATLAB command line.

Multirate Filters

Multirate filters alter the sample rate of the input signal during the filtering process. Such filters are useful in both rate conversion and filter bank applications.

This section includes the following topics:

- "Filter Banks" on page 3-67 - Review of dyadic analysis filter banks and dyadic synthesis filter banks
- "Multirate Filtering Demos" on page 3-75 - Explore the multirate filtering demos in the Signal Processing Blockset

Filter Banks

The Dyadic Analysis Filter Bank block decomposes a broadband signal into a collection of subbands with smaller bandwidths and slower sample rates. The Dyadic Synthesis Filter Bank block reconstructs a signal decomposed by the Dyadic Analysis Filter Bank block.

To use a dyadic synthesis filter bank to perfectly reconstruct the output of a dyadic analysis filter bank, the number of levels and tree structures of both filter banks must be the same. In addition, the filters in the synthesis filter bank must be designed to perfectly reconstruct the outputs of the analysis filter bank. Otherwise, the reconstruction will not be perfect.

Dyadic Analysis Filter Banks

Dyadic analysis filter banks are constructed from the following basic unit. The unit can be cascaded to construct dyadic analysis filter banks with either a symmetric or asymmetric tree structure.

Each unit consists of a lowpass (LP) and highpass (HP) FIR filter pair, followed by a decimation by a factor of 2 . The filters are halfband filters with a cutoff frequency of $\mathrm{F}_{\mathrm{s}} / 4$, a quarter of the input sampling frequency. Each filter passes the frequency band that the other filter stops.

The unit decomposes its input into adjacent high-frequency and low-frequency subbands. Compared to the input, each subband has half the bandwidth (due to the half-band filters) and half the sample rate (due to the decimation by 2).

Note The following figures illustrate the concept of a filter bank, but not how the block implements a filter bank; the block uses a more efficient polyphase implementation.

n-Level Asymmetric Dyadic Analysis Filter Bank

Use the above figure and the following figure to compare the two tree structures of the dyadic analysis filter bank. Note that the asymmetric structure decomposes only the low-frequency output from each level, while the symmetric structure decomposes the high- and low-frequency subbands output from each level.

HP: highpass filter with $f_{c} \approx 1 / 4$ of F_{s} LP: lowpass filter with $f_{c} \approx 1 / 4$ of F_{s} $\downarrow 2$: downsample by 2

Output sample period $=2^{n}\left(T_{\text {si }}\right)$ for all 2^{n} outputs

n-Level Symmetric Dyadic Analysis Filter Bank

The following table summarizes the key characteristics of the symmetric and asymmetric dyadic analysis filter bank.

Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks

	n-level Symmetric	n-level Asymmetric
Low- and High-Frequency Subband Decomposition	All the low-frequency and high-frequency subbands in a level are decomposed in the next level.	Each level's low-frequency subband is decomposed in the next level, and each level's high-frequency band is an output of the filter bank.
Number of Output Subbands	2^{n}	$\mathrm{n}+1$

| Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks (Continued) |
| :--- | :--- | :--- | | n-level Symmetric | n-level Asymmetric |
| :--- | :--- | :--- |

Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks (Continued) n-level Symmetric n-level Asymmetric

Total Number of Output Samples

Wavelet Applications

The total number of samples in all of the output subbands is equal to the number of samples in the input (due to the of decimations by 2 at each level).

In wavelet applications, the highpass and lowpass wavelet-based filters are designed so that the aliasing introduced by the decimations are exactly canceled in reconstruction.

For more information, see "Dyadic Analysis Filter Bank" on page 9-342.

Dyadic Synthesis Filter Banks

Dyadic synthesis filter banks are constructed from the following basic unit. The unit can be cascaded to construct dyadic synthesis filter banks with either a asymmetric or symmetric tree structure as illustrated in the figures entitled n-Level Asymmetric Dyadic Synthesis Filter Bank and n-Level Symmetric Dyadic Synthesis Filter Bank.

Each unit consists of a lowpass (LP) and highpass (HP) FIR filter pair, preceded by an interpolation by a factor of 2 . The filters are halfband filters with a cutoff frequency of $\mathrm{F}_{\mathrm{s}} / 4$, a quarter of the input sampling frequency. Each filter passes the frequency band that the other filter stops.

The unit takes in adjacent high-frequency and low-frequency subbands, and reconstructs them into a wide-band signal. Compared to each subband input, the output has twice the bandwidth and twice the sample rate.

Note The following figures illustrate the concept of a filter bank, but not how the block implements a filter bank; the block uses a more efficient polyphase implementation.

n-Level Asymmetric Dyadic Synthesis Filter Bank

Use the above figure and the following figure to compare the two tree structures of the dyadic synthesis filter bank. Note that in the asymmetric structure, the low-frequency subband input to each level is the output of the previous level, while the high-frequency subband input to each level is an input to the filter bank. In the symmetric structure, both the low- and high-frequency subband inputs to each level are outputs from the previous level.

n-Level Symmetric Dyadic Synthesis Filter Bank
The following table summarizes the key characteristics of symmetric and asymmetric dyadic synthesis filter banks.

Notable Characteristics of Asymmetric and Symmetric Dyadic Synthesis Filter Banks

	n-level Symmetric	n-level Asymmetric
Input Paths Through the Filter Bank	The low-frequency subband input to each level (except the first) is the output of the previous level. The low-frequency subband input to the first level, and the high-frequency subband input to each level, are inputs to the filter bank.	Both the high-frequency and low-frequency input subbands to each level (except the first) are the outputs of the previous level. The inputs to the first level are the inputs to the filter bank.
Number of Input Subbands	$2^{\text {n }}$	$\mathrm{n}+1$
Bandwidth and Number of Samples in Input Subbands	All inputs subbands have bandwidth $\mathrm{BW} / 2^{\mathrm{n}}$ and $\mathrm{N} / 2^{\mathrm{n}}$ samples, where the output has bandwidth BW and N samples.	For an output with bandwidth BW and N samples, the k th input subband has the following bandwidth and number of samples. $\begin{aligned} & B W_{k}= \begin{cases}B W / 2^{k} & (1 \leq k \leq n) \\ B W / 2^{n} & (k=n+1)\end{cases} \\ & N_{k}= \begin{cases}N / 2^{k} & (1 \leq k \leq n) \\ N / 2^{n} & (k=n+1)\end{cases} \end{aligned}$

Notable Characteristics of Asymmetric and Symmetric Dyadic Synthesis Filter Banks (Continued)

	n-level Symmetric	n-level Asymmetric
Input Sample Periods	All input subbands have a sample period of $2^{\mathrm{n}}\left(\mathrm{T}_{\mathrm{so}}\right)$, where the output sample period is $\mathrm{T}_{\mathrm{s} 0}$.	Sample period of k th input subband $= \begin{cases}2^{k}\left(\mathrm{~T}_{s o}\right) & (1 \leq k \leq n) \\ 2^{n}\left(\mathrm{~T}_{s o}\right) & (k=n+1)\end{cases}$ where the output sample period is $\mathrm{T}_{\mathrm{s} 0}$.
Total Number of Input Samples	The number of samples in the output is always equal to the total number of samples in all of the input subbands.	
Wavelet Applications	In wavelet applications, the high are carefully selected so that the the dyadic analysis filter bank is the signal in the dyadic synthesis	ass and lowpass wavelet-based filters liasing introduced by the decimation in xactly canceled in the reconstruction of filter bank.

For more information, see "Dyadic Synthesis Filter Bank" on page 9-352.

Multirate Filtering Demos

The Signal Processing Blockset provides a collection of multirate filtering demos that illustrate typical applications of the multirate filtering blocks, listed in the following table.

Multirate Filtering Demos	Commands for Opening Demos in MATLAB
Denoising	dspwdnois
Interpolation of a Sinusoidal Signal	dspintrp
Multistage Multirate Filtering Suite	dspmrf_menu
Sample Rate Conversion	dspsrcnv
Sigma-Delta A/D Converter	dspsdadc

Multirate Filtering Demos	Commands for Opening Demos in MATLAB
Three-Channel Wavelet Transmultiplexer	dspwvtrnsmx
Wavelet Perfect Reconstruction Filter Bank	dspwpr
Wavelet Reconstruction	dspwlet

Opening Demos. To open the multirate filter demos, click on the links in the following table in the MATLAB Help browser (not in a Web browser), or type the demo names provided in the table at the MATLAB command line. To access all Signal Processing Blockset demos, type demo blockset dsp at the MATLAB command line.

Transforms

The Signal Processing Blockset Transforms library provides blocks for a number of transforms that are of particular importance in signal processing applications.
Signals in the Time Domain (p. 4-2) Display frame-based signals in the time domain and transform frame-based sinusoidal signals from the time domain to the frequency domain

Signals in the Frequency-Domain (p. 4-9)

Linear and Bit-Reversed Output Order (p. 4-18)

Display frame-based signals in the frequency domain and transform frame-based sinusoidal signals from the frequency domain to the time domain

Learn the meaning of linear and bit-reversed output order as used by the FFT and IFFT blocks

Signals in the Time Domain

You can use the Signal Processing Blockset to work with signals in both the time and frequency domain. The Signal Processing Sinks library contains the following blocks for displaying time-domain signals:

- Time Scope
- Vector Scope
- Matrix Viewer
- Waterfall Scope

This section includes the following topics:

- "Displaying Time-Domain Data" on page 4-2 - Use the Vector Scope block to display two frame-based signals in the time domain
- "Transforming Time-Domain Data into the Frequency Domain" on page 4-5 - Use the FFT block to transform two, frame-based sinusoidal signals from the time domain to the frequency domain

Displaying Time-Domain Data

The following example shows you how you can use the Vector Scope block to display time-domain signals:

1 At the MATLAB command prompt, type doc_vectorscope_tut.
The Vector Scope Example opens and the variables Fs and mtlb are loaded into the MATLAB workspace.

When you run this model, two frame-based signals are displayed in the vectorscope_tut/Vector Scope window.

2 Double-click the Signal From Workspace block. The Block Parameters: Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

- Signal = mtlb
- Sample time = 1
- Samples per frame = 16
- Form output after final data value $=$ Cyclic Repetition

Based on these parameters, the Signal From Workspace block outputs a frame-based signal with a frame size of 16 and a sample period of 1 second. The signal's frame period is 16 seconds. Your input signal is output repeatedly from the Signal From Workspace block.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Digital Filter Design block.
You are going to use this block to filter the input signal in order to produce two distinct signals to send to the Vector Scope block.

6 To specify a lowpass filter, in the Response Type section, choose Lowpass.
7 In the Design Method section, choose FIR. Then, from the list, select Window.

8 In the Filter Order section, select Specify order and enter 22.
9 From the Window list, select Hamming.
10 In the Frequency Specifications section, from the Units list, select Normalized (0 to 1).

11 In the Frequency Specifications section, set the wc parameter to 0.25 .
12 Click Design Filter. Then, close the Block Parameters: Digital Filter Design dialog box.

13 Double-click the Matrix Concatenation block. The Block Parameters: Matrix Concatenation dialog box opens.

14 Set the block parameters as follows:

- Number of inputs = 2
- Concatenation method = Hor izontal.

Based on these parameters, the Matrix Concatenation block combines the two signals so that each column corresponds to a different signal.

15 Save these parameters and close the dialog box by clicking OK.
16 Double-click the Vector Scope block.

17 Set the block parameters as follows, and then click OK:

- Click the Scope Properties tab.
- Input domain = Time
- Time display span (number of frames) = 2

When you run the model, the Vector Scope block plots two consecutive frames of each channel at each update.

18 Run the model.
The original and filtered signal appear in the Vector Scope window. You have now successfully displayed two frame-based signals in the time domain using the Vector Scope block. For more information about this block, see the Vector Scope block reference page.

Transforming Time-Domain Data into the Frequency Domain

When you want to transform time-domain data into the frequency domain, use the FFT block. You can find additional background information on transform operations in the Signal Processing Toolbox documentation.

In this example, you use the Sine Wave block to generate two frame-based sinusoids, one at 15 Hz and the other at 40 Hz . You sum the sinusoids point-by-point to generate the compound sinusoid, $u=\sin (30 \pi t)+\sin (80 \pi t)$. Then, you transform this sinusoid into the frequency domain using an FFT block:

1 At the MATLAB command prompt, type doc_fft_tut.
The FFT Example opens.

2 Double-click the Sine Wave block. The Block Parameters: Sine Wave dialog box opens.

3 Set the block parameters as follows:

- Amplitude = 1
- Frequency = [15 40 $]$
- Phase offset $=00$
- Sample time $=0.001$
- Samples per frame = 128

Based on these parameters, the Sine Wave block outputs two, frame-based sinusoidal signals with identical amplitudes, phases, and sample times. One sinusoid oscillates at 15 Hz and the other at 40 Hz .

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Matrix Sum block. The Block Parameters: Matrix Sum dialog box opens.

6 Set the Sum along parameter to Rows, and then click OK.
Since each column represents a different signal, you need to sum along the individual rows in order to add the values of the sinusoids at each time step.

7 Double-click the Complex to Magnitude-Angle block. The Block Parameters: Complex to Magnitude-Angle dialog box opens.

8 Set the Output parameter to Magnitude, and then click OK.
This block takes the complex output of the FFT block and converts this output to magnitude.

9 Double-click the Vector Scope block.
10 Set the block parameters as follows, and then click OK:

- Click the Scope Properties tab.
- Input domain = Frequency
- Click the Axis Properties tab.
- Frequency units $=$ Hertz (This corresponds to the units of the input signals.)
- Frequency range $=[0 . \mathrm{Fs} / 2]$
- Select the Inherit sample time from input check box.
- Amplitude scaling = Magnitude

11 Run the model.
The scope shows the two peaks at 0.015 and 0.04 kHz , as expected.

You have now transformed two, frame-based sinusoidal signals from the time domain to the frequency domain.

For more information about the FFT block, see the FFT block reference page. Note that the sequence of FFT, Complex to Magnitude-Angle, and Vector Scope blocks could be replaced by a single Spectrum Scope block, which computes the magnitude FFT internally. Other blocks that compute the FFT internally are the blocks in the Power Spectrum Estimation library. See "Power Spectrum Estimation" on page 6-5 for more information about these blocks.

Signals in the Frequency-Domain

You can use the Signal Processing Blockset to work with signals in both the time and frequency domain. To display frequency-domain signals, you can use blocks from the Signal Processing Sinks library, such as the Vector Scope, Spectrum Scope, Matrix Viewer, and Waterfall Scope blocks.

This section includes the following topics:

- "Displaying Frequency-Domain Data" on page 4-9 - Use the Spectrum Scope block to display two, frame-based signals in the frequency domain
- "Transforming Frequency-Domain Data into the Time Domain" on page 4-13
- Use the IFFT block to transform two, frame-based sinusoidal signals from the frequency domain to the time domain

Displaying Frequency-Domain Data

You can use the Spectrum Scope block to display the frequency spectra of time-domain input data. In contrast to the Vector Scope block, the Spectrum Scope block computes the FFT of the input signal internally, transforming it into the frequency domain. In this example, you use a Spectrum Scope block to display the frequency content of two frame-based signals simultaneously:

1 At the MATLAB command prompt, type doc_spectrumscope_tut.
The Spectrum Scope Example opens.

Also, the variables Fs and mtlb are loaded into the MATLAB workspace.
2 Double-click the Signal From Workspace block. Set the block parameters as follows, and then click OK:

- Signal = mtlb
- Sample time = 1
- Samples per frame = 16
- Form output after final data value = Cyclic Repetition

Based on these parameters, the Signal From Workspace block repeatedly outputs the input signal, mtlb, as a frame-based signal with a sample period of 1 second.

3 Use the Digital Filter Design block to filter the input signal to produce two distinct signals to send to the Spectrum Scope block. Use the default parameters.

4 Double-click the Matrix Concatenation block. Set the block parameters as follows, and then click OK:

- Number of inputs = 2
- Concatenation method = Horizontal

The Matrix Concatenation block combines the two signals so that each column corresponds to a different signal.

5 Double-click the Spectrum Scope block. On the Scope Properties tab, set the block parameters as follows, and then click OK:

- Select the Buffer input check box.
- Buffer size = 128
- Buffer overlap = 64
- Window type = Hann
- Window sampling = Periodic
- Clear the Specify FFT length check box.
- Number of spectral averages =2

Based on these parameters, the Spectrum Scope block buffers each input channel to a new frame size of 128 (from the original frame size of 16) with an overlap of 64 samples between consecutive frames. Because Specify FFT length is not selected, the frame size of 128 is used as the number of frequency points in the FFT. This is the number of points plotted for each channel every time the scope display is updated.

6 Run the model.
7 While the model is running, right-click in the Spectrum Scope window. Point to Ch1, point to Style, and point to :. Right-click again and point to Autoscale.

The Spectrum Scope block computes the FFT of each of the input signals. It then displays the magnitude of the frequency-domain signals in the Spectrum Scope window.

The FFT of the first input signal, from column one, is the blue dotted line. The FFT of the second input signal, from column two, is the black solid line. Every time the scope display is updated, 128 points are plotted for each channel.

You have now used the Spectrum Scope block to display two, frame-based signals in the frequency domain. For more information, see "Spectrum Scope" on page 9-888.

Transforming Frequency-Domain Data into the Time Domain

When you want to transform frequency-domain data into the time domain, use the IFFT block. You can find additional background information on transform operations in the Signal Processing Toolbox documentation.

In this example, you use the Sine Wave block to generate two frame-based sinusoids, one at 15 Hz and the other at 40 Hz . You sum the sinusoids point-by-point to generate the compound sinusoid, $u=\sin (30 \pi t)+\sin (80 \pi t)$. You transform this sinusoid into the frequency domain using an FFT block, and then immediately transform the frequency-domain signal back to the time domain using the IFFT block. Lastly, you plot the difference between the original time-domain signal and transformed time-domain signal using a scope:

1 At the MATLAB command prompt, type doc_ifft_tut.
The IFFT Example opens.

2 Double-click the Sine Wave block. The Block Parameters: Sine Wave dialog box opens.

3 Set the block parameters as follows:

- Amplitude = 1
- Frequency =[$\left.\begin{array}{ll}15 & 40\end{array}\right]$
- Phase offset $=0$
- Sample time $=0.001$
- Samples per frame $=128$

Based on these parameters, the Sine Wave block outputs two, frame-based sinusoidal signals with identical amplitudes, phases, and sample times. One sinusoid oscillates at 15 Hz and the other at 40 Hz .

4 Save these parameters and close the dialog box by clicking OK.
5 Double-click the Matrix Sum block. The Block Parameters: Matrix Sum dialog box opens.

6 Set the Sum along parameter to Rows, and then click OK.
Since each column represents a different signal, you need to sum along the individual rows in order to add the values of the sinusoids at each time step.

7 Double-click the FFT block. The Block Parameters: FFT dialog box opens.
8 Select the Output in bit-reversed order check box., and then click OK.
9 Double-click the IFFT block. The Block Parameters: IFFT dialog box opens.
10 Set the block parameters as follows, and then click OK:

- Select the Input is in bit-reversed order check box.
- Select the Input is conjugate symmetric check box.

Because the original sinusoidal signal is real valued, the output of the FFT block is conjugate symmetric. By conveying this information to the IFFT block, you optimize its operation.

Note that the Sum block subtracts the original signal from the output of the IIFT block, which is the estimation of the original signal.

11 Double-click the Vector Scope block.
12 Set the block parameters as follows, and then click OK:

- Click the Scope Properties tab.
- Input domain = Time.

13 Run the model.

The flat line on the scope suggests that there is no difference between the original signal and the estimate of the original signal. Therefore, the IFFT block has accurately reconstructed the original time-domain signal from the frequency-domain input.

14 Right-click in the Vector Scope window, and select Autoscale.

In actuality, the two signals are identical to within round-off error. The figure above shows the enlarged trace. The differences between the two signals is on the order of 10^{-15}.

For more information on the IFFT block, see the IFFT block reference page.

Linear and Bit-Reversed Output Order

The FFT block enables you to output the frequency indices in linear or bit-reversed order. Because linear ordering of the frequency indices requires a butterfly operation, in some situations, the FFT block runs more quickly when the output frequencies are in bit-reversed order.

The input to the IFFT block can be in linear or bit-reversed order. Therefore, you do not have to alter the ordering of your data before transforming it back into the time domain.

This section includes the following topic:

- "Finding the Bit-Reversed Order of Your Frequency Indices" on page 4-18 Transform linearly ordered frequency indices into bit-reversed frequency indices

Finding the Bit-Reversed Order of Your Frequency Indices

Two numbers are bit-reversed values of each other when the binary representation of one is the mirror image of the binary representation of the other. For example, in a three-bit system, one and four are bit-reversed values of each other, since the three-bit binary representation of one, 001 , is the mirror image of the three-bit binary representation of four, 100. In the diagram below, the frequency indices are in linear order. To put them in bit-reversed order

1 Translate the indices into their binary representation with the minimum number of bits. In this example, the minimum number of bits is three because the binary representation of 7 is 111 .

2 Find the mirror image of each binary entry, and write it beside the original binary representation.

3 Translate the indices back to their decimal representation.
The frequency indices are now in bit-reversed order.

The next diagram illustrates the linear and bit-reversed outputs of the FFT block. The output values are the same, but they appear in different order.

Quantizers

This chapter shows you how to design and use scalar and vector quantizer blocks. You create several scalar quantizer blocks and use them to encode and decode signals in your model. Then, you use vector quantizer encoder and decoder blocks to quantize vectors of data.

Scalar Quantizers (p. 5-2) Learn how to design scalar quantizers and use them to quantize signals in your model

Vector Quantizers (p. 5-11) Quantize your vector signal using vector quantizers

Scalar Quantizers

You can use blocks from the Signal Processing Blockset Quantizers library to design scalar quantizer encoders and decoders. Quantization is the process of representing a signal with a reduced level of precision. If you decrease the number of bits allocated for the quantization of your speech signal, the signal would be distorted and the speech quality would degrade. In this section, you create two scalar quantizer encoders and two scalar quantizer decoders and use them to encode and decode signals in a demo model.

This section includes the following topics:

- "Analysis and Synthesis of Speech" on page 5-2 - Learn the theory behind signal transmission
- "Identifying Your Residual Signal and Reflection Coefficients" on page 5-4 Define the residual signal and the reflection coefficients in your MATLAB workspace
- "Creating a Scalar Quantizer" on page 5-5 - Design two scalar quantizer encoders and two scalar quantizer decoders and use them to quantize your residual signal and reflection coefficients

Analysis and Synthesis of Speech

A speech signal is usually represented in digital format, which is a sequence of binary bits. For storage and transmission applications, it is desirable to compress a signal by representing it with as few bits as possible, while maintaining its perceptual quality.

In narrowband digital speech compression, speech signals are sampled at a rate of 8000 samples per second. Typically, each sample is represented by 8 bits. This corresponds to a bit rate of 64 kbits per second. Further compression is possible at the cost of quality. Most of the current low bit rate speech coders are based on the principle of linear predictive speech coding. An implementation of this compression technique is presented in the linear prediction coefficient (LPC) Analysis and Synthesis of Speech (dsplpc) demo. This topic describes this demo, which models the theory behind signal transmission:

1 Open the LPC Analysis and Synthesis of Speech demo by typing dsplpc at the MATLAB command line.

This model preemphasizes the input speech signal by applying an FIR filter. Then, it calculates the reflection coefficients of each frame using the Levinson-Durbin algorithm. The model uses these reflection coefficients to create the linear prediction analysis filter (lattice-structure). Next, the model calculates the residual signal by filtering each frame of the preemphasized speech samples using the reflection coefficients. The residual signal, which is the output of the analysis stage, usually has a lower energy than the input signal. The blocks in the synthesis stage of the model filter the residual signal using the reflection coefficients and apply an all-pole deemphasis filter. Note that the deemphasis filter is the inverse of the preemphasis filter. The result is the full recovery of the original signal.

2 Run this model.

3 Double-click the Original Signal and Processed Signal blocks and listen to both the original and the processed signal.

There is no difference between the two because no quantization was performed. The model fully recovered the original signal.

To better approximate a real-world speech analysis and synthesis system, you need to quantize the residual signal and reflection coefficients before they are transmitted. The following topics show you how to design scalar quantizers to accomplish this task.

Identifying Your Residual Signal and Reflection Coefficients

In the previous topic, "Analysis and Synthesis of Speech" on page 5-2, you learned the theory behind the LPC Analysis and Synthesis of Speech (dsplpc) demo. In this topic, you define the residual signal and the reflection coefficients in your MATLAB workspace as the variables E and K , respectively. Later, you use these values to create your scalar quantizers:

1 Open the LPC Analysis and Synthesis of Speech demo by typing dsplpc at the MATLAB command line.

2 Save the dsplpc model file as scalar_quantizer_example.mdl in your working directory.

3 From the Signal Processing Sinks library, click-and-drag two Signal To Workspace blocks into your model.

4 Connect the output of the Levinson-Durbin block to one of the Signal To Workspace blocks.

5 Double-click this Signal To Workspace block and set the Variable name parameter to K. Click OK.

6 Connect the output of the Time-Varying Analysis Filter block to the other Signal To Workspace block.

7 Double-click this Signal To Workspace block and set the Variable name parameter to E. Click OK.

You model should now look similar to this figure.

8 Run your model.
The residual signal, E , and your reflection coefficients, K , are defined in the MATLAB workspace. In the next topic, you use these variables to design your scalar quantizers.

Creating a Scalar Quantizer

In this topic, you create scalar quantizer encoders and decoders to quantize the residual signal, E , and the reflection coefficients, K :

1 If the model you created in "Identifying Your Residual Signal and Reflection Coefficients" on page 5-4 is not open on your desktop, you can open an equivalent model by typing
doc_scalar_quantizer_example
at the MATLAB command prompt.
2 Run this model to define the variables E and K in the MATLAB workspace.
3 From the Quantizers library, click-and-drag a Scalar Quantizer Design block into your model. Double-click this block to open the SQ Design Tool GUI.

4 For the Training Set parameter, enter K.
The variable K represents the reflection coefficients you want to quantize. By definition, they range from -1 to 1 .

Note Theoretically, the signal that is used as the Training Set parameter should contain a representative set of values for the parameter to be quantized. However, this example provides an approximation to this global training process.

5 For the Number of levels parameter, enter 128.
Assume that your compression system has 7 bits to represent each reflection coefficient. This means it is capable of representing 2^{7} or 128 values. The Number of levels parameter is equal to the total number of codewords in the codebook.

6 Set the Block type parameter to Both.
7 For the Encoder block name parameter, enter SQ Encoder - Reflection Coefficients.

8 For the Decoder block name parameter, enter SQ Decoder - Reflection Coefficients.

9 Make sure that your desired destination model, scalar_quantizer_example.mdl, is the current model. You can type gos in the MATLAB Command Window to display the name of your current model.

10 In the SQ Design Tool GUI, click the Design and Plot button to apply the changes you made to the parameters.

The GUI should look similar to the following figure.

11 Click the Generate Model button.
Two new blocks, SQ Encoder - Reflection Coefficients and SQ Decoder Reflection Coefficients, appear in your model file.

12 Click on the SQ Design Tool GUI and, for the Training Set parameter, enter E .

13 Repeat steps 5-11 for the variable E, which represents the residual signal you want to quantize. In steps 6 and 7, name your blocks SQ Encoder Residual and SQ Decoder - Residual.

Once you have completed these steps, two new blocks, SQ Encoder Residual and SQ Decoder - Residual, appear in your model file.

14 Close the SQ Design Tool GUI. You do not need to save the SQ Design Tool session.

You have now created a scalar quantizer encoder and a scalar quantizer decoder for each signal you want to quantize. You are ready to quantize the residual signal, E , and the reflection coefficients, K .

15 Connect the blocks so your model looks similar to the following figure.

16 Run your model.
17 Double-click the Original Signal and Processed Signal blocks, and listen to both signals.

Again, there is no perceptible difference between the two. You can therefore conclude that quantizing your residual and reflection coefficients did not affect the ability of your system to accurately reproduce the input signal.

You have now quantized the residual and reflection coefficients in the LPC Analysis and Synthesis of Speech demo model. The bit rate of a quantization system is calculated as (bits per frame)*(frame rate).

In this example, the bit rate is [(80 residual samples/frame $) *(7 \mathrm{bits} /$ sample $)+$ (12 reflection coefficient samples/frame)*(7 bits/sample)]*(100 frames/second), or 64.4 kbits per second. This is higher than most modern speech coders, which typically have a bit rate of 8 to 24 kbits per second. If you decrease the number of bits allocated for the quantization of the reflection coefficients or the residual signal, the overall bit rate would decrease. However, the speech quality would also degrade.

For information about decreasing the bit rate without affecting speech quality, see "Vector Quantizers" on page 5-11. For more information about quantizers, see "Scalar Quantizer Decoder" on page 9-831, "Scalar Quantizer Design" on page 9-837, and "Scalar Quantizer Encoder" on page 9-845.

Vector Quantizers

In the previous section, you created scalar quantizer encoders and decoders and used them to quantize your residual signal and reflection coefficients. The bit rate of your scalar quantization system was 64.4 kbits per second. This bit rate is higher than most modern speech coders. To accommodate a greater number of users in each channel, you need to lower this bit rate while maintaining the quality of your speech signal. You can use vector quantizers, which exploit the correlations between each sample of a signal, to accomplish this task. In this section, you quantize your reflection coefficients using vector quantizers to reduce the bit rate of your system.
This section includes the following topics:

- "Building Your Vector Quantizer Model" on page 5-11 — Reconfigure your scalar quantization model to use vector quantizers to quantize your reflection coefficients
- "Configuring and Running Your Model" on page 5-13 - Set your model parameters and use a split vector quantizer to quantize your reflection coefficients

Building Your Vector Quantizer Model

In this topic, you modify your scalar quantization model so that you are using a split vector quantizer to quantize your reflection coefficients:

1 If the model you created in "Creating a Scalar Quantizer" on page 5-5 is not open on your desktop, you can open an equivalent model by typing
doc_scalar_quantizer_example2
at the MATLAB command prompt.
2 Delete the SQ Encoder - Reflection Coefficients and SQ Decoder - Reflection Coefficients blocks.

3 At the MATLAB command prompt, type dspcelpcoder.
The Signal Processing Blockset CELP-Based Vocoder demo opens. This demo quantizes linear prediction parameters using the split vector quantization method.

4 Double-click the CELP Encoder subsystem, and then double-click the Frame Analysis subsystem. Copy the LSF Vector Quantization subsystem and paste it in your model.

You use this subsystem to encode and decode your reflection coefficients using the split vector quantization method.

5 From the Simulink library, and then from the Sinks library, click-and-drag a Terminator block into your model.

6 From the Signal Processing Blockset library, from the Estimation library, and then from the Linear Prediction library, click-and-drag a LSF/LSP to LPC Conversion block and two LPC to/from RC blocks into your model.

7 Connect the blocks as shown in the following figure. You do not need to connect Terminator blocks to the P ports of the LPC to/from RC blocks. These ports disappear once you set block parameters.

You have modified your model to include a subsystem capable of vector quantization. In the next topic, you reset your model parameters to quantize your reflection coefficients using the split vector quantization method.

Configuring and Running Your Model

In the previous topic, you configured your scalar quantization model for vector quantization by adding the LSF Vector Quantization subsystem. In this topic, you set your block parameters and quantize your reflection coefficients using the split vector quantization method:

1 If the model you created in "Building Your Vector Quantizer Model" on page $5-11$ is not open on your desktop, you can open an equivalent model by typing
doc_vector_quantizer_example
at the MATLAB command prompt.
2 Double-click the LSF Vector Quantization subsystem, and then double-click the LSF Split VQ subsystem.

The subsystem opens, and you see the three Vector Quantizer Encoder blocks used to implement the split vector quantization method.

This subsystem divides each vector of 10 line spectral frequencies (LSFs), which represent your reflection coefficients, into three LSF subvectors. Each of these subvectors is sent to a separate vector quantizer. This method is called split vector quantization.

3 Double-click the VQ of LSF: 1st subvector block.
The Block Parameters: VQ of LSF: 1st subvector dialog box opens.

The variable CB_lsf1to3_10bit is the codebook for the subvector that contains the first three elements of the LSF vector. It is a 3-by-1024 matrix, where 3 is the number of elements in each codeword and 1024 is the number of codewords in the codebook. Because $2^{10}=1024$, it takes 10 bits to quantize this first subvector. Similarly, a 10 -bit vector quantizer is applied to the second and third subvectors, which contain elements 4 to 6 and 7 to 10 of the LSF vector, respectively. Therefore, it takes 30 bits to quantize all three subvectors.

Note If you used the vector quantization method to quantize your reflection coefficients, you would need 2^{30} or 1.0737 e 9 codebook values to achieve the same degree of accuracy as the split vector quantization method.

4 In your model file, double-click the Autocorrelation block and set the Maximum non-negative lag (less than input length) parameter to 10. Click OK.

This parameter controls the number of linear polynomial coefficients (LPCs) that are input to the split vector quantization method.

5 Double-click the LPC to/from RC block that is connected to the input of the LSF Vector Quantization subsystem. Clear the Output normalized prediction error power check box. Click OK.

6 Double-click the LSF/LSP to LPC Conversion block and set the Input parameter to LSF in range (0 to pi). Click OK.

7 Double-click the LPC to/from RC block that is connected to the output of the LSF/LSP to LPC Conversion block. Set the Type of conversion parameter to LPC to RC, and clear the Output normalized prediction error power check box. Click OK.

8 At the MATLAB command prompt, type load lpcvocoder.
The codebook values for your vector quantizer are loaded into memory. You have now configured the parameters of your vector quantizer model and are ready to quantize your reflection coefficients.

9 Run your model.

10 Double-click the Original Signal and Processed Signal blocks to listen to both the original and the processed signal.

There is no perceptible difference between the two. Quantizing your reflection coefficients using a a split vector quantization method produced good quality speech without much distortion.

You have now used the split vector quantization method to quantize your reflection coefficients. The vector quantizers in the LSF Vector Quantization subsystem use 30 bits to quantize a frame containing 80 reflection coefficients. The bit rate of a quantization system is calculated as (bits per frame)*(frame rate).

In this example, the bit rate is [(80 residual samples/frame)*(7 bits/sample) + (30 bits/frame)]*(100 frames/second), or 59 kbits per second. This is less than
64.4 kbits per second, the bit rate of the scalar quantization system. However, the quality of the speech signal did not degrade. If you want to further reduce the bit rate of your system, you can use the LSF Vector Quantization subsystem to quantize the residual signal.

This example illustrates how you can use vector quantization to reduce the bit rate of your coder. For more information about vector quantizers, see "Vector Quantizer Decoder" on page 9-1055, "Vector Quantizer Design" on page 9-1061, and "Vector Quantizer Encoder" on page 9-1071.

Statistics, Estimation, and Linear Algebra

This chapter describes several standard operations involved in simulating signal processing models.

Statistics (p. 6-2)

Power Spectrum Estimation (p. 6-5)

Linear Algebra (p. 6-6)

Learn to perform statistical operations such as minimum, maximum, mean, variance, and standard deviation

Use the blocks in the Power Spectrum Estimation library to perform spectral analysis
Solve systems of linear equations

Statistics

The Statistics library provides fundamental statistical operations such as minimum, maximum, mean, variance, and standard deviation. Most blocks in the Statistics library support two types of operations:

- Basic operations
- Running operations

The blocks listed below toggle between basic and running modes using the Running check box in the parameter dialog box:

- Histogram
- Mean
- RMS
- Standard Deviation
- Variance

An unselected Running box means that the block is operating in basic mode, while a selected Running box means that the block is operating in running mode.

The Maximum and Minimum blocks are slightly different from the blocks above, and provide a Mode parameter in the block dialog box to select the type of operation. The Value and Index, Value, and Index options in the Mode menu all specify basic operation, in each case enabling a different set of output ports on the block. The Running option in the Mode menu selects running operation.

The following sections explain how basic mode and running mode differ:

- "Basic Operations" on page 6-2
- "Running Operations" on page 6-4

The statsdem demo illustrates the operation of several blocks from the Statistics library.

Basic Operations

A basic operation is one that processes each input independently of previous and subsequent inputs. For example, in basic mode (with Value and Index
selected, for example) the Maximum block finds the maximum value in each column of the current input, and returns this result at the top output (Val). Each consecutive Val output therefore has the same number of columns as the input, but only one row. Furthermore, the values in a given output only depend on the values in the corresponding input. The block repeats this operation for each successive input.
This type of operation is exactly equivalent to the MATLAB command

```
val = max(u) % Equivalent MATLAB code
```

which computes the maximum of each column in input u.
The next section is an example of a basic statistical operation.

Example: Sliding Windows

You can use the basic statistics operations in conjunction with the Buffer block to implement basic sliding window statistics operations. A sliding window is like a stencil that you move along a data stream, exposing only a set number of data points at one time.

For example, you may want to process data in 128 -sample frames, moving the window along by one sample point for each operation. One way to implement such a sliding window is shown in the model below.

The Buffer block's Buffer size (M_{0}) parameter determines the size of the window. The Buffer overlap (L) parameter defines the "slide factor" for the window. At each sample instant, the window slides by $\mathrm{M}_{0}-\mathrm{L}$ points. The Buffer overlap is often $\mathrm{M}_{0}-1$ (the same as the Delay Line block), so that a new statistic is computed for every new signal sample.

To build the model, make the following settings:

- In the Signal From Workspace block, set:
- Signal = 1:256
- Sample time = 0.1
- Samples per frame = 1
- In the Buffer block, set:
- Output buffer size $($ per channel $)=128$
- Buffer overlap = 127

Running Operations

A running operation is one that processes successive sample-based or frame-based inputs, and computes a result that reflects both present and past inputs. A reset port enables you to restart this tracking at any time. The running statistic is computed for each input channel independently, so the block's output is the same size as the input.

For example, in running mode (Running selected from the Mode parameter) the Maximum block outputs a record of the input's maximum value over time.

The figure below illustrates how a Maximum block in running mode operates on a frame-based 3-by-2 (two-channel) matrix input, u. The running maximum is reset at $t=2$ by an impulse to the block's optional Rst port.

Power Spectrum Estimation

The Power Spectrum Estimation library provides a number of blocks for spectral analysis. Many of them have correlates in the Signal Processing Toolbox, which are shown in parentheses:

- Burg Method (pburg)
- Covariance Method (pcov)
- Magnitude FFT (periodogram)
- Modified Covariance Method (pmcov)
- Short-Time FFT
- Yule-Walker Method (pyulear)

See "Spectral Analysis" in the Signal Processing Toolbox documentation for an overview of spectral analysis theory and a discussion of the above methods.
The Signal Processing Blockset provides two demos that illustrate the spectral analysis blocks:

- A Comparison of Spectral Analysis Techniques (dspsacomp)
- Spectral Analysis: Short-Time FFT (dspstfft)

Linear Algebra

The Matrices and Linear Algebra library provides three large sublibraries containing blocks for linear algebra:

- Linear System Solvers
- Matrix Factorizations
- Matrix Inverses

A third library, Matrix Operations, provides other essential blocks for working with matrices. See "Working with Signals" on page 1-1 for more information about matrix signals.

The following sections provide examples to help you get started with the linear algebra blocks:

- "Solving Linear Systems" on page 6-6
- "Factoring Matrices" on page 6-8
- "Inverting Matrices" on page 6-9

Solving Linear Systems

The Linear System Solvers library provides the following blocks for solving the system of linear equations $\mathrm{A} X=\mathrm{B}$:

- Autocorrelation LPC
- Cholesky Solver
- Forward Substitution
- LDL Solver
- Levinson-Durbin
- LU Solver
- QR Solver
- SVD Solver

Some of the blocks offer particular strengths for certain classes of problems. For example, the Cholesky Solver block is particularly adapted for a square Hermitian positive definite matrix A, whereas the Backward Substitution block is particularly suited for an upper triangular matrix A.

Example: LU Solver

In the model below, the LU Solver block solves the equation $\mathrm{A} x=\mathrm{b}$, where

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
4 & 0 & 6 \\
2 & -1 & 3
\end{array}\right] \quad b=\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]
$$

and finds x to be the vector [-2 0 1 1 ' .

To build the model, set the following parameters:

- In the DSP Constant block, set Constant value $=\left[\begin{array}{llllllll}1 & -2 & 3 ; 4 & 0 & 6 ; 2 & -1 & 3\end{array}\right]$.
- In the DSP Constant1 block, set Constant value $=\left[\begin{array}{lll}1 & -2 & -1\end{array}\right]$ '.

You can verify the solution by using the Matrix Multiply block to perform the multiplication $\mathrm{A} x$, as shown in the model below.

Factoring Matrices

The Matrix Factorizations library provides the following blocks for factoring various kinds of matrices:

- Cholesky Factorization
- LDL Factorization
- LU Factorization
- QR Factorization
- Singular Value Decomposition

Some of the blocks offer particular strengths for certain classes of problems. For example, the Cholesky Factorization block is particularly suited to factoring a Hermitian positive definite matrix into triangular components, whereas the QR Factorization is particularly suited to factoring a rectangular matrix into unitary and upper triangular components.

Example: LU Factorization

In the model below, the LU Factorization block factors a matrix A_{p} into upper and lower triangular submatrices U and L, where A_{p} is row equivalent to input matrix A, where

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
4 & 0 & 6 \\
2 & -1 & 3
\end{array}\right]
$$

To build the model, in the DSP Constant block, set the Constant value parameter to [1-2 3;4 0 6;2-1 3].

The lower output of the LU Factorization, P, is the permutation index vector, which indicates that the factored matrix A_{p} is generated from A by interchanging the first and second rows.

$$
A_{p}=\left[\begin{array}{ccc}
4 & 0 & 6 \\
1 & -2 & 3 \\
2 & -1 & 3
\end{array}\right]
$$

The upper output of the LU Factorization, LU, is a composite matrix containing the two submatrix factors, U and L, whose product $L U$ is equal to A_{p}.

$$
U=\left[\begin{array}{ccc}
4 & 0 & 6 \\
0 & -2 & 1.5 \\
0 & 0 & -0.75
\end{array}\right] \quad L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.25 & 1 & 0 \\
0.5 & 0.5 & 1
\end{array}\right]
$$

You can check that $\mathrm{LU}=\mathrm{A}_{\mathrm{p}}$ with the Matrix Multiply block, as shown in the model below.

Inverting Matrices

The Matrix Inverses library provides the following blocks for inverting various kinds of matrices:

- Cholesky Inverse
- LDL Inverse
- LU Inverse
- Pseudoinverse

Example: LU Inverse

In the model below, the LU Inverse block computes the inverse of input matrix A, where

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
4 & 0 & 6 \\
2 & -1 & 3
\end{array}\right]
$$

and then forms the product $\mathrm{A}^{-1} \mathrm{~A}$, which yields the identity matrix of order 3 , as expected.

To build the model, in the DSP Constant block, set the Constant value parameter to [1-2 3;4 0 6;2-1 3].

As shown above, the computed inverse is

$$
A^{-1}=\left[\begin{array}{ccc}
-1 & -0.5 & 2 \\
0 & 0.5 & -1 \\
0.6667 & 0.5 & -1.333
\end{array}\right]
$$

Data Type Support

All Signal Processing Blockset blocks support the single- and double-precision floating-point data type. Many blocks support other data types.

Supported Data Types and How to Convert to Them (p. 7-2)

Block Data Type Support Table (p. 7-4) A table that shows the data types accepted on the data

Viewing Data Types of Signals In Models (p. 7-14)

Correctly Defining Custom Data Types (p. 7-15)

Boolean Support (p. 7-16)
ports of each Signal Processing Blockset block
Overview of the data types supported by the Signal Processing Blockset

Enable data type labels of the signals in a Simulink model

Define your own data types by following the custom data types guidelines

Learn about Signal Processing Blockset blocks that accept or output logical signals

Supported Data Types and How to Convert to Them

Note All data type support applies to both simulation and Real-Time Workshop C code generation. All Signal Processing Blockset blocks support single- and double-precision floating point.

The following table lists all data types supported by the Signal Processing Blockset, and how to convert to these data types. To see which data types a particular block supports, check the "Supported Data Types" section of the block's online reference page.

Supported Data Types and How to Convert to Them

Data Types Supported by Signal Processing Blockset Blocks	Commands and Blocks for Converting Data Types	Comments
Double-precision floating point	- double - Data Type Conversion block	Simulink built-in data type supported by all Signal Processing Blockset blocks.
Single-precision floating point	- single - Data Type Conversion block	Simulink built-in data type supported by all Signal Processing Blockset blocks.
Boolean	- boolean - Data Type Conversion block	Simulink built-in data type. To learn more, see "Boolean Support" on page 7-16.
Integer (8-,16-, or $32-b i t s) ~$	- int8, int16, int32 - Data Type Conversion block	Simulink built-in data type
Unsigned integer (8-,16-, or 32-bits)	- uint8, uint16, uint32 \bullet Data Type Conversion block	Simulink built-in data type

Supported Data Types and How to Convert to Them (Continued)		
Data Types Supported by Signal Processing Blockset Blocks	Commands and Blocks for Converting Data Types	Comments
Fixed-point data types	- Data Type Conversion block - Simulink Fixed Point num2fixpt function	To learn more about fixed-point data types in the Signal Processing Blockset, see Chapter 8, "Working with Fixed-Point Data."
	- Functions and GUIs for designing quantized filters with the Filter Design Toolbox (compatible with	
	Filter Realization Wizard block)	
Custom data types	See "Correctly Defining Custom Data Types" on page 7-15 to learn about custom data types.	

Block Data Type Support Table

The following table shows what data types are accepted on the main input data ports of each Signal Processing Blockset block. If the block is a source, the table shows what data types are accepted on the main output data ports of each source block.

If the Double, Single, Boolean, and/or Custom Data Types columns are populated by a x , the block supports those data types.

- If the Base Integer and/or Fixed-Point columns are populated with an s, the block supports signed integers and/or fixed-point data types.
- If the Base Integer and/or Fixed-Point columns are populated with a u, the block supports unsigned integers and/or fixed-point data types.

Block	Double	Single	Boolean	Base Integer	Fixed- Point	Custom Data Types
Analog Filter Design	x					
Analytic Signal	x	x				
Autocorrelation	x	x		s	s	
Autocorrelation LPC	x	x				
Backward Substitution	x	x				
Block LMS Filter	x	x		s, u	s	x
Buffer	x	x	x	s		
Burg AR Estimator	x	x				
Burg Method	x	x		s, u	s	x
Check Signal Attributes	x	x	x			
Chirp	x	x				
Cholesky Factorization	x	x				
Cholesky Inverse	x	x				

Block	Double	Single	Boolean	Base Integer	FixedPoint	Custom Data Types
Cholesky Solver	x	x				
CIC Decimation				s	s	
CIC Interpolation				s	s	
Complex Cepstrum	x	x				
Complex Exponential	x	x				
Constant Diagonal Matrix	x	x		s,u	s,u	
Constant Ramp	x	x		s,u	s,u	
Convert 1-D to 2-D	x	x	x	s,u	s,u	x
Convert 2-D to 1-D	x	x	x	s,u	s,u	x
Convolution	x	x		s	s	
Correlation	x	x		s	s	
Counter	x	x		s,u		
Covariance AR Estimator	x	x				
Covariance Method	x	x				
Create Diagonal Matrix	x	x	x	s, u	s,u	x
Cumulative Product	x	x		s	s	
Cumulative Sum	x	x		s	s	
Data Type Conversion	Simulink block					
dB Conversion	x	x				
dB Gain	x	x		s, u	s,u	
DCT	x	x				

Block	Double	Single	Boolean	Base Integer	FixedPoint	Custom Data Types
Delay	x	x	x	s, u	s,u	x
Delay Line	x	x	x	s,u	s,u	x
Detrend	x	x				
Difference	x	x		s, u	s	
Digital Filter	x	x		s	s	
Digital Filter Design	x	x				
Discrete Impulse	x	x	x	s, u	s,u	
Display	Simulink block					
Downsample	x	x	x	s, u	s, u	x
DSP Constant	x	x	x	s,u	s,u	x
DWT	x	x				
Dyadic Analysis Filter Bank	x	x				
Dyadic Synthesis Filter Bank	x	x				
Edge Detector	x	x	x	s,u	s,u	x
Event-Count Comparator	x	x	x	s, u	s,u	x
Extract Diagonal	x	x	x	s,u	s,u	x
Extract Triangular Matrix	x	x	x	s,u	s,u	x
Fast Block LMS Filter	x	x				
FFT	x	x		s	s	
Filter Realization Wizard	x	x		s, u	s, u	

Block	Double	Single	Boolean	Base Integer	FixedPoint	Custom Data Types
FIR Decimation	x	x		s	s	
FIR Interpolation	x	x		s	s	
FIR Rate Conversion	x	x		s	s	
Flip	x	x	x	s,u	s,u	x
Forward Substitution	x	x				
Frame Conversion	x	x	x	s, u	s	x
From Wave Device	x	x		$\begin{aligned} & \text { s 16-bit } \\ & \text { u 8-bit } \end{aligned}$		
From Wave File	x	x		$\begin{aligned} & \text { s 16-bit } \\ & \text { u 8-bit } \end{aligned}$		
G711 Codec				s 16-bit		
Histogram	x	x		s,u	s,u	
IDCT	x	x				
Identity Matrix	x	x	x	s,u	s,u	x
IDWT	x	x				
IFFT	x	x		s	s	
Inherit Complexity	x	x	x	s,u	s,u	x
Interpolation	x	x				
Inverse Short-Time FFT	x	x				
Kalman Adaptive Filter	x	x				
LDL Factorization	x	x				
LDL Inverse	x	x				

Block	Double	Single	Boolean	Base Integer	FixedPoint	Custom Data Types
LDL Solver	x	x				
Least Squares Polynomial Fit	x	x				
Levinson-Durbin	x	x		s	s	
LMS Adaptive Filter	x	x				
LMS Filter	x	x				
LPC to LSF/LSP Conversion	x	x				
LSF/LSP to LPC Conversion	x	x				
LPC to/from Cepstral Coefficients	x	x				
LPC to/from RC	x	x				
LPC/RC to Autocorrelation	x	x				
LU Factorization	x	x				
LU Inverse	x	x				
LU Solver	x	x				
Magnitude FFT	x	x		s	s	
Matrix 1-Norm	x	x		s	s	
Matrix Concatenation	Simulink block					
Matrix Exponential	x	x				
Matrix Multiply	x	x				

Block	Double	Single	Boolean	Base Integer	FixedPoint	Custom Data Types
Matrix Product	x	x		s, u	s, u	
Matrix Scaling	x	X		s	s	
Matrix Square	X	X				
Matrix Sum	x	X		s, u	s, u	
Matrix Viewer	x	x	x	s, u	s, u	x
Maximum	X	x		s, u	s, u	
Mean	x	x		s	s	
Median	x	X		s, u	s, u	
Minimum	X	X		s, u	s, u	
Modified Covariance AR Estimator	x	x				
Modified Covariance Method	X	X				
Multiphase Clock	X	X	X			
Multiport Selector	X	X	X	s, u	s, u	X
N-Sample Enable	X		X			
N-Sample Switch	X	X	X	s, u	s, u	X
Normalization	X	X		s	s	
Offset	X	X		s	s	
Overlap-Add FFT Filter	X	X				
Overlap-Save FFT Filter	X	X				
Overwrite Values	X	X	X	s, u	s,u	X

Block	Double	Single	Boolean	Base Integer	FixedPoint	Custom Data Types
Pad	x	x	x	s, u	s, u	x
Peak Finder	x	x		s, u	s, u	
Periodogram	x	x				
Permute Matrix	x	x	x	s, u	s, u	x
Polynomial Evaluation	x	x				
Polynomial Stability Test	X	X				
Pseudoinverse	X	x				
QR Factorization	x	x				
QR Solver	X	x				
Quantizer	Simulink block					
Queue	X	X	x	s, u	s, u	x
Random Source	x	x				
Real Cepstrum	x	x				
Reciprocal Condition	X	X				
Repeat	x	x	X	s, u	s, u	X
RLS Adaptive Filter	x	X				
RLS Filter	x	x				
RMS	X	X				
Sample and Hold	X	X	X	s, u	s,u	X
Scalar Quantizer Decoder				s, u	s, u	
Scalar Quantizer Design	X					

Block	Double	Single	Boolean	Base Integer	FixedPoint	Custom Data Types
Scalar Quantizer Encoder	x	x		s	s	
Selector	Simulink block					
Short-Time FFT	x	x		s	s	
Signal From Workspace	x	x		s, u	s, u	
Signal To Workspace	x	x	x	s, u	s, u	x
Sine Wave	x	x		s	s	
Singular Value Decomposition	x	x				
Sort	x	x		s,u	s,u	
Spectrum Scope	x	x	x	s,u	s,u	x
Stack	x	x	x	s,u	s,u	x
Standard Deviation	x	x				
Submatrix	x	x	x	s, u	s, u	x
SVD Solver	x	x				
Time Scope	Simulink block					
Toeplitz	x	x	x	s, u	s,u	x
To Wave Device	x	x		$\begin{aligned} & \text { s 16-bit } \\ & \text { u 8-bit } \end{aligned}$		
To Wave File	x	x		$\begin{aligned} & \text { s 16-bit } \\ & \text { u 8-bit } \end{aligned}$		
Transpose	x	x	x	s,u	s,u	x
Triggered Delay Line	x	x	x	s,u	s, u	x

Block	Double	Single	Boolean	Base Integer	FixedPoint	Custom Data Types
Triggered Signal From Workspace	x	x		s,u	s,u	
Triggered To Workspace	x	x	x	s, u	s, u	x
Two-Channel Analysis Subband Filter	x	x		s	s	
Two-Channel Synthesis Subband Filter	x	x		s	s	
Unbuffer	x	x	x	s, u	s,u	x
Uniform Decoder				s,u		
Uniform Encoder	x	x				
Unwrap	x	x				
Upsample	x	x	x	s, u	s,u	x
Variable Fractional Delay	x	x				
Variable Integer Delay	x	x	x	s,u	s,u	x
Variable Selector	x	x	x	s,u	s,u	x
Variance	x	x		s	s	
Vector Quantizer Decoder				s, u	s, u	
Vector Quantizer Design	x					
Vector Quantizer Encoder	x	x		s	s	
Vector Scope	x	x	x	s,u	s,u	x
Waterfall	x	x		s,u	s,u	
Window Function	x	x		s	s	

Block	Double	Single	Boolean	Base Integer	Fixed- Point	Custom Data Types
Yule-Walker AR Estimator	x	x				
Yule-Walker Method	x	x				
Zero Crossing	x	x	s, u	s, u		
Zero Pad	x	x	x	s, u	s	x

Viewing Data Types of Signals In Models

You can enable data type labels of the signals in your model. In the model window, from the Format menu, point to Port/Signal Displays, and select Port Data Types. Now, the signal lines in the model have labels indicating their data types. To see the labels, you may have to refresh the model diagram. To do this, from the Edit menu, select Update Diagram.

Signal Lines Labeled with Their Data Types

Correctly Defining Custom Data Types

Custom data types are user-defined data types. You must define your custom data types by following the guidelines provided in the topic on custom data types in the Writing S-Functions Simulink documentation. If you do not follow the Simulink guidelines for creating custom data types, the Signal Processing Blockset blocks may not properly support your custom data types.

Boolean Support

Many Signal Processing Blockset blocks accept or output logical signals. All such blocks support the Boolean data type at their appropriate ports:

- All block input ports that accept logical signals support the Boolean data type.
- The default data type of all outputs that are logical signals is Boolean. (You can change this default setting and disable Boolean support as described in a later section.)
The following topics provide more information on Boolean data type support:
- "Advantages of Using the Boolean Data Type"
- "Lists of Blocks Supporting Boolean Inputs or Outputs" on page 7-16
- "Effects of Enabling and Disabling Boolean Support" on page 7-18
- "Steps to Disabling Boolean Support" on page 7-19

Advantages of Using the Boolean Data Type

Using the Boolean data type rather than floating-point data types speeds up simulations and results in smaller, faster generated C code. For more on generated code, see "Code Generation" in Getting Started with the Signal Processing Blockset.

Lists of Blocks Supporting Boolean Inputs or Outputs

The following blocks have reset ports that accept the Boolean data type:

- Counter
- Cumulative Product
- Cumulative Sum
- Delay
- Histogram
- Maximum
- Mean
- Minimum
- N-Sample Enable
- N-Sample Switch
- RMS
- Standard Deviation
- Variance

The following blocks have input ports that accept the Boolean data type:

- Buffer	- Repeat
- Check Signal Attributes	- Sample and Hold
- Convert 1-D to 2-D	- Signal to Workspace
- Convert 2-D to 1-D	- Spectrum Scope
- Create Diagonal Matrix	- Stack
- Delay Line	- Submatrix
- Downsample	- Time Scope
- Extract Triangular Matrix	- Toeplitz
- Flip	- Transpose
- Frame Conversion	- Triggered Delay Line
- Identity Matrix	- Triggered To Workspace
- Inherit Complexity	- Unbuffer
- Matrix Viewer	- Upsample
- Multiport Selector	- Variable Integer Delay
- Overwrite Values	- Variable Selector
- Pad	- Vector Scope
- Permute Matrix	- Zero Pad
- Queue	

Some or all of the output ports of the following blocks support outputs with the Boolean data type:

- Buffer
- Check Signal Attributes
- Convert 1-D to 2-D
- Convert 2-D to 1-D
- Counter
- Create Diagonal Matrix
- Delay Line
- Downsample
- Edge Detector
- Event-Count Comparator
- Extract Diagonal
- Extract Triangular Matrix
- Flip
- Frame Conversion
- From Wave File
- Identity Matrix
- Inherit Complexity
- LPC to/from RC
- LPC to LSF/LSP Conversion
- LU Factorization
- Multiphase Clock
- Multiport Selector
- N-Sample Enable
- Overwrite Values
- Pad
- Permute Matrix
- Polynomial Stability Test
- Queue
- Repeat
- Sample and Hold
- Scalar Quantizer Encoder
- Stack
- Submatrix
- Toeplitz
- Transpose
- Triggered Delay Line
- Unbuffer
- Upsample
- Variable Integer Delay
- Variable Selector
- Zero Pad

Effects of Enabling and Disabling Boolean Support

By default, Simulink enables Boolean support. When you leave Boolean support enabled, all Boolean-supporting output ports always output the Boolean data type.

In some cases, you may want to override the Simulink default and disable Boolean support. For example, you may have a model that you created before Boolean support existed. Leaving the Boolean support enabled in this model may cause some blocks that used to output the double-precision data type to
output the Boolean data type. If the introduction of the Boolean data type breaks your model, you can fix the problem by disabling Boolean support.

The following table describes the effects of enabling and disabling Boolean support. Note that when you disable Boolean support, some Boolean-supporting output ports output double-precision data.

Type of Boolean-Supporting Output Port	Effect of Enabling Boolean Support (Default)	Effect of Disabling Boolean Support
- On a block with at least one input port	Output is always Boolean, regardless of the input data type.	- When input is double precision, the output is also double precision.
Did not support the Boolean data type in versions of the Signal Processing Blockset before Version 5.0		When input is not double precision, the output is Boolean.
(For example, the Edge Detector block)		
With a corresponding block parameter for setting output data type to Logical or Boolean (for example, in the N-Sample Enable block)	Output is always Boolean, regardless of whether you set the output port to Logical or Boolean.	- When set to Logical, the output is double precision.
- When set to Boolean, the		
output is Boolean.		

Steps to Disabling Boolean Support

To disable Boolean data type support in a particular model, clear the Boolean-enabling configuration parameter in the model by completing the following:

- "Step 1: Open the Configuration Parameters Dialog Box" on page 7-20
- "Step 2: Disable the Boolean Data Type in the Advanced Tab" on page 7-20
- "Step 3: (Optional) Verify Data Types of Signals" on page 7-21

You can also set Simulink simulation preferences so that all new models you create have Boolean support disabled. For more information, see the topic on setting advanced Simulink preferences in the Simulink documentation.

Step 1: Open the Configuration Parameters Dialog Box

In the model for which you want to enable Boolean data type support, from the Simulation menu, select Configuration Parameters. The Configuration Parameters dialog box opens.

The following figure illustrates the Configuration Parameters dialog box with the appropriate settings for signal processing simulations (note the discrete Fixed-step solver setting).

Step 2: Disable the Boolean Data Type in the Advanced Tab

Open the Configuration Parameters dialog box. In the Select pane, click Optimization. Clear the Implement logic signals as boolean data (vs. double) check box. Click OK.

You have now disabled Boolean support in your model; for certain cases, output ports that support the Boolean data type will output double-precision data rather than Boolean data, as explained in "Effects of Enabling and Disabling Boolean Support" on page 7-18.

Step 3: (Optional) Verify Data Types of Signals

Check the data types of the signals in the model by turning on the automatic labeling of signal data types (see "Viewing Data Types of Signals In Models" on page 7-14.) Some Boolean-supporting output ports might have output signals labeled double rather than boolean, depending on whether the inputs to the block are double-precision (see "Effects of Enabling and Disabling Boolean Support" on page 7-18).

If you do not see the data type labels after turning them on, you may have to refresh the model diagram by selecting the Edit menu in your model and then selecting Update diagram.

Working with Fixed-Point Data

$\left.\begin{array}{ll}\text { Fixed-Point Signal Processing } \\ \text { Development (p. 8-2) }\end{array} \quad \begin{array}{l}\text { Discusses advantages of fixed-point development in } \\ \text { general and of fixed-point support in the Signal } \\ \text { Processing Blockset in particular, as well as lists } \\ \text { common applications of fixed-point signal processing } \\ \text { development }\end{array}\right\}$

Fixed-Point Signal Processing Development

Many of the blocks in the Signal Processing Blockset have fixed-point support, so you can design signal processing systems that use fixed-point arithmetic. Fixed-point support in the Signal Processing Blockset includes

- Signed two's complement and unsigned fixed-point data types
- Word lengths from 2 to 128 bits in simulation
- Word lengths from 2 to the size of a long on the Real-Time Workshop C code-generation target
- Overflow handling and rounding methods
- C code generation for deployment on a fixed-point embedded processor, with Real Time Workshop. The generated code uses all allowed data types supported by the embedded target, and automatically includes all necessary shift and scaling operations

Note To take full advantage of fixed-point support in the Signal Processing Blockset, you must install Simulink Fixed Point.

Benefits of Fixed-Point Hardware

There are both benefits and trade-offs to using fixed-point hardware rather than floating-point hardware for signal processing development. Many signal processing applications require low-power and cost-effective circuitry, which makes fixed-point hardware a natural choice. Fixed-point hardware tends to be simpler and smaller. As a result, these units require less power and cost less to produce than floating-point circuitry.

Floating-point hardware is usually larger because it demands functionality and ease of development. Floating-point hardware can accurately represent real-world numbers, and its large dynamic range reduces the risk of overflow, quantization errors, and the need for scaling. In contrast, the smaller dynamic range of fixed-point hardware that allows for low-power, inexpensive units brings the possibility of these problems. Therefore, fixed-point development must minimize the negative effects of these factors, while exploiting the benefits of fixed-point hardware; cost- and size-effective units, less power and memory usage, and fast real-time processing.

Benefits of Fixed-Point Design with the Signal Processing Blockset

Simulating your fixed-point development choices before implementing them in hardware saves time and money. The built-in fixed-point operations provided by the Signal Processing Blockset save time in simulation and allow you to generate code automatically.

The Signal Processing Blockset allows you to easily run multiple simulations with different word length, scaling, overflow handling, and rounding method choices to see the consequences of various fixed-point designs before committing to hardware. The traditional risks of fixed-point development, such as quantization errors and overflow, can be simulated and mitigated in software before going to hardware.
Fixed-point C code generation with the Signal Processing Blockset and Real-Time Workshop produces code ready for execution on a fixed-point processor. All the choices you make in simulation with the Signal Processing Blockset in terms of scaling, overflow handling, and rounding methods are automatically optimized in the generated code, without necessitating time-consuming and costly hand-optimized code. For more information on generating fixed-point code, refer to "Code Generation" in the using Simulink Fixed Point documentation.

Fixed-Point Signal Processing Applications

Fixed-point support in the Signal Processing Blockset facilitates development of a wide variety of signal processing applications:

- Wireless and broadband communications
- Cellular phones
- Radio
- Satellite communications
- Speech and audio processing
- Speech processing
- High-end audio processing
- Telephony
- Speech coding
- Dual tone multifrequency (DTMF)
- Echo cancellation
- Hand-held and battery-operated consumer electronics
- Digital recording devices
- Personal digital assistants (PDAs)
- Computer peripherals
- Radar and sonar
- Medical electronics

Blocks with Fixed-Point Support

The following table lists all of the blocks in the Signal Processing Blockset that support fixed-point data types in some or all modes. These blocks are colored orange in the Signal Processing Blockset library. To take full advantage of the fixed-point capabilities of the following blocks, you must install Simulink Fixed Point.

Signal Processing Blockset Blocks with Fixed-Point Support

Autocorrelation	Buffer	Check Signal Attributes	CIC Decimation
CIC Interpolation	Constant Diagonal Matrix	Constant Ramp	Convert 1-D to 2-D
Convert 2-D to 1-D	Convolution	Correlation	Counter
Create Diagonal Matrix	Cumulative Product	Cumulative Sum	Data Type Conversion (Simulink block)
dB Gain	DCT	Delay	Delay Line
Difference	Digital Filter	Discrete Impulse	Display (Simulink block)
Downsample	DSP Constant	Edge Detector	Event-Count Comparator
Extract Diagonal	Extract Triangular Matrix	FFT	Filter Realization Wizard
FIR Decimation	FIR Interpolation	FIR Rate Conversion	Flip
Frame Conversion	G711 Codec	Histogram	IDCT
Identity Matrix	IFFT	Inherit Complexity	Levinson-Durbin
LMS Filter	Magnitude FFT	Matrix-1 Norm	Matrix Concatenation (Simulink block)
Matrix Product	Matrix Scaling	Matrix Sum	Matrix Viewer

Signal Processing Blockset Blocks with Fixed-Point Support (Continued)			
Maximum	Mean	Median	Minimum
Multiphase Clock	Multiport Selector	N-Sample Enable	N-Sample Switch
Normalization	Offset	Overwrite Values	Pad
Peak Finder	Permute Matrix	Queue	Repeat
Sample and Hold	Scalar Quantizer Decoder Short-Time FFT	Signal From Workspace	Scalar Quantizer Encoder
Sort	Signal To Workspace	Selector (Simulink block)	
Time Scope (Simulink block)	Toeplitz	Stack	Sube

Concepts and Terminology

This section gives an overview of fixed-point concepts and terminology that you might want to refer to as you take advantage of fixed-point support in the Signal Processing Blockset:

- "Fixed-Point Data Types" on page 8-7
- "Scaling" on page 8-8
- "Precision and Range" on page 8-9

The Glossary defines much of the vocabulary used in these sections. For more information on these subjects, refer to the Simulink Fixed Point documentation.

Fixed-Point Data Types

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length sequence of bits (1's and 0's). How hardware components or software functions interpret this sequence of 1's and 0's is defined by the data type.

Binary numbers are represented as either fixed-point or floating-point data types. In this section, we discuss many terms and concepts relating to fixed-point numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position of the binary point, and whether it is signed or unsigned. The position of the binary point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed or unsigned) is shown below:

$b_{w l-1}$	$b_{w l-2}$	\ldots	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	b_{0}
MSB								LSB

where

- b_{i} is the i th binary digit.
- $w l$ is the word length in bits.
- $b_{w l-1}$ is the location of the most significant, or highest, bit (MSB).
- b_{0} is the location of the least significant, or lowest, bit (LSB).
- The binary point is shown four places to the left of the LSB. In this example, therefore, the number is said to have four fractional bits, or a fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary fixed-point numbers are typically represented in one of three ways:

- Sign/magnitude
- One's complement
- Two's complement

Two's complement is the most common representation of signed fixed-point numbers and is used by the Signal Processing Blockset. Refer to "Two's Complement" on page 8-13 for more information.

Scaling

Fixed-point numbers can be encoded according to the scheme
real-world value $=($ slope \times integer $)+$ bias
where the slope can be expressed as

$$
\text { slope }=\text { slope adjustment } \times 2^{\text {exponent }}
$$

The integer is sometimes called the stored integer. This is the raw binary number, in which the binary point assumed to be at the far right of the word. In the Signal Processing Blockset, the negative of the exponent is often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number with zero bias, only the slope affects the scaling. A fixed-point number that is only scaled by binary point position is equivalent to a number in the Simulink Fixed Point's [Slope Bias] representation that has a bias equal to zero and a slope adjustment equal to one. This is referred to as binary point-only scaling or power-of-two scaling:

$$
\text { real-world value }=2^{\text {exponent }} \times \text { integer }
$$

or

$$
\text { real-world value }=2^{- \text {fraction length }} \times \text { integer }
$$

In the Signal Processing Blockset, you can define a fixed-point data type and scaling for the output or the parameters of many blocks by specifying the word length and fraction length of the quantity. The Signal Processing Blockset supports binary point-only scaling, so the whole of the data type and scaling information is contained in these two quantities. This is in contrast to Simulink Fixed Point, which supports [Slope Bias] scaling in its full generality.

Precision and Range

You must pay attention to the precision and range of the fixed-point data types and scalings you choose for the blocks in your simulations, in order to know whether rounding methods will be invoked or if overflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling can represent. The range of representable numbers for a two's complement fixed-point number of word length $w l$, scaling S, and bias B is illustrated below:

For both signed and unsigned fixed-point numbers of any data type, the number of different bit patterns is $2^{w l}$.

For example, in two's complement, negative numbers must be represented as well as zero, so the maximum value is $2^{w l-1}-1$. Because there is only one representation for zero, there are an unequal number of positive and negative numbers. This means there is a representation for $-2^{w l-1}$ but not for $2^{w l-1}$:

Overflow Handling. Because a fixed-point data type represents numbers within a finite range, overflows can occur if the result of an operation is larger or smaller than the numbers in that range.

The Signal Processing Blockset does not allow you to add guard bits to a data type on-the-fly in order to avoid overflows. Any guard bits must be allocated upon model initialization. However, the Signal Processing Blockset does allow you to either saturate or wrap overflows. Saturation represents positive overflows as the largest positive number in the range being used, and negative overflows as the largest negative number in the range being used. Wrapping uses modulo arithmetic to cast an overflow back into the representable range of the data type. Refer to "Modulo Arithmetic" on page 8-12 for more information.

Precision

The precision of a fixed-point number is the difference between successive values representable by its data type and scaling, which is equal to the value of its least significant bit. The value of the least significant bit, and therefore the precision of the number, is determined by the number of fractional bits. A fixed-point value can be represented to within half of the precision of its data type and scaling.

For example, a fixed-point representation with four bits to the right of the binary point has a precision of 2^{-4} or 0.0625 , which is the value of its least significant bit. Any number within the range of this data type and scaling can be represented to within $\left(2^{-4}\right) / 2$ or 0.03125 , which is half the precision. This is an example of representing a number with finite precision.

Rounding Methods. One of the limitations of representing numbers with finite precision is that not every number in the available range can be represented exactly. When the result of a fixed-point calculation is a number that cannot be represented exactly by the data type and scaling being used, precision is lost. A rounding method must be used to cast the result to a representable number. The Signal Processing Blockset currently supports Floor and Nearest rounding methods.

Floor, which is equivalent to truncation, rounds the output of a calculation to the closest representable number in the direction of negative infinity.

Nearest rounds the output of a calculation to the closest representable number, with the exact midpoint rounded to the closest representable number in the direction of positive infinity.

Arithmetic Operations

The following sections describe the arithmetic operations used by fixed-point Signal Processing Blockset blocks:

- "Modulo Arithmetic" on page 8-12
- "Two's Complement" on page 8-13
- "Addition and Subtraction" on page 8-14
- "Multiplication" on page 8-15
- "Casts" on page 8-17

These sections will help you understand what data type and scaling choices result in overflows or a loss of precision.

Modulo Arithmetic

Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of numbers, wrapping the results of any calculations that fall outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this system can only be 1 through 12 . Therefore, in the "clock" system, 9 plus 9 equals 6 . This can be more easily visualized as a number circle:
9...

...equals 6.

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results that fall outside this range are wrapped "around the circle" to either 0 or 1 .

Two's Complement

Two's complement is a way to interpret a binary number. In two's complement, positive numbers always start with a 0 and negative numbers always start with a 1 . If the leading bit of a two's complement number is 0 , the value is obtained by calculating the standard binary value of the number. If the leading bit of a two's complement number is 1 , the value is obtained by assuming that the leftmost bit is negative, and then calculating the binary value of the number. For example,

$$
\begin{aligned}
& 01=\left(0+2^{0}\right)=1 \\
& 11=\left(\left(-2^{1}\right)+\left(2^{0}\right)\right)=(-2+1)=-1
\end{aligned}
$$

To compute the negative of a binary number using two's complement,
1 Take the one's complement, or "flip the bits."
2 Add a 1 using binary math.
3 Discard any bits carried beyond the original word length.
For example, consider taking the negative of 11010 (-6). First, take the one's complement of the number, or flip the bits:

$$
11010 \longrightarrow 00101
$$

Next, add a 1 , wrapping all numbers to 0 or 1 :

$$
\begin{array}{r}
00101 \\
\begin{array}{r}
+1
\end{array} \\
\hline 00110
\end{array}
$$

Addition and Subtraction

The addition of fixed-point numbers requires that the binary points of the addends be aligned. The addition is then performed using binary arithmetic so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

$$
\begin{array}{ll}
010010.1 & (18.5) \\
+0110.110 & (6.75) \\
\hline 011001.010 & (25.25)
\end{array}
$$

Fixed-point subtraction is equivalent to adding while using the two's complement value for any negative values. In subtraction, the addends must be sign extended to match each other's length. For example, consider subtracting 0110.110 (6.75) from 010010.1 (18.5):

Most fixed-point Signal Processing Blockset blocks that perform addition cast the adder inputs to an accumulator data type before performing the addition. Therefore, no further shifting is necessary during the addition to line up the binary points. Refer to "Casts" on page 8-17 for more information.

Multiplication

The multiplication of two's complement fixed-point numbers is directly analogous to regular decimal multiplication, with the exception that the intermediate results must be sign extended so that their left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

$$
10.11(-1.25)
$$

The number of fractional bits of the result is the sum of the number of fractional bits of the factors.

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication in the Signal Processing Blockset. The diagrams illustrate the differences between the data types used for real-real, complex-real, and complex-complex multiplication. Refer to individual reference pages in Chapter 9, "Block Reference" to determine whether a particular block accepts complex fixed-point inputs.

In most cases, you can set the data types used during multiplication in the block mask. Refer to "Accumulator Parameters" on page 8-25, "Product Output Parameters" on page 8-24, and "Output Parameters" on page 8-27. These data types are defined in "Casts" on page 8-17.

Note The following diagrams show the use of fixed-point data types in multiplication in the Signal Processing Blockset. They do not represent actual subsystems used by the Signal Processing Blockset to perform multiplication.

Real-Real Multiplication. The following diagram shows the data types used in the multiplication of two real numbers in the Signal Processing Blockset. The output of this multiplication is in the product output data type:

Real-Complex Multiplication. The following diagram shows the data types used in the multiplication of a real and a complex fixed-point number in the Signal Processing Blockset. Real-complex and complex-real multiplication are equivalent. The output of this multiplication is in the product output data type:

Complex-Complex Multiplication. The following diagram shows the multiplication of two complex fixed-point numbers in the Signal Processing Blockset. Note that the output of the multiplication is in the accumulator data type:

Casts

Many fixed-point Signal Processing Blockset blocks that perform arithmetic operations allow you to specify the accumulator, intermediate product, and product output data types, as applicable, as well as the output data type of the block. This section gives an overview of the casts to these data types, so that you can tell if the data types you select will invoke sign extension, padding with zeros, rounding, and/or overflow.

Casts to the Accumulator Data Type

For most fixed-point Signal Processing Blockset blocks that perform addition, the addends are first cast to an accumulator data type. Most of the time, you can specify the accumulator data type on the block mask. Refer to "Accumulator Parameters" on page 8-25. Since the addends are both cast to the same accumulator data type before they are added together, no extra shift is necessary to insure that their binary points align. The result of the addition remains in the accumulator data type, with the possibility of overflow.

Casts to the Intermediate Product or Product Output Data Type

For Signal Processing Blockset blocks that perform multiplication, the output of the multiplier is placed into a product output data type. Blocks that then feed the product output back into the multiplier might first cast it to an intermediate product data type. Most of the time, you can specify these data types on the block mask. Refer to "Intermediate Product Parameters" on page 8-24 and "Product Output Parameters" on page 8-24.

Casts to the Output Data Type

Many fixed-point Signal Processing Blockset blocks allow you to specify the data type and scaling of the block output on the mask. Remember that the Signal Processing Blockset does not allow mixed types on the input and output ports of its blocks. Therefore, if you would like to specify a fixed-point output data type and scaling for a Signal Processing Blockset block that supports fixed-point data types, you must feed the input port of that block with a fixed-point signal. The final cast made by a fixed-point Signal Processing Blockset block is to the output data type of the block.

Note that although you can not mix fixed-point and floating-point signals on the input and output ports of Signal Processing Blockset blocks, you can have fixed-point signals with different word and fraction lengths on the ports of blocks that support fixed-point signals.

Casting Examples

It is important to keep in mind the ramifications of each cast when selecting these intermediate data types, as well as any other intermediate fixed-point data types that are allowed by a particular block. Depending upon the data types you select, overflow and/or rounding might occur. The following two examples demonstrate cases where overflow and rounding can occur.

Casting from a Shorter Data Type to a Longer Data Type. Consider the cast of a nonzero number, represented by a four-bit data type with two fractional bits, to an eight-bit data type with seven fractional bits:

This bit from the source data type "falls off" the high end with the shift up. Overflow can occur. The result will saturate or wrap.

These bits of the destination data type are padded with 0's or l's.

As the diagram shows, the source bits are shifted up so that the binary point matches the destination binary point position. The highest source bit does not fit, so overflow might occur and the result can saturate or wrap. The empty bits at the low end of the destination data type are padded with either 0's or 1's:

- If overflow does not occur, the empty bits are padded with 0 's.
- If wrapping occurs, the empty bits are padded with 0's.
- If saturation occurs,
- The empty bits of a positive number are padded with 1's.
- The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow might still occur. This can happen when the integer length of the source data type (in this case two) is longer than the integer length of the destination data type (in this case one). Similarly, rounding might be necessary even when casting from a shorter data type to a longer data type, if the destination data type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type. Consider the cast of a nonzero number, represented by an eight-bit data type with seven fractional bits, to a four-bit data type with two fractional bits:

There is no value for this bit from the source, so the result must be sign extended to fill the destination data type.

These bits from the source do not fit into the destination data type. The result is rounded.

As the diagram shows, the source bits are shifted down so that the binary point matches the destination binary point position. There is no value for the highest bit from the source, so the result is sign extended to fill the integer portion of the destination data type. The bottom five bits of the source do not fit into the fraction length of the destination. Therefore, precision can be lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all the integer bits are maintained. Conversely, full precision can be maintained even if you cast to a shorter data type, as long as the fraction length of the destination data type is the same length or longer than the fraction length of the source data type. In that case, however, bits are lost from the high end of the result and overflow might occur.

The worst case occurs when both the integer length and the fraction length of the destination data type are shorter than those of the source data type and scaling. In that case, both overflow and a loss of precision can occur.

Specifying Fixed-Point Attributes

The following sections describe how to set and monitor fixed-point settings for Signal Processing Blockset blocks both on a block-by-block and on a system-wide basis:

- "Setting Block Parameters" on page 8-21
- "Specifying System-Level Settings" on page 8-27

Setting Block Parameters

Blocks in the Signal Processing Blockset that have fixed-point support often allow you to specify fixed-point characteristics through block parameters. In many cases, such as with the accumulator and product output parameters, specifying these parameters enables you to simulate your target hardware more closely.

Note The fixed-point settings discussed in this section are ignored for floating-point signals.

Most fixed-point parameters for Signal Processing Blockset blocks appear when the Fixed-point tab is selected, for example on the Matrix Product block dialog below.

Many of the Signal Processing Blockset blocks with fixed-point capabilities share common parameters, though each block might have a different subset of these fixed-point parameters. The following parameters are discussed in this section:

- "Rounding Mode Parameter" on page 8-23
- "Overflow Mode Parameter" on page 8-23
- "Intermediate Product Parameters" on page 8-24
- "Product Output Parameters" on page 8-24
- "Accumulator Parameters" on page 8-25
- "Output Parameters" on page 8-27

For a discussion of all the parameters of a specific Signal Processing Blockset block, refer to the block's reference page in Chapter 9, "Block Reference."
Remember that the Signal Processing Blockset does not allow mixed floating-point and fixed-point types on the input and output ports of its blocks.

Therefore, the parameters discussed in this section only take effect if you feed the input port of that block with a fixed-point signal.

Rounding Mode Parameter

Use this parameter to specify the rounding method to be used when the result of a fixed-point calculation does not map exactly to a number representable by the data type and scaling that stores the result:

- Floor, which is equivalent to truncation, rounds the result of a calculation to the closest representable number in the direction of negative infinity.
- Nearest rounds the result of a calculation to the closest representable number, with the exact midpoint rounded to the closest representable number in the direction of positive infinity.

Overflow Mode Parameter

Use this parameter to specify the method to be used if the magnitude of a fixed-point calculation result does not fit into the range of the data type and scaling that stores the result:

- Saturate represents positive overflows as the largest positive number in the range being used, and negative overflows as the largest negative number in the range being used.
- Wrap uses modulo arithmetic to cast an overflow back into the representable range of the data type. Refer to "Modulo Arithmetic" on page 8-12 for more information.

Intermediate Product Parameters

Fixed-point Signal Processing Blockset blocks that feed multiplication results back to the input of the multiplier usually allow you to specify the data type and scaling of the intermediate product:

Refer to the reference page of a specific block in Chapter 9, "Block Reference" to learn about the intermediate product data type for a specific block:

Use the Intermediate product-Mode parameter to specify how you would like to designate the intermediate product word and fraction lengths:

- When you select Same as input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the intermediate product, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the intermediate product. The bias of all signals in the Signal Processing Blockset is zero.

Product Output Parameters

Fixed-point Signal Processing Blockset blocks that must hold multiplication results for further calculation usually allow you to specify the data type and scaling of the product output:

Refer to the reference page of a specific block in Chapter 9, "Block Reference" to learn about the product output data type for a specific block. Note that for complex-complex multiplication, the multiplication result is in the accumulator data type. Refer to "Multiplication Data Types" on page 8-15 for more information on complex fixed-point multiplication in the Signal Processing Blockset.
Use the Product output-Mode parameter to specify how you would like to designate the product output word and fraction lengths:

- When you select Inherit via internal rule, the product output word and fraction lengths will be automatically calculated for you. In general, all the bits are preserved in the internal block algorithm for quantities using this selection. That is, the product output word and fraction lengths are selected such that
- No overflow occurs
- No precision loss occurs
- Rounding modes have no effect

Internal rule equations specific to each block are given in the block reference pages.

- When you select Same as input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. The bias of all signals in the Signal Processing Blockset is zero.

Accumulator Parameters

Fixed-point Signal Processing Blockset blocks that must hold summation results for further calculation usually allow you to specify the data type and
scaling of the accumulator. Most such blocks cast to the accumulator data type prior to summation:

Refer to the reference page of a specific block in Chapter 9, "Block Reference" for details on the accumulator data type of a specific block.

Use the Accumulator-Mode parameter to specify how you would like to designate the accumulator word and fraction lengths:

- When you select Inherit via internal rule, the accumulator output word and fraction lengths will be automatically calculated for you. In general, all the bits are preserved in the internal block algorithm for quantities using this selection. That is, the accumulator word and fraction lengths are selected such that
- No overflow occurs
- No precision loss occurs
- Rounding modes have no effect

Internal rule equations specific to each block are given in the block reference pages.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Signal Processing Blockset is zero.

Output Parameters

In many cases you can specify the output data type and scaling of fixed-point Signal Processing Blockset blocks.

Use the Output-Mode parameter to choose how you will specify the word length and fraction length of the output of the block:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. The bias of all signals in the Signal Processing Blockset is zero.

Specifying System-Level Settings

You can monitor and control fixed-point settings for Signal Processing Blockset blocks at a system or subsystem level via the Fixed-Point Settings interface.

Fixed-Point Settings Interface

Some fixed-point attributes of Signal Processing Blockset blocks can be monitored or set at the system level via the Fixed-Point Settings interface. For additional information on these subjects, refer to the following topics:

- The fxptdlg reference page-A reference page on the Fixed-Point Settings interface in the Simulink documentation
- Chapter 6, "Tutorial: Feedback Controller Simulation" - A tutorial that highlights the use of the Fixed-Point Settings interface in the Simulink Fixed Point documentation

Logging. The Fixed-Point Settings interface logs overflows and saturations for fixed-point Signal Processing Blockset blocks. The Fixed-Point Settings interface does not log overflows and saturations when the Data overflow line
in the Diagnostics > Data Integrity pane of the Configuration dialog is set to None.

The Fixed-Point Settings interface also logs the simulation minimums and maximums for certain fixed-point quantities of many Signal Processing Blockset blocks. The blocks that currently support logging of simulation minimums and maximums are:

- Autocorrelation
- Convolution
- Correlation
- Cumulative Product
- Cumulative Sum
- Difference
- Digital Filter
- FFT
- FIR Decimation
- FIR Interpolation
- FIR Rate Conversion
- IFFT
- Levinson-Durbin
- LMS Filter
- Magnitude FFT
- Matrix 1-Norm
- Matrix Product
- Matrix Scaling
- Matrix Sum
- Maximum
- Mean
- Median
- Minimum
- Normalization
- Two-Channel Analysis Subband Filter
- Two-Channel Synthesis Subband Filter
- Variance
- Window Function

The minimums and maximums of the following quantities are logged for the supported blocks:

- Product output(s)
- Accumulator(s)
- State
- Output(s)
- Stage input
- Stage output
- Tap sum

Autoscaling. You can use the Fixed-Point Settings interface autoscaling tool to set the scaling for the following Signal Processing Blockset fixed-point data types:

- Product output(s)
- Accumulator(s)
- State
- Output(s)

Note that autoscaling is only supported for blocks that log simulation minimums and maximums.

Data type override. Signal Processing Blockset blocks obey the Use local settings, True doubles, True singles, and Force off modes of the Data type override parameter in the Fixed-Point Settings interface. The Scaled doubles mode is also supported for Signal Processing Blockset source and byte-shuffling blocks that support [Slope Bias] signals, but not for arithmetic fixed-point Signal Processing Blockset blocks such as FFT or Digital Filter.

Fixed-Point Filtering

The following Signal Processing Blockset blocks enable you to design and/or realize a variety of fixed-point filters:

- CIC Decimation
- CIC Interpolation
- Digital Filter
- Filter Realization Wizard
- FIR Decimation
- FIR Interpolation
- Two-Channel Analysis Subband Filter
- Two-Channel Synthesis Subband Filter

Filter Implementation Blocks

The FIR Decimation, FIR Interpolation, Two-Channel Analysis Subband Filter, Two-Channel Synthesis Subband Filter, and Digital Filter blocks are all implementation blocks. They allow you to implement filters for which you already know the filter coefficients. The first four blocks each implement their respective filter type, while the Digital Filter block can create a variety of filter structures. All filter structures supported by the Digital Filter block support fixed-point signals.

For more information on these filter implementation blocks, refer to their reference pages in Chapter 9, "Block Reference."

Filter Design and Implementation Blocks

The Filter Realization Wizard block invokes part of the Filter Design and Analysis Tool from the Signal Processing Toolbox. This block allows you both to design new filters and to implement filters for which you already know the coefficients. In its implementation stage, the Filter Realization Wizard creates a filter realization using Sum, Gain, and Delay blocks. You can use this block to design and/or implement numerous types of fixed-point and floating-point single-channel filters. Refer to Chapter 3, "Filters" and the Filter Realization Wizard reference page in Chapter 9, "Block Reference" for more information about this block.

The CIC Decimation and CIC Interpolation blocks allow you to design and implement Cascaded Integrator-Comb filters. Refer to their block reference pages for more information.

Interoperability with Other Products

The following tables compare the supported features of various fixed-point products from The MathWorks:

- "Fixed-Point Data Type Support" on page 8-32
- "Fixed-Point Scaling Support" on page 8-34
- "Fixed-Point Operations Support" on page 8-35
- "Fixed-Point Code Generation Support" on page 8-35

Fixed-Point Data Type Support

| | Signal
 Processing
 Blockset
 Fixed-Point | Filter Design
 Toolbox | Simulink
 Fixed-Point
 Blocks |
| :--- | :--- | :--- | :--- | :--- |
| Custom
 floating-point | Partial
 support | Stareflow $^{\text {® }}$ | |

Fixed-Point Data Type Support (Continued)

	Signal Processing Blockset Fixed-Point	Filter Design Toolbox	Simulink Fixed-Point Blocks	Stateflow $^{\circledR}$
Unsigned integer, fractional, and generalized fixed-point numbers	Partial support			
Data type override	Yes Support via the Fixed-Point Settings interface 3	Yes, via the set function	Yes the Fixed-Point Settings interface	Yes

${ }^{1}$. Fixed-point Signal Processing Blockset blocks that only manipulate bits and do not perform arithmetic operations accept custom floating-point inputs. The source blocks Constant Diagonal Matrix and DSP Constant also allow you to specify a custom floating-point output data type.
2. Refer to the reference page of each fixed-point Signal Processing Blockset block to determine whether it supports unsigned fixed-point signals.
3. Signal Processing Blockset blocks obey the Use local settings, True doubles, True singles, and Force off modes of the Data type override parameter in the Fixed-Point Settings interface. The Scaled doubles mode is also supported for Signal Processing Blockset source and byte-shuffling blocks that support [Slope Bias] signals, but not for other arithmetic fixed-point Signal Processing Blockset blocks.

Fixed-Point Scaling Support

	Signal Processing Blockset Fixed-Point	Filter Design Toolbox	Simulink Fixed-Point Blocks	
[Slope Bias] scaling	Partial support 1	No	Stateflow	
Binary point-only scaling	Yes	Yes	Yes	Yes
Automatic scaling	Yes, via the Fixed-Point Settings interface	No	Yes	

${ }^{1}$ Fixed-point Signal Processing Blockset blocks that only manipulate bits and do not perform arithmetic operations accept [Slope Bias] signals with nonpower-of-two slope and nonzero bias. The following source blocks also allow you to specify a [Slope Bias] output signal: Constant Diagonal Matrix, Discrete Impulse, DSP Constant, Identity Matrix, and Sine Wave. Blocks that perform arithmetic operations require power-of-two slope and zero bias.

Fixed-Point Operations Support

	Signal Processing Blockset Fixed-Point	Filter Design Toolbox	Simulink Fixed-Point Blocks	
Rounding methods	Floor, nearest	Ceiling, convergent, fix, floor, round	Ceiling, floor, nearest, zero	Offline conversions are rounded to nearest
Overflow				
handling	Saturate, wrap	Saturate, wrap	Saturate, wrap	Online conversions are rounded to floor or zero
Logging	Yes, via the halts upon Fixed-Point Settings interface	No		Yes, via the Fixed-Point Settings interface

Fixed-Point Code Generation Support

	Signal Processing Blockset Fixed-Point	Filter Design Toolbox	Simulink Fixed-Point Blocks
C code generation	Yes	No	Yes

Building Models with Other Blocks

You can build models with fixed-point Signal Processing Blockset blocks that include fixed-point and floating-point blocks both from the Signal Processing Blockset and from other MathWorks products. The following sections discuss
issues to keep in mind when connecting fixed-point Signal Processing Blockset blocks to other types of blocks.

Connecting Fixed-Point and Floating-Point Blocks

Signal Processing Blockset blocks do not accept mixed floating-point and fixed-point types on their input and output ports. Therefore, if you want a Signal Processing Blockset block to have a fixed-point output data type, you must feed the block with a fixed-point input signal.

To feed a Signal Processing Blockset block with a fixed-point signal from another block that does not have fixed-point support, use the Simulink Data Type Conversion block, as in the model below:

The Simulink Band-Limited White Noise block in the model does not allow you to set a fixed-point output data type and scaling in its block mask. The Data Type Conversion block, however, allows you to do so. The following shows the mask parameter settings of the Data Type Conversion block in the model:

Note that the Output scaling value parameter of the Data Type Conversion block specifies a power-of-two scaling with 0 bias. This is a requirement for fixed-point signals in the Signal Processing Blockset, as discussed in the following section.

Similarly to the example above, you can feed the output of fixed-point Signal Processing Blockset blocks to other blocks that do not accept fixed-point data types by using the Data Type Conversion block.

Connecting Blocks with Different Scalings

Fixed-point signals in the Signal Processing Blockset must have a slope adjustment of 1 and a bias of 0 ; that is, only power-of-two or binary point-only scaling is accepted. You must make sure that any block that feeds the input port of a fixed-point Signal Processing Blockset block specifies binary point-only scaling for the output scaling of the block. Alternately, you can use
the Simulink Data Type Conversion block between any two fixed-point blocks of with different scalings.

Block Reference

Blocks - Categorical List (p. 9-2)

Blocks - Alphabetical List (p. 9-20)

List of Signal Processing Blockset blocks by the libraries in which they can be found

Alphabetical list of Signal Processing Blockset blocks

Blocks - Categorical List

The Signal Processing Blockset contains the block libraries described in the following table. Access the libraries with the Simulink Library Browser, which you can open by typing simulink.

Note To find out about using blocks together for common signal processing tasks, see Chapter 1, "Working with Signals."

Select a library for a list of links to the online reference pages of its blocks. (For an alphabetical reference to block reference pages, see "Blocks - Alphabetical List" on page 9-20.)

Signal Processing Sources Various scopes and blocks for exporting signals to the MATLAB workspace

Signal Processing Sources Blocks that generate discrete-time signals such as sine waves and uniform random signals

Estimation	Linear prediction, parametric estimation, and power spectrum estimation blocks
Filtering	Digital filter design and implementation, adaptive, multirate, time-varying, and frequency-domain filters
Math Functions	Specialized math operations such as dB conversion and cumulative sum, matrix and linear algebra operations, and polynomial functions such as least squares polynomial fit
Platform-Specific I/O	Blocks for working with specific platforms such as sending audio data to standard audio devices on
Quantizers	32-bit Windows operating systems
A quantizer and uniform encoder and decoder	

Signal Operations	Blocks such as Convolution, Downsample, Delay, Unwrap, Zero Pad, and Window Function
Statistics	Correlation, Maximum, Mean, RMS, etc.
Transforms	Fast Fourier transform, discrete cosine transform, real and complex cepstrum, etc.

Estimation

The following sublibraries reside in the Estimation library:

- "Linear Prediction"
- "Parametric Estimation"
- "Power Spectrum Estimation"

Linear Prediction

Blocks for linear prediction and working with linear prediction coefficients.

Autocorrelation LPC	Determine coefficients of Nth-order forward linear predictors

Levinson-Durbin

LPC to LSF/LSP Conversion

LPC to/from Cepstral Coefficients

LPC to/from RC

Solve a linear system of equations using Levinson-Durbin recursion

Convert linear prediction coefficients (LPCs) to line spectral pairs (LSPs) or line spectral frequencies (LSFs)

Convert linear prediction coefficients (LPCs) to cepstral coefficients (CCs) or cepstral coefficients to linear prediction coefficients

Convert linear prediction coefficients (LPCs) to reflection coefficients (RCs) or reflection coefficients to linear prediction coefficients

LPC/RC to Autocorrelation	Convert linear prediction coefficients (LPCs) or reflection coefficients (RCs) to autocorrelation coefficients (ACs)
LSF/LSP to LPC Conversion	Convert line spectral pairs (LSPs) or line spectral frequencies (LSFs) to linear prediction coefficients (LPCs)
Parametric Estimation	Compute estimate of autoregressive
Blocks for computing estimates of autoregressive model parameters using various methods.	
Burg AR Estimator	(AR) model parameters using Burg method Compute estimate of autoregressive (AR) model parameters using
Covariance AR Estimator	covariance method Compute estimate of autoregressive
Modified Covariance AR Estimator	
(AR) model parameters using	

Power Spectrum Estimation

Blocks for computing parametric and nonparametric spectral estimates using various methods.

Burg Method

Covariance Method

Magnitude FFT

Compute parametric spectral estimate using Burg method

Compute parametric spectral estimate using covariance method
Compute nonparametric estimate of the spectrum using the periodogram method

Modified Covariance Method	Compute parametric spectral estimate using modified covariance method
Periodogram	Compute nonparametric estimate of the spectrum
Yule-Walker Method	Compute parametric estimate of the spectrum using Yule-Walker autoregressive (AR) method

Filtering

The following sublibraries reside in the Filtering library:

- "Adaptive Filters"
- "Filter Designs"
- "Multirate Filters"

Adaptive Filters

Blocks for computing filter estimates of an input using various algorithms.
\(\left.$$
\begin{array}{ll}\text { Block LMS Filter } & \begin{array}{l}\text { Compute filtered output, filter error, } \\
\text { and filter weights for a given input } \\
\text { and desired signal using Block LMS } \\
\text { adaptive filter algorithm }\end{array} \\
\text { Fast Block LMS Filter } & \begin{array}{l}\text { Compute filtered output, filter error, } \\
\text { and filter weights for a given input } \\
\text { and desired signal using the Fast }\end{array}
$$

Block LMS adaptive filter algorithm\end{array}\right\}\)| Compute filter estimates for inputs |
| :--- |
| using Kalman adaptive filter |
| algorithm |

$\left.\left.\left.\begin{array}{ll}\text { LMS Filter } & \begin{array}{l}\text { Compute filtered output, filter error, } \\ \text { and filter weights for a given input } \\ \text { and desired signal using LMS } \\ \text { adaptive filter algorithm }\end{array} \\ \text { RLS Filter } & \begin{array}{l}\text { Compute filtered output, filter error, } \\ \text { and filter weights for a given input } \\ \text { and desired signal using RLS } \\ \text { adaptive filter algorithm }\end{array} \\ \text { Filter Designs } & \\ \text { Blocks for designing and implementing various filters. }\end{array}\right\} \begin{array}{l}\text { Design and implement analog filters }\end{array}\right\} \begin{array}{l}\text { Filter each channel of input over time } \\ \text { using static or time-varying digital }\end{array}\right\}$

Dyadic Analysis Filter Bank	Decompose signals into subbands with smaller bandwidths and slower sample rates
Dyadic Synthesis Filter Bank	Reconstruct signals from subbands with smaller bandwidths and slower sample rates
FIR Decimation	Filter and downsample input signals
FIR Interpolation	Upsample and filter input signals Upsample, filter, and downsample
FIR Rate Conversion	input signals Decompose signal into a high-frequency subband and a
Two-Channel Analysis Subband	
Filter	low-frequency subband Reconstruct signal from a high-frequency subband and a low-frequency subband
Two-Channel Synthesis Subband	

Math Functions

The following sublibraries reside in the Math Functions library:

- "Math Operations"
- "Matrices and Linear Algebra"
- "Polynomial Functions"

Math Operations

Blocks for specialized math operations not provided in the Simulink math library.

Complex Exponential	Compute complex exponential function
Cumulative Product	Compute cumulative product of row or column elements

Cumulative Sum	Compute cumulative sum of row or column elements
dB Conversion	Convert magnitude data to decibels (dB or dBm)
dB Gain	Apply decibel gain
Difference	Compute element-to-element difference along rows or columns
Normalization	Normalize input by its 2-norm or squared 2-norm

Matrices and Linear Algebra

The following sublibraries reside in the Matrices and Linear Algebra sublibrary:

- "Linear System Solvers"
- "Matrix Factorizations"
- "Matrix Inverses"
- "Matrix Operations"

Linear System Solvers. Blocks that solve the matrix equation AX = B for X using various methods.

Backward Substitution

Cholesky Solver

Forward Substitution

LDL Solver

Levinson-Durbin

LU Solver

Solve $\mathrm{U} X=\mathrm{B}$ for X when U is an upper triangular matrix
Solve SX = B for X when S is square Hermitian positive definite matrix

Solve LX = B for X when L is lower triangular matrix
Solve $\mathrm{S} X=\mathrm{B}$ for X when S is square Hermitian positive definite matrix

Solve linear system of equations using Levinson-Durbin recursion

Solve AX = B for X when A is square matrix

QR Solver	Find minimum-norm-residual solution to $\mathrm{A} X=\mathrm{B}$
SVD Solver	Solve $A X=B$ using singular value decomposition
Matrix Factorizations. Blocks for factoring matrices using various methods.	
Cholesky Factorization	Factor square Hermitian positive definite matrix into triangular components
LDL Factorization	Factor square Hermitian positive definite matrices into lower, upper, and diagonal components
LU Factorization	Factor square matrix into lower and upper triangular components
QR Factorization	Factor rectangular matrix into unitary and upper triangular components
Singular Value Decomposition	Factor matrix using singular value decomposition
Matrix Inverses. Blocks for inverting matrices using various methods.	
LU Inverse	Compute inverse of square matrix using LU factorization
Cholesky Inverse	Compute inverse of Hermitian positive definite matrix using Cholesky factorization
LDL Inverse	Compute inverse of Hermitian positive definite matrix using LDL factorization
Pseudoinverse	Compute Moore-Penrose pseudoinverse of matrix

Matrix Operations. Blocks for various matrix operations such as extracting the diagonal, overwriting matrix values, and multiplying matrices.

Constant Diagonal Matrix	Generate square, diagonal matrix
Create Diagonal Matrix	Create square diagonal matrix from diagonal elements
Extract Diagonal	Extract main diagonal of input matrix
Extract Triangular Matrix	Extract lower or upper triangle from input matrices
Identity Matrix	Generate matrix with ones on the main diagonal and zeros elsewhere
Matrix 1-Norm	Compute the 1-norm of a matrix
Matrix Concatenation (Simulink	Concatenate inputs horizontally or vertically
block)	Compute matrix exponential Matrix Exponential Matrix Multiply
Matrix Product	Multiply matrix elements along rows or columns
Matrix Scaling	Scale matrix rows or columns by specified vector
Matrix Square	Compute square of input matrix
Matrix Sum	Sum matrix elements along rows or columns
Overwrite Values	Overwrite submatrix or subdiagonal of input
Permute Matrix	Reorder matrix rows or columns
Reciprocal Condition	Compute reciprocal condition of square matrix in the 1-norm
Submatrix	Select subset of elements (submatrix) from matrix input

Toeplitz	Generate matrix with Toeplitz symmetry
Transpose	Compute matrix transpose

Polynomial Functions

Blocks for working with polynomials.

Least Squares Polynomial Fit	Compute polynomial coefficients that best fit input data in least squares sense
Polynomial Evaluation	Evaluate polynomial expression
Polynomial Stability Test	Use Schur-Cohn algorithm to determine whether all roots of input polynomial are inside unit circle

Platform-Specific I/O

Windows (WIN32)

Blocks for working with audio data in 32-bit Windows operating systems.

From Wave Device	Read audio data from standard audio device in real-time (32-bit Windows operating systems only)
From Wave File	Read audio data from Microsoft Wave (.wav) file (32-bit Windows operating systems only)
To Wave Device	Send audio data to standard audio device in real-time (32-bit Windows operating systems only)
To Wave File	Write audio data to file in Microsoft Wave (.wav) format (32-bit Windows operating systems only)

Quantizers

Blocks for quantizing data.

G711 Codec	Encode linear, pulse code modulation (PCM) narrowband speech signals using A-law or mu-law encoders. Decode index values into quantized output values using A-law or mu-law decoders. Convert between A-law and mu-law index values.
Quantizer (Simulink block)	Discretize input at a specified interval
Scalar Quantizer Decoder	Convert each index value into quantized output value
Scalar Quantizer Design	Start Scalar Quantizer Design Tool (SQDTool) to design scalar quantizer using Lloyd algorithm
Scalar Quantizer Encoder	Encode each input value by associating it with the index value of a quantization region
Uniform Decoder	Decode integer input into floating-point output
Uniform Encoder	Quantize and encode floating-point input into integer output
Vector Quantizer Decoder	Find vector quantizer codeword that corresponds to a given, zero-based index value
Vector Quantizer Design	Design vector quantizer using Vector Quantizer Design Tool (VQDTool)
Vector Quantizer Encoder	For a given input, find index of nearest codeword based on Euclidean or weighted Euclidean distance measure

Signal Management

The following sublibraries reside in the Signal Management library:

- "Buffers"
- "Indexing"
- "Signal Attributes"
- "Switches and Counters"

Buffers

Blocks for changing the sample rate or frame rate of a signal by accumulating input samples before outputting them.

Buffer	Buffer input sequence to smaller or larger frame size
Delay Line	Rebuffer sequence of inputs with one-sample shift
Queue	Store inputs in FIFO register
Stack	Store inputs into LIFO register
Triggered Delay Line	Buffer sequence of inputs into frame-based output
Unbuffer	Unbuffer input frame into sequence of scalar outputs

Indexing

Blocks for manipulating the ordering of a signal such as selecting parts of a signal or flipping a signal.

Flip	Flip the input vertically or horizontally
Multiport Selector	Distribute arbitrary subsets of input rows or columns to multiple output ports
Overwrite Values	Overwrite submatrix or subdiagonal of input

Selector (Simulink block)

Submatrix
Select input elements from a vector or matrix signal

Select subset of elements (submatrix) from matrix input

Variable Selector
Select subset of rows or columns from input

Signal Attributes

Blocks for inspecting or modifying signal attributes such as frame status and complexity.

Check Signal Attributes	Generate error when input signal does or does not match selected attributes exactly
Convert 1-D to 2-D	Reshape 1-D or 2-D input to a 2-D matrix with specified dimensions
Convert 2-D to 1-D	Convert 2-D matrix input to 1-D vector
Data Type Conversion (Simulink	Convert input signal to specified data type
Frame Conversion	Specify frame status of output signal Change complexity of input to match
Inherit Complexity	a reference signal

Switches and Counters

Blocks for performing an action when an event such as a threshold crossing in the data occurs.

Counter Count up or down through specified range of numbers

Edge Detector
Detect transition from zero to a nonzero value

Event-Count Comparator	Detect threshold crossing of accumulated nonzero inputs
Multiphase Clock	Generate multiple binary clock signals
N-Sample Enable	Output ones or zeros for specified number of sample times
N-Sample Switch	Switch between two inputs after specified number of sample periods

Signal Operations

Blocks for performing operations on a signal.

Convolution	Compute convolution of two inputs
Delay	Delay discrete-time input by specified number of samples or frames
Downsample	Resample input at lower rate by deleting samples
Interpolation	Interpolate values of real input samples
Offset	Truncate vectors by removing or keeping beginning or ending values
Pad	Alter input size by padding or truncating rows and/or columns
Peak Finder	Find local maxima and/or minima of input signal
Repeat	Resample input at higher rate by repeating values
Sample and Hold	Sample and hold input signal
Unwrap	Unwrap signal phase
Upsample	Resample input at higher rate by inserting zeros

Variable Fractional Delay	Delay input by time-varying fractional number of sample periods
Variable Integer Delay	Delay input by time-varying integer number of sample periods
Window Function	Compute and/or apply window to input signal
Zero Crossing	Count number of times signal crosses zero in a single time step
Zero Pad	Alter input dimensions by zero-padding (or truncating) rows and/or columns

Signal Processing Sinks

Various scopes and blocks for exporting signals to the MATLAB workspace.

Display (Simulink block)	Show the value of the input
Matrix Viewer	Display matrices as color images
Signal To Workspace	Write simulation data to array in MATLAB workspace
Spectrum Scope	Compute and display the periodogram of each input signal
Time Scope (Simulink Block)	Display signals generated during simulation
Triggered To Workspace	Write input sample to MATLAB workspace when triggered
Vector Scope	Display vector or matrix of time-domain, frequency-domain, or user-defined data
Waterfall	View vectors of data over time

Signal Processing Sources

Blocks that generate discrete-time signals such as sine waves and uniform random signals.

Chirp	Generate swept-frequency cosine (chirp) signal
Constant Diagonal Matrix	Generate square, diagonal matrix Generate ramp signal with length based on input dimensions
Constant Ramp	Generate discrete impulse
Discrete Impulse	Generate discrete- or continuous-time constant signal
DSP Constant	Generate matrix with ones on the main diagonal and zeros elsewhere
Identity Matrix	Generate multiple binary clock signals
Multiphase Clock	Output ones or zeros for specified number of sample times
N-Sample Enable	Generate randomly distributed values
Random Source	Import signal from MATLAB workspace
Signal From Workspace	Generate continuous or discrete sine
Sine Wave	wave
Triggered Signal From Workspace	Import signal samples from MATLAB workspace when triggered

Statistics

Blocks for performing various statistical computations.

Autocorrelation	Compute autocorrelation of vector inputs
Correlation	Compute cross-correlation of two inputs
Detrend	Remove linear trend from vectors
Histogram	Generate histogram of input or sequence of inputs
Maximum	Find maximum values in an input or sequence of inputs
Mean	Find mean value of an input or sequence of inputs
Median	Find median value of an input
Minimum	Find minimum values in an input or sequence of inputs
RMS	Compute root-mean-square (RMS) value of an input or sequence of inputs
Sort	Sort input elements by value
Standard Deviation	Find standard deviation of an input or sequence of inputs
Variance	Compute variance of an input or sequence of inputs

Transforms

Blocks for computing various transforms.

Analytic Signal	Compute analytic signals of discrete-time inputs
Complex Cepstrum	Compute complex cepstrum of input

DCT	Compute discrete cosine transform (DCT) of input DWT
FFT	(DWT) of input (DWavelet transform
IDCT	Compute fast Fourier transform (FFT) of input Compute inverse discrete cosine transform (IDCT) of input
IDWT	Compute inverse discrete wavelet transform (IDWT) of input
IFFT	Compute inverse fast Fourier transform (IFFT) of input
Inverse Short-Time FFT	Recover time-domain signals by performing an inverse short-time, fast
Magnitude FFT	Fourier transform (FFT) Compute a nonparametric estimate of the spectrum using the periodogram
method.	

Blocks - Alphabetical List

This section contains block reference pages listed alphabetically.

Analog Filter Design

Purpose	Design and implement analog filters
Liltering / Filter Designs	

The table below lists the available parameters for each design/band combination. For lowpass and highpass band configurations, these parameters include the passband edge frequency Ω_{p}, the stopband edge frequency Ω_{s}, the passband ripple R_{p}, and the stopband attenuation R_{s}. For bandpass and bandstop configurations, the parameters include the lower and upper passband edge frequencies, $\Omega_{\mathrm{p} 1}$ and $\Omega_{\mathrm{p} 2}$, the lower and upper stopband edge frequencies, $\Omega_{\mathrm{s} 1}$ and $\Omega_{\mathrm{s} 2}$, the passband ripple R_{p}, and the stopband attenuation R_{s}. Frequency values are in rad/s, and ripple and attenuation values are in dB .

Analog Filter Design

	Lowpass	Highpass	Bandpass	Bandstop
Butterworth	Order, $\Omega_{\text {p }}$	Order, $\Omega_{\text {p }}$	Order, $\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$	Order, $\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}$
Chebyshev Type I	Order, $\Omega_{\mathrm{p}}, \mathrm{R}_{\mathrm{p}}$	Order, $\Omega_{\mathrm{p}}, \mathrm{R}_{\mathrm{p}}$	$\begin{gathered} \text { Order, } \Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2} \\ \mathrm{R}_{\mathrm{p}} \end{gathered}$	Order, $\Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2}, \mathrm{R}_{\mathrm{p}}$
Chebyshev Type II	Order, $\Omega_{\mathrm{s}}, \mathrm{R}_{\mathrm{s}}$	Order, $\Omega_{\mathrm{s}}, \mathrm{R}_{\mathrm{s}}$	Order, $\Omega_{\mathrm{s} 1}, \Omega_{\mathrm{s} 2}, \mathrm{R}_{\mathrm{s}}$	Order, $\Omega_{\mathrm{s} 1}, \Omega_{\mathrm{s} 2}, \mathrm{R}_{\mathrm{s}}$
Elliptic	Order, $\Omega_{\mathrm{p}}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$	Order, $\Omega_{\mathrm{p}}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$	$\begin{aligned} & \text { Order, } \Omega_{\mathrm{p} 1}, \Omega_{\mathrm{p} 2} \\ & \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}} \end{aligned}$	Order, $\underset{\mathrm{R}_{\mathrm{p} 1}}{\mathrm{R}_{\mathrm{p} 2}, \mathrm{R}_{\mathrm{p}}}$,

The analog filters are designed using the Signal Processing Toolbox's filter design commands buttap, cheb1ap, cheb2ap, and ellipap, and are implemented in state-space form. Filters of order 8 or less are implemented in controller canonical form for improved efficiency.

Dialog Box

Block Parameters: Analog Filter Design x				
Analog Filter Design (mask) (link) Design one of several standard analog filters, implemented in state-space form.				
Parameters				
Design method: Butterworth				
Filter type: Lowpass				
Filter order:				
8				
Passband edge frequency (rads/sec):				
30				
OK	Cancel	Help	$\Delta p p l y$	

The parameters displayed in the dialog box vary for different design/band combinations. Only some of the parameters listed below are visible in the dialog box at any one time.

Design method

The filter design method: Butterworth, Chebyshev type I, Chebyshev type II, or Elliptic. Tunable.

Analog Filter Design

Filter type

The type of filter to design: Lowpass, Highpass, Bandpass, or Bandstop. Tunable.

Filter order

The order of the filter, for lowpass and highpass configurations. For bandpass and bandstop configurations, the order of the final filter is twice this value.

Passband edge frequency

The passband edge frequency, in $\mathrm{rad} / \mathrm{s}$, for the highpass and lowpass configurations of the Butterworth, Chebyshev type I, and elliptic designs. Tunable.

Lower passband edge frequency

The lower passband frequency, in $\mathrm{rad} / \mathrm{s}$, for the bandpass and bandstop configurations of the Butterworth, Chebyshev type I, and elliptic designs. Tunable.

Upper passband edge frequency

The upper passband frequency, in rad/s, for the bandpass and bandstop configurations of the Butterworth, Chebyshev type I, or elliptic designs. Tunable.

Stopband edge frequency

The stopband edge frequency, in rad/s, for the highpass and lowpass band configurations of the Chebyshev type II design. Tunable.

Lower stopband edge frequency

The lower stopband edge frequency, in rad/s, for the bandpass and bandstop configurations of the Chebyshev type II design. Tunable.

Upper stopband edge frequency

The upper stopband edge frequency, in rad/s, for the bandpass and bandstop filter configurations of the Chebyshev type II design. Tunable.

Passband ripple in dB

The passband ripple, in dB , for the Chebyshev Type I and elliptic designs. Tunable.

Analog Filter Design

Stopband attenuation in dB

The stopband attenuation, in dB , for the Chebyshev Type II and elliptic designs. Tunable.

Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd ed. New York, NY: McGraw-Hill, 1993.

Supported Data Types

See Also

- Double-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Digital Filter Design	Signal Processing Blockset
buttap	Signal Processing Toolbox
cheb1ap	Signal Processing Toolbox
cheb2ap	Signal Processing Toolbox
ellipap	Signal Processing Toolbox

See the following sections for related information:

- Chapter 3, "Filters"
- "Analog Filter Design Block" on page 3-51

Analytic Signal

Purpose
 Compute analytic signals of discrete-time inputs

Library

Transforms

Description

The Analytic Signal block computes the complex analytic signal corresponding to each channel of the real M-by-N input, u

$$
y=u+j \mathrm{H}\{u\}
$$

where $j=\sqrt{-1}$ and $\mathrm{H}\}$ denotes the Hilbert transform. The real part of the output in each channel is a replica of the real input in that channel; the imaginary part is the Hilbert transform of the input. In the frequency domain, the analytic signal retains the positive frequency content of the original signal while zeroing-out negative frequencies and doubling the DC component.

The block computes the Hilbert transform using an equiripple FIR filter with the order specified by the Filter order parameter, n. The linear phase filter is designed using the Remez exchange algorithm, and imposes a delay of $n / 2$ on the input samples.

The output has the same dimension and frame status as the input.

Sample-Based Operation

When the input is sample based, each of the $\mathrm{M} * \mathrm{~N}$ matrix elements represents an independent channel. Thus, the block computes the analytic signal for each channel (matrix element) over time.

Frame-Based Operation

When the input is frame based, each of the N columns in the matrix contains M sequential time samples from an independent channel, and the block computes the analytic signal for each channel over time.

Dialog Box

Analytic Signal

Filter order

The length of the FIR filter used to compute the Hilbert transform.

Supported
Data Types

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Purpose Compute autocorrelation of vector inputs

Library Statistics

Description

The Autocorrelation block computes the autocorrelation of each channel in an input matrix or vector, u. The block computes the autocorrelation along each column of a frame-based input, and computes along the vector dimension of a sample-based vector input. The block does not accept sample-based matrix inputs. Outputs are always sample based.

M-by-N matrix inputs must be frame based. The result, y, is a sample-based $(l+1)$-by-N matrix whose j th column has elements

$$
y_{i, j}=\sum_{k=1}^{M} u_{k, j}^{*} u_{(k+i-1), j} \quad 1 \leq i \leq(l+1)
$$

where $*$ denotes the complex conjugate, and l represents the maximum lag. Note that $y_{1, j}$ is the zero-lag element in the j th column. When you select Compute all non-negative lags, $l=\mathrm{M}$. Otherwise, l is specified as a nonnegative integer by the Maximum non-negative lag (less than input length) parameter.

Input u is zero when indexed outside of its valid range. When the input is real, the output is real; otherwise, the output is complex.

When the input is a sample-based vector (row, column, or 1-D), the output is sample based, with the same shape as the input and length $l+1$. The block computes the autocorrelation of sample-based vector inputs along the vector dimensions. The Autocorrelation block does not accept a sample-based full-dimension matrix input.

The Autocorrelation block accepts both real and complex fixed-point and floating-point inputs. Fixed-point signals are not supported for the frequency domain.

Fixed-Point Data Types

The following diagram shows the data types used within the Autocorrelation block for fixed-point signals (time domain only).

Autocorrelation

You can set the product output, accumulator, and output data types in the block dialog as discussed below.

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Dialog Box The Main pane of the Autocorrelation block dialog appears as follows:

Autocorrelation

Compute all non-negative lags

Select to compute the autocorrelation over all nonnegative lags in the range [0, length (input) - 1].

Maximum non-negative lag (less than input length)

Specify the maximum positive lag, l, for the autocorrelation. This parameter is enabled when you do not select the Compute all non-negative lags check box.

Scaling

This parameter controls the scaling that is applied to the output. The following options are available:

- None - Generates the raw autocorrelation, $y_{i, j}$, without normalization
- Biased - Generates the biased estimate of the autocorrelation

Autocorrelation

$$
y_{i, j}^{\text {biased }}=\frac{y_{i, j}}{M}
$$

- Unbiased - Generates the unbiased estimate of the autocorrelation

$$
y_{i, j}^{\text {unbiased }}=\frac{y_{i, j}}{M-i}
$$

- Unity at zero-lag - Normalizes the estimate of the autocorrelation for each channel so that the zero-lag sum is identically 1

$$
y_{1, j}=1
$$

Note The Scaling parameter must be set to None for fixed-point signals.

This parameter is tunable, except in the Simulink external mode.

Computation domain

This parameter sets the domain in which the block computes convolutions to one of the following settings:

- Time - Computes in the time domain, which minimizes memory use
- Frequency - Computes in the frequency domain, which might require fewer computations than computing in the time domain, depending on the input length

Note This parameter must be set to Time for fixed-point signals.

The Fixed-point pane of the Autocorrelation block dialog appears as follows:

Autocorrelation

Note Fixed-point signals are only supported for the time domain. To use the parameters on this pane, make sure Time is selected for the Computation domain parameter on the Main pane.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on

Autocorrelation

page 9-27 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:
ideal product output word length $=2 \times$ input word length
ideal product output fraction length $=2 \times$ input fraction length

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as
each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.
You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information.

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:
If the input is real:
ideal accumulator word length = ideal product output word length + floor $(\log 2($ number of samples per channel -1$))+1$
ideal accumulator fraction length $=$ ideal product output fraction length

If the input is complex:
ideal accumulator word length = ideal product output word length

+ floor $(\log 2($ number of samples per channel -1$))+2$
ideal accumulator fraction length $=$ ideal product output fraction length

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.

Autocorrelation

- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Autocorrelation

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
A special case occurs when Inherit via internal rule is specified for Accumulator, and the block input is complex. In that case, the output word length will be one less than the accumulator word length.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported - Double-precision floating point Data Types
 - Single-precision floating point
 - Fixed point (signed only)
 - 8 -, 16-, and 32 -bit signed integers
 To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Correlation
xcorr

Signal Processing Blockset
Signal Processing Toolbox

Autocorrelation LPC

Purpose Determine coefficients of Nth-order forward linear predictors
Library Estimation / Linear Prediction

Description

Algorithm

Autocorrelation LPC

$$
\min _{x \in \Re^{n}}\|\tilde{U a}-b\|
$$

where |||| indicates the 2-norm and

$$
U=\left[\begin{array}{cccc}
u_{1} & 0 & \cdots & 0 \\
u_{2} & u_{1} & \ddots & \vdots \\
\vdots & u_{2} & \ddots & 0 \\
\vdots & \vdots & \ddots & u_{1} \\
\vdots & \vdots & \vdots & u_{2} \\
\vdots & \vdots & \vdots & \vdots \\
u_{M} & \vdots & \vdots & \vdots \\
0 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & u_{M}
\end{array}\right], \quad \tilde{a}=\left[\begin{array}{c}
a_{2} \\
\vdots \\
a_{n+1}
\end{array}\right], \quad b=\left[\begin{array}{c}
u_{2} \\
u_{3} \\
\vdots \\
u_{M} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Solving the least squares problem via the normal equations

$$
U^{*} U \tilde{a}=U^{*} b
$$

leads to the system of equations

$$
\left[\begin{array}{cccc}
r_{1} & r_{2}^{*} & \cdots & r_{n}^{*} \\
r_{2} & r_{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & r_{2}^{*} \\
r_{n} & \cdots & r_{2} & r_{1}
\end{array}\right]\left[\begin{array}{c}
a_{2} \\
a_{3} \\
\vdots \\
a_{n+1}
\end{array}\right]=\left[\begin{array}{c}
-r_{2} \\
-r_{3} \\
\vdots \\
-r_{n+1}
\end{array}\right]
$$

where $r=\left[\begin{array}{llll}r_{1} & r_{2} & r_{3} & \ldots \\ r_{n+1}\end{array}\right]^{\mathrm{T}}$ is an autocorrelation estimate for u computed using the Autocorrelation block, and *indicates the complex conjugate transpose. The normal equations are solved in $O\left(n^{2}\right)$ operations by the Levinson-Durbin block.

Note that the solution to the LPC problem is very closely related to the Yule-Walker AR method of spectral estimation. In that context, the normal equations above are referred to as the Yule-Walker AR equations.

Autocorrelation LPC

Dialog Box

References

Output(s)

The type of prediction coefficients output by the block. The block can output polynomial coefficients (A), reflection coefficients (K), or both (A and K).

Output prediction error power (P)

When selected, enables port P , which outputs the output prediction error power.

Inherit prediction order from input dimensions

When selected, the block inherits the prediction order from the input dimensions.

Prediction order (N)

The prediction order, N. This parameter is disabled when you select the Inherit prediction order from input dimensions parameter.

Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

Ljung, L. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice Hall, 1987. Pgs. 278-280.
Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Autocorrelation LPC

Supported Data Types	- Double-precision floating point - Single-precision floating point	
	To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.	
See Also	Autocorrelation	Signal Processing Blockset
	Levinson-Durbin	Signal Processing Blockset
	Yule-Walker Method	Signal Processing Blockset
	lpc	Signal Processing Toolbox

Backward Substitution

Purpose
Library
Description

Dialog Box

Supported Data Types

Solve $\mathrm{U} X=\mathrm{B}$ for X when U is an upper triangular matrix
Math Functions / Matrices and Linear Algebra / Linear System Solvers
The Backward Substitution block solves the linear system $U X=B$ by simple backward substitution of variables, where U is the upper triangular M-by-M matrix input to the U port, and B is the $M-b y-N$ matrix input to the B port. The output is the solution of the equations, the $\mathrm{M}-\mathrm{by}-\mathrm{N}$ matrix X, and is always sample based. The block does not check the rank of the inputs.

The block uses only the elements in the upper triangle of input U ; the lower elements are ignored. When you select the Force input to be unit-upper triangular check box, the block replaces the elements on the diagonal of U with 1's. This is useful when matrix U is the result of another operation, such as an LDL decomposition, that uses the diagonal elements to represent the D matrix.

A length- M vector input at port B is treated as an M -by- 1 matrix.

Force input to be unit-upper triangular

Replaces the elements on the diagonal of U with 1's when selected. Tunable.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Cholesky Solver	Signal Processing Blockset
Forward Substitution	Signal Processing Blockset
LDL Solver	Signal Processing Blockset
Levinson-Durbin	Signal Processing Blockset
LU Solver	Signal Processing Blockset
QR Solver	Signal Processing Blockset

See "Solving Linear Systems" on page 6-6 for related information.

Biquadratic Filter

Note The Biquadratic Filter block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

Purpose

Library
Description
BiQuad

Apply a cascade of biquadratic (second-order section) filters to the input.
dspobslib
The Biquadratic Filter block applies a cascade of biquadratic filters independently to each input channel. Biquadratic filters are useful for reduced precision implementations because the coefficients are bounded between ± 2 for typical minimum-phase designs. This may reduce scaling and coefficient sensitivity problems.

The filter is constructed from L second-order sections, each having a quadratic numerator and denominator.

$$
H(z)=\prod_{k=1}^{L} H_{k}(z)=\prod_{k=1}^{L} \frac{b_{1 k}+b_{2 k} z^{-1}+b_{3 k} z^{-2}}{a_{1 k}+a_{2 k} z^{-1}+a_{3 k} z^{-2}}
$$

The figure below illustrates the structure of a 4th-order biquadratic filter ($\mathrm{L}=2$) with states $v_{i k}$, where k is the section number.

Biquadratic Filter

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The SOS matrix parameter specifies the filter coefficients as a second-order section matrix of the type produced by the ss2sos and tf2sos functions in the Signal Processing Toolbox.

$$
\left[\begin{array}{cccccc}
b_{11} & b_{21} & b_{31} & a_{11} & a_{21} & a_{31} \\
b_{12} & b_{22} & b_{32} & a_{12} & a_{22} & a_{32} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_{1 L} & b_{2 L} & b_{3 L} & a_{1 L} & a_{2 L} & a_{3 L}
\end{array}\right] \quad a_{11}=a_{12}=\ldots=a_{1 L}=
$$

This is an L-by-6 matrix whose rows contain the numerator and denominator coefficients $b_{i k}$ and $a_{i k}$ of each second-order section in $H(z)$. Use the ss2sos and tf2sos functions to convert a state-space or transfer-function description of the filter into the second-order section description used by this block. Note that the filter uses a value of 1 for the zero-delay denominator coefficients (a_{11} to $a_{1 \mathrm{~L}}$) regardless of the value specified in the SOS matrix parameter.
The Initial conditions parameter sets the initial filter states, and can be specified in the following different forms:

- Scalar to be used for all filter states ($v_{11}, v_{12}, \ldots, v_{1 \mathrm{~L}}, v_{21} v_{22}, \ldots, v_{2 \mathrm{~L}}$) in all channels. An empty vector, [], is the same as the scalar value 0 .
- Vector of length $2 * \mathrm{~L}$ (row or column) to initialize the filter states for all channels.

$$
[\underbrace{v_{11} v_{21}}_{H_{1}(z)} \underbrace{v_{12} v_{22}}_{H_{2}(z)} \cdots \underbrace{v_{1 L} v_{2 L}}_{H_{\mathrm{L}}(z)}]
$$

Each pair of elements specifies $v_{1 k}$ and $v_{2 k}$ for second-order section k in every channel.

- Matrix of dimension $(2 * \mathrm{~L})$-by- N containing the initial filter states for each of the N channels.

Biquadratic Filter

Each pair of elements in a column specifies $v_{1 k}$ and $v_{2 k}$ for second-order section k of the corresponding channel.

Dialog Box

SOS matrix

The second-order section matrix specifying the filter's coefficients. This matrix can be generated from state-space or transfer-function descriptions by using the Signal Processing Toolbox functions ss2sos and tf2sos.

Initial conditions

The filter's initial conditions, a scalar, vector, or matrix.

Block LMS Filter

Purpose

Library

Description

Input	Output
Desired Block	
Step-size LMS	Etror
Adapt	
Reset	wits

Compute filtered output, filter error, and filter weights for a given input and desired signal using Block LMS adaptive filter algorithm

Filtering / Adaptive Filters

The Block LMS Filter block implements an adaptive least mean-square (LMS) filter, where the adaptation of filter weights occurs once for every block of samples. The block estimates the filter weights, or coefficients, needed to minimize the error, $e(n)$, between the output signal, $y(n)$, and the desired signal, $d(n)$. Connect the signal you want to filter to the Input port. This input signal can be a sample-based scalar or a single-channel frame-based signal.
Connect the signal you want to model to the Desired port. The desired signal must have the same data type, frame status, complexity, and dimensions as the input signal. The Output port outputs the filtered input signal, which can be sample or frame based. The Error port outputs the result of subtracting the output signal from the desired signal.

The block calculates the filter weights using the Block LMS adaptive filter algorithm. This algorithm is defined by the following equations.

$$
\begin{gathered}
n=k N+i \\
y(n)=\mathbf{w}^{T}(k-1) \mathbf{u}(n) \\
e(n)=d(n)-y(n) \\
\mathbf{w}(k)=\mathbf{w}(k-1)+f(\mathbf{u}(n), e(n), \mu)
\end{gathered}
$$

The weight update function for the Block LMS adaptive filter algorithm is defined as

$$
f(\mathbf{u}(n), e(n), \mu)=\mu \sum_{i=0}^{N-1} \mathbf{u}^{*}(k N+i) e(k N+i)
$$

Block LMS Filter

The variables are as follows.

Variable	Description
n	The current time index
i	The iteration variable in each block, $0 \leq i \leq N-1$
k	The block number
N	The block size
$\mathbf{u}(n)$	The vector of buffered input samples at step n
$\mathbf{w}(n)$	The vector of filter-tap estimates at step n
$y(n)$	The filtered output at step n
$e(n)$	The estimation error at time n
$d(n)$	The desired response at time n
μ	The adaptation step size

Use the Filter length parameter to specify the length of the filter weights vector.

The Block size parameter determines how many samples of the input signal are acquired before the filter weights are updated. The input frame length must be a multiple of the Block size parameter.

The adaptation Step-size (mu) parameter corresponds to μ in the equations. You can either specify a step-size using the input port, Step-size, or enter a value in the Block Parameters: Block LMS Filter dialog box.

Use the Leakage factor ($\mathbf{0}$ to 1) parameter to specify the leakage factor, $0<1-\mu \alpha \leq 1$, in the leaky LMS algorithm shown below.

$$
\mathbf{w}(k)=(1-\mu \alpha) \mathbf{w}(k-1)+f(\mathbf{u}(n), e(n), \mu)
$$

Enter the initial filter weights as a vector or a scalar in the Initial value of filter weights text box. When you enter a scalar, the block uses the scalar

Block LMS Filter

value to create a vector of filter weights. This vector has length equal to the filter length and all of its values are equal to the scalar value

When you select the Adapt port check box, an Adapt port appears on the block. When the input to this port is greater than zero, the block continuously updates the filter weights. When the input to this port is zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset input parameter. The block resets the filter weights whenever a reset event is detected at the Reset port. The reset signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To enable the Reset port, select one of the following from the Reset input list:

- Rising edge - Triggers a reset operation when the Reset input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure).

- Falling edge - Triggers a reset operation when the Reset input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (See the following figure.)

Block LMS Filter

- Either edge - Triggers a reset operation when the Reset input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Reset input is not zero

Abstract

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the block outputs the current updated filter weights from this port.

Block LMS Filter

Dialog Box

Filter length

Enter the length of the FIR filter weights vector.

Block size

Enter the number of samples to acquire before the filter weights are updated. The input frame length must be an integer multiple of the block size.

Block LMS Filter

Specify step-size via

Select Dialog to enter a value for mu in the Block parameters: LMS Filter dialog box. Select Input port to specify mu using the Step-size input port.

Step-size (mu)

Enter the step-size. Tunable.

Leakage factor (0 to 1)

Enter the leakage factor, $0<1-\mu \alpha \leq 1$. Tunable.

Initial value of filter weights

Specify the initial values of the FIR filter weights.

Adapt port

Select this check box to enable the Adapt input port.

Reset input

Select this check box to enable the Reset input port.

Output filter weights

Select this check box to export the filter weights from the Wts port.

References

Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley \& Sons, 1996.

Supported
 Data Types

Port	Supported Data Types				
Input	• Double-precision floating point				
	• Single-precision floating point	$	$	Desired	• Double-precision floating point
:---	:---				
	- Single-precision floating point				

Block LMS Filter

Port	Supported Data Types
Adapt	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Reset	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point
Error	- Double-precision floating point - Single-precision floating point
Wts	- Double-precision floating point - Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Kalman Adaptive Filter	Signal Processing Blockset
LMS Filter	Signal Processing Blockset
RLS Filter	Signal Processing Blockset
Fast Block LMS Filter	Signal Processing Blockset

See "Adaptive Filters" on page 3-53 for related information.

Buffer

Purpose
Buffer input sequence to smaller or larger frame size
Library
Signal Management / Buffers
Description

The Buffer block redistributes the input samples to a new frame size, larger or smaller than the input frame size. Buffering to a larger frame size yields an output with a slower frame rate than the input, as illustrated below for scalar input.

Buffering to a smaller frame size yields an output with a faster frame rate than the input, as illustrated below for scalar output.

The block coordinates the output frame size and frame rate of nonoverlapping buffers so that the sample period of the signal is the same at both the input and output, $\mathrm{T}_{\mathrm{s} 0}=\mathrm{T}_{\mathrm{si}}$.

This block supports triggered subsystems when the block's input and output rates are the same.

Sample-Based Operation

Sample-based inputs are interpreted by the Buffer block as independent channels of data. Thus, a sample-based length-N vector input is interpreted as N independent samples.

In sample-based operation, the Buffer block creates frame-based outputs from sample-based inputs. A sequence of sample-based length-N vector inputs (1-D, 2-D row, or 2-D column) is buffered into an M_{0}-by- N matrix, where M_{0} is
specified by the Output buffer size parameter $\left(\mathrm{M}_{0}>1\right)$. That is, each input vector becomes a row in the N-channel frame-based output matrix. When $M_{0}=1$, the input is simply passed through to the output, and retains the same dimension.

Sample-based full-dimension matrix inputs are not accepted.
The Buffer overlap parameter, L, specifies the number of samples (rows) from the current output to repeat in the next output, where $L<\mathrm{M}_{0}$. For $0 \leq \mathrm{L}<\mathrm{M}_{0}$, the number of new input samples that the block acquires before propagating the buffered data to the output is the difference between the Output buffer size and Buffer overlap, $\mathrm{M}_{0}-\mathrm{L}$.

The output frame period is $\left(\mathrm{M}_{0}-\mathrm{L}\right) * \mathrm{~T}_{\mathrm{si}}$, which is equal to the input sequence sample period, T_{si}, when the Buffer overlap is $\mathrm{M}_{0}-1$. For $\mathrm{L}<0$, the block simply discards L input samples after the buffer fills, and outputs the buffer with period $\left(\mathrm{M}_{0}-\mathrm{L}\right) * \mathrm{~T}_{\mathrm{si}}$, which is longer than the zero-overlap case.
In the model below, the block buffers a four-channel sample-based input using a Output buffer size of 3 and a Buffer overlap of 1 .

Note that the input vectors do not begin appearing at the output until the second row of the second matrix. This is due to the block's latency (see "Latency" below). The first output matrix (all zeros in this example) reflects the block's Initial conditions setting, while the first row of zeros in the second
output is a result of the one-sample overlap between consecutive output frames.

You can use the rebuffer_delay function with a frame size of 1 to precisely compute the delay (in samples) for sample-based signals. For the above example,

```
d = rebuffer_delay(1,3,1)
d =
4
```

This agrees with the four samples of delay (zeros) per channel shown in the figure above.

Frame-Based Operation

In frame-based operation, the Buffer block redistributes the samples in the input frame to an output frame with a new size and rate. A sequence of M_{i}-by-N matrix inputs is buffered into a sequence of M_{0}-by- N frame-based matrix outputs, where M_{0} is the output frame size specified by the Output buffer size parameter (that is, the number of consecutive samples from the input frame to buffer into the output frame). M_{0} can be greater or less than the input frame size, M_{i}. Each of the N input channels is buffered independently.

The Buffer overlap parameter, L, specifies the number of samples (rows) from the current output to repeat in the next output, where $L<M_{0}$. For $0 \leq L<M_{0}$, the number of new input samples the block acquires before propagating the buffered data to the output is the difference between the Output buffer size and Buffer overlap, $\mathrm{M}_{0}-\mathrm{L}$.

The input frame period is $\mathrm{M}_{\mathrm{i}} * \mathrm{~T}_{\mathrm{si}}$, where T_{si} is the sample period. The output frame period is $\left(\mathrm{M}_{0}-\mathrm{L}\right) * \mathrm{~T}_{\mathrm{si}}$, which is equal to the sequence sample period when the Buffer overlap is $\mathrm{M}_{0}-1$. The output sample period is therefore related to the input sample period by

$$
T_{s o}=\frac{\left(M_{o}-L\right) T_{s i}}{M_{o}}
$$

Negative Buffer overlap values are not permitted.
In the model below, the block buffers a two-channel frame-based input using a Output buffer size of 3 and a Buffer overlap of 1 .

Note that the sequence is delayed by eight samples, which is the latency of the block in the Simulink multitasking mode for the parameter settings of this example (see "Latency" below). The first eight output samples therefore adopt the value specified for the Initial conditions, which is assumed here to be zero. Use the rebuffer_delay function to determine the block's latency for any combination of frame size and overlap.

Latency

Zero Latency

In the Simulink single tasking mode, the Buffer block has zero tasking latency (the first input sample, received at $t=0$, appears as the first output sample) for the following special cases:

- Scalar input and output $\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}}=1\right)$ with zero or negative Buffer overlap ($L \leq 0$)
- Input frame size is integer multiple of the output frame size $\left(\mathrm{M}_{\mathrm{i}}=k \mathrm{M}_{0}\right.$, for k an integer) with zero Buffer overlap ($L=0$); notable cases of this include
- Any input frame size M_{i} with scalar output $\left(M_{0}=1\right)$ and zero Buffer overlap ($\mathrm{L}=0$)
- Equal input and output frame sizes $\left(M_{0}=M_{i}\right)$ with zero Buffer overlap ($L=0$)

Nonzero Latency

Sample-Based Operation. For all cases of sample-based single-tasking operation other than those listed above, the Buffer block's buffer is initialized to the

Buffer

value(s) specified by the Initial conditions parameter, and the block reads from this buffer to generate the first D output samples, where

$$
D=\left\{\begin{array}{cc}
M_{o}+L & (L \geq 0) \\
M_{o} & (L<0)
\end{array}\right.
$$

When the Buffer overlap, L, is zero, the Initial conditions parameter can be a scalar to be repeated across the first M_{0} output samples, or a length- M_{0} vector containing the values of the first M_{0} output samples. For nonzero Buffer overlap, the Initial conditions parameter must be a scalar.

Frame-Based Operation. For frame-based single-tasking operation and all multitasking operation, use the rebuffer_delay function to compute the exact delay (in samples) that the Buffer block introduces for a given combination of buffer size and buffer overlap.

For general buffering between arbitrary frame sizes, the Initial conditions parameter must be a scalar value, which is then repeated across all elements of the initial output(s). However, in the special case where the input is $1-b y-N$ (and the block's output is therefore an M_{0}-by-N matrix), Initial conditions can be

- An M_{0}-by-N matrix
- A length- M_{o} vector to be repeated across all columns of the initial output(s)
- A scalar to be repeated across all elements of the initial output(s)

In the special case where the output is 1-by-N (the result of unbuffering an M_{i}-by-N frame-based matrix), Initial conditions can be

- A vector containing M_{i} samples to output sequentially for each channel during the first M_{i} sample times
- A scalar to be repeated across all elements of the initial output(s)

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on
models with multiple sample rates in the Real-Time Workshop documentation.

Dialog Box

Wi Block Parameters: Buffer ? ${ }^{\text {? }}$? \times	
Buffer (mask) (link) Convert scalar samples to a fram convert a frame to a smaller or la For calculation of sample delay,	ut at a low with opt rebuffer_	rate. rlap. ction.		
Parameters Output buffer size (per channel): 国 Buffer overlap: 0 Initial conditions: 0				
QK	Cancel	Help	$\Delta \mathrm{Apply}$	

Output buffer size

The number of consecutive samples, M_{0}, from each channel to buffer into the output frame.

Buffer overlap

The number of samples, L, by which consecutive output frames overlap.

Initial conditions

The value of the block's initial output for cases of nonzero latency; a scalar, vector, or matrix.

Buffer

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Delay Line
Unbuffer
rebuffer_delay

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

See "Converting Sample and Frame Rates" on page 2-12 and "Converting Frame Status" on page 2-34 for more information.

Burg AR Estimator

Purpose

Library

Description

Bug AR ${ }^{A}$ Estimator $_{G}$

Compute estimate of autoregressive (AR) model parameters using Burg method

Estimation / Parametric Estimation

The Burg AR Estimator block uses the Burg method to fit an autoregressive (AR) model to the input data by minimizing (least squares) the forward and backward prediction errors while constraining the AR parameters to satisfy the Levinson-Durbin recursion.

The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only) representing a frame of consecutive time samples from a single-channel signal, which is assumed to be the output of an AR system driven by white noise. The block computes the normalized estimate of the AR system parameters, $A(z)$, independently for each successive input frame.

$$
H(z)=\frac{G}{A(z)}=\frac{G}{1+a(2) z^{-1}+\ldots+a(p+1) z^{-p}}
$$

When you select the Inherit estimation order from input dimensions parameter, the order, p, of the all-pole model is one less that the length of the input vector. Otherwise, the order is the value specified by the Estimation order parameter.

The Output(s) parameter allows you to select between two realizations of the AR process:

- A - The top output, A, is a column vector of length $p+1$ with the same frame status as the input, and contains the normalized estimate of the AR model polynomial coefficients in descending powers of z.
[1 a (2) $\ldots a(p+1)]$
- K - The top output, K , is a column vector of length p with the same frame status as the input, and contains the reflection coefficients (which are a secondary result of the Levinson recursion).
- A and K - The block outputs both realizations.

The scalar gain, G, is provided at the bottom output (G).

Burg AR Estimator

The following table compares the features of the Burg AR Estimator block to
the Covariance AR Estimator, Modified Covariance AR Estimator, and
Yule-Walker AR Estimator blocks.

	Burg AR Estimator	Covariance AR Estimator	Modified Covariance AR Estimator	Yule-Walker AR Estimator
Characteristics	Does not apply window to data	Does not apply window to data	Does not apply window to data	Applies window to data
	Minimizes the forward and backward prediction errors in the least squares sense, with the AR coefficients constrained to satisfy the L-D recursion	Minimizes the forward prediction error in the least squares sense	Minimizes the forward and backward prediction errors in the least squares sense	Minimizes the forward prediction error in the least squares sense (also called "Autocorrelation method")
Advantages	Always produces a stable model			Always produces a stable model
Disadvantages		May produce unstable models	May produce unstable models	Performs relatively poorly for short data records
Conditions for Nonsingularity		Order must be less than or equal to half the input frame size	Order must be less than or equal to $2 / 3$ the input frame size	Because of the biased estimate, the autocorrelation matrix is guaranteed to positive-definite, hence nonsingular

Burg AR Estimator

Dialog Box

References

Output(s)

The realization to output, model coefficients, reflection coefficients, or both.

Inherit estimation order from input dimensions

When selected, sets the estimation order p to one less than the length of the input vector.

Estimation order

The order of the AR model, p. This parameter is enabled when you do not select Inherit estimation order from input dimensions.

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point

Burg AR Estimator

Port	Supported Data Types
A	• Double-precision floating point • Single-precision floating point
G	- Double-precision floating point

The output data type is the same as the input data type. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Burg Method Covariance AR Estimator Modified Covariance AR Estimator Yule-Walker AR Estimator arburg
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

Burg Method

Purpose	Compute parametric spectral estimate using Burg method
Library	Estimation / Power Spectrum Estimation
	The Burg Method block estimates the power spectral density (PSD) of the input frame using the Burg method. This method fits an autoregressive (AR) model to the signal by minimizing (least squares) the forward and backward prediction errors while constraining the AR parameters to satisfy the Levinson-Durbin recursion.
	The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only) representing a frame of consecutive time samples from a single-channel signal. The block's output (a column vector) is the estimate of the signal's power spectral density at $\mathrm{N}_{\mathrm{fft}}$ equally spaced frequency points in the range $\left[0, \mathrm{~F}_{\mathrm{s}}\right.$), where F_{s} is the signal's sample frequency. When you select the Inherit estimation order from input dimensions parameter, the order of the all-pole model is one less that the input frame size. Otherwise, the order is the value specified by the Estimation order parameter. The spectrum is computed from the FFT of the estimated AR model parameters.
	When you select the Inherit FFT length from estimation order parameter, $\mathrm{N}_{\mathrm{fft}}$ is specified by the frame size of the input, which must be a power of 2. When you do not select Inherit FFT length from estimation order, $\mathrm{N}_{\mathrm{fft}}$ is specified as a power of 2 by the FFT length parameter, and the block zero pads or truncates the input to $\mathrm{N}_{\mathrm{fft}}$ before computing the FFT. The output is always sample based.
	The Burg Method and Yule-Walker Method blocks return similar results for large frame sizes. The following table compares the features of the Burg Method block to the Covariance Method, Modified Covariance Method, and Yule-Walker Method blocks.

Burg Method

$\left.\begin{array}{l|l|l|l|l}\hline & \text { Burg } & \text { Covariance } & \text { Modified Covariance } & \text { Yule-Walker } \\ \hline \text { Characteristics } & \begin{array}{l}\text { Does not apply } \\ \text { window to data }\end{array} & \begin{array}{l}\text { Does not apply } \\ \text { window to data }\end{array} & \begin{array}{l}\text { Does not apply } \\ \text { window to data }\end{array} & \begin{array}{l}\text { Applies window to } \\ \text { data }\end{array} \\ & \begin{array}{l}\text { Minimizes the } \\ \text { forward and backward } \\ \text { prediction errors in } \\ \text { the least squares } \\ \text { sense, with the AR } \\ \text { coefficients } \\ \text { constrained to satisfy } \\ \text { the L-D recursion }\end{array} & \begin{array}{l}\text { Minimizes the } \\ \text { forward prediction } \\ \text { error in the least } \\ \text { squares sense }\end{array} & \begin{array}{l}\text { Minimizes the } \\ \text { forward and backward } \\ \text { prediction errors in } \\ \text { the least squares } \\ \text { sense }\end{array} & \begin{array}{l}\text { Minimizes the } \\ \text { forward prediction } \\ \text { error in the least } \\ \text { squares sense } \\ \text { (also called } \\ \text { "Autocorrelation }\end{array} \\ \text { method") }\end{array}\right]$

Burg Method

	Burg	Covariance	Modified Covariance	Yule-Walker
Disadvantages	Peak locations highly dependent on initial phase	May produce unstable models	May produce unstable models	Performs relatively poorly for short data records
	May suffer spectral line-splitting for sinusoids in noise, or when order is very large	Frequency bias for estimates of sinusoids in noise	Peak locations slightly dependent on initial phase	Frequency bias for estimates of sinusoids in noise
	Frequency bias for estimates of sinusoids in noise		Minor frequency bias for estimates of sinusoids in noise	
Conditions for Nonsingularity		Order must be less than or equal to half the input frame size	Order must be less than or equal to 2/3 the input frame size	Because of the biased estimate, the autocorrelation matrix is guaranteed
to positive-definite,				
hence nonsingular				

Examples

Dialog Box

The dspsacomp demo compares the Burg method with several other spectral estimation methods.

Block Parameters: Burg Method			x
$\left[\begin{array}{l}\text { Burg Method (mask) } \\ \text { Parametric estimation of the AR spectrum using the Burg method. }\end{array}\right.$			
Parameters\square Inherit estimation order from input dimensions Estimation order:			
6			
Inherit FFT length from estimation order FFT length:			
256			
OK	Help	Spply	

Inherit estimation order from input dimensions

When selected, sets the estimation order to one less than the length of the input vector. Nontunable.

Burg Method

Estimation order

The order of the AR model. This parameter is enabled when you do not select Inherit estimation order from input dimensions. Nontunable.

Inherit FFT length from estimation order

When selected, uses the input frame size as the number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT. Nontunable.

FFT length

The number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT. When $\mathrm{N}_{\mathrm{fft}}$ exceeds the input frame size, the frame is zero-padded as needed. This parameter is enabled when you do not select Inherit FFT length from input dimensions. Nontunable.

References

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Orfanidis, J. S. Optimum Signal Processing: An Introduction. 2nd ed. New York, NY: Macmillan, 1985.

Supported

Data Types

Port	Supported Data Types
Input	\bullet Double-precision floating point
	\bullet Single-precision floating point
Output	• Double-precision floating point
	\bullet Single-precision floating point

The output data type is the same as the input data type. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Burg Method

See Also

Burg AR Estimator Covariance Method Modified Covariance Method Short-Time FFT Yule-Walker Method pburg

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

See "Power Spectrum Estimation" on page 6-5 for related information.

Check Signal Attributes

Purpose

Library
Description

Check Signal Attributes

Generate error when input signal does or does not match selected attributes exactly

Signal Management / Signal Attributes
The Check Signal Attributes block terminates the simulation with an error when the input characteristics differ from those specified by the block parameters.

When the Error when input parameter is set to Does not match attributes exactly, the block generates an error only when the input possesses none of the attributes specified by the other parameters. Signals that possess at least one of the specified attributes are propagated to the output unaltered, and do not generate an error.

When the Error when input parameter is set to Matches attributes exactly, the block generates an error only when the input possesses all attributes specified by the other parameters. Signals that do not possess all of the specified attributes are propagated to the output unaltered, and do not generate an error.

Signal Attributes

The Check Signal Attributes block can test for up to five different signal attributes, as specified by the following parameters. When you select the Ignore in any parameter, the block does not check the signal for the corresponding attribute. For example, when Complexity is set to Ignore, neither real nor complex inputs cause the block to generate an error. The attributes are

- Complexity

Checks whether the signal is real or complex. (Note that this information can be displayed in a model by attaching a Probe block with Probe complex signal selected. Alternatively, in the model window, from the Format menu, point to Port/Signal Displays, and select Port Data Types.)

- Frame status

Checks whether the signal is frame based or sample based. (Note that Simulink displays sample-based signals using a single line, \rightarrow, and frame-based signals using a double line, \Rightarrow.)

Check Signal Attributes

- Dimensionality

Checks the dimension of signal for compliance (Is...) or noncompliance (Is not...) with the attributes in the subordinate Dimension menu, which are shown in the table below. M and N are positive integers unless otherwise indicated below.

Check Signal Attributes

Dimensions	Is...	Is not...
1-D	1-D vector, 1-D scalar	M-by-N matrix, 1-by-N matrix (row vector), M-by-1 matrix (column vector), 1-by-1 matrix (2-D scalar)
2-D	M-by-N matrix, 1-by-N matrix (row vector), M-by-1 matrix (column vector),	1-D vector, 1-D scalar
Scalar (1-by-1 matrix (2-D scalar) 2-D)	1-D scalar, 1-by-1 matrix (2-D scalar)	1-D vector with length>1, M-by-N matrix with M>1 and/or N>1
Vector (1-D or 2-D)	1-D vector, 1-D scalar, 1-by-N matrix (row vector), M-by-1 matrix (column vector),	M-by-N matrix with M>1 and N >1
1-by-1 matrix (2-D scalar) Vector (1-D or 2-D) or scalar		
Row Vector (2-D)	1-by-N matrix (row vector), 1-by-1 matrix (2-D scalar) Row vector (2-D) or scalar M-by-1 matrix (column vector),	1-D vector, 1-D scalar, M-by-N matrix with M>1
1-D vector, Celumn Vector (2-D)	1-by-1 matrix (2-D scalar) Column vector (2-D) or scalar	
M-by-N matrix with N>1		

Dimensions (Continued)	Is...	Is not...		
Full matrix	M-by-N matrix with $\mathrm{M}>1$ and $\mathrm{N}>1$	1-D vector, 1-D scalar, 1-by-N matrix (row vector), M-by-1 matrix (column vector),		
		1-by-1 matrix (2-D scalar)		
		M-by-N matrix with M $\neq \mathrm{N}$, Square		
matrix			\quad	M-by-N matrix with M=N,
:---				

If, in the model window, from the Format menu, you point to Port/Signal Displays, and select Signal Dimensions, Simulink displays the size of a 1-D vector signal as an unbracketed integer, and displays the dimension of a 2-D signal as a pair of bracketed integers, [MxN]. Simulink does not display any size information for a 1-D or 2-D scalar signal. Dimension information for a signal can also be displayed in a model by attaching a Probe block with Probe signal dimensions selected.

- Data type

Checks the signal data type for compliance (Is ...) or noncompliance (Is not...) with the attributes in the subordinate General data type menu, which are shown in the table below. Any of the specific data types listed in the Is... column below can be individually selected from the subordinate Specific data type menu.

Check Signal Attributes

General data type	Is...	Is not...
Boolean	boolean	single, double, uint8, int8, uint16, int16, uint32, int32, fixed-point
Floating-point	single, double	boolean, uint8, int8, uint16, int16, uint32, int32, fixed-point
Fixed-point	fixed-point	boolean, uint8, int8, uint16, int16, uint32, int32, single, double
Integer	Signed integer int8, int16, int32 Unsigned integer uint8, uint16, uint32	boolean, single, double

To display data type information, in your model window, from the Format menu, point to Port/Signal Displays, and select Port Data Types.

- Sample mode

Checks whether the signal is discrete-time or continuous-time. (If, from the Format menu, you point to Port/Signal Displays, and select Sample Time Colors, Simulink displays continuous-time signal lines in black or grey and discrete-time signal lines in colors corresponding to the relative rate. When a Probe block with Probe sample time enabled is attached to a continuous-time signal, the block icon displays the string Ts:[0 x], where x is the sample time offset. When a Probe block is attached to a discrete-time signal, the block icon displays the string Ts: [t 0] for a sample-based signal or Tf: $\left[\begin{array}{ll}t & 0\end{array}\right]$ for a frame-based signal, where t is the nonzero sample period or frame period, respectively. Frame-based signals are almost always discrete time.)

Check Signal Attributes

Dialog Box

Error when input

Specifies whether the block generates an error when the input possesses none of the required attributes (Does not match attributes exactly), or when the input possesses all of the required attributes (Matches attributes exactly).

Complexity

The complexity for which the input should be checked, Real or Complex. When you select Ignore from the list, the block does not check the input's complexity.

Frame status

The frame status for which the input should be checked, Sample-based or Frame-based. When you select Ignore from the list, the block does not check the input's frame status.

Dimensionality

Specifies whether the input should be checked for compliance (Is...) or noncompliance (Is not...) with the attributes in the subordinate Dimension menu. When you select Ignore from the list, the block does not check the input's dimensionality.

Check Signal Attributes

Data type

Specifies whether the input should be checked for compliance (Is...) or noncompliance (Is not...) with the attributes in the subordinate General data type menu. When you select Ignore from the list, the block does not check the input's data type.

Sample mode

The sample mode for which the input should be checked, Discrete or Continuous. When you select Ignore from the list, the block does not check the input's sample mode.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8-, 16-, and 32-bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Check Signal Attributes

See Also
Buffer
Convert 1-D to 2-D
Convert 2-D to 1-D
Data Type Conversion
Frame Status Conversion
Inherit Complexity
Probe
Reshape
Submatrix

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Simulink
Signal Processing Blockset
Signal Processing Blockset
Simulink
Simulink
Signal Processing Blockset

Chirp

Purpose	Generate swept-frequency cosine (chirp) signal
Library	Signal Processing Sources
Description	The Chirp block outputs a swept-frequency cosine (chirp) signal with unity amplitude and continuous phase. To specify the desired output chirp signal, you must define its instantaneous frequency function, also known as the output frequency sweep. The frequency sweep can be linear, quadratic, or logarithmic, and repeats once every Sweep time by default. See other sections of this reference page for more details about the block.
	Sections of This Reference Page
	•"Variables Used in This Reference Page" on page 9-77
	- "Setting the Output Frame Status" on page 9-77
	- "Shaping the Frequency Sweep by Setting Frequency Sweep and Sweep
	•"Uode" on page 9-78

Variables Used in This Reference Page

$f_{0} \quad$ Initial frequency parameter (Hz)
$\mathrm{f}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{g}}\right) \quad$ Target frequency parameter (Hz)
$\mathrm{t}_{\mathrm{g}} \quad$ Target time parameter (seconds)
$\mathrm{T}_{\mathrm{sw}} \quad$ Sweep time parameter (seconds)
$\phi_{0} \quad$ Initial phase parameter (radians)
$\psi(t) \quad$ Phase of the chirp signal (radians)
$f_{i}(t) \quad$ User-specified output instantaneous frequency function (Hz); user-specified sweep
$f_{i(a c t u a l)}(t) \quad$ Actual output instantaneous frequency function (Hz); actual output sweep
$y_{\text {chirp }}(t) \quad$ Output chirp function

Setting the Output Frame Status

Use Samples per frame parameter to set the block's output frame status, as summarized in the table. The Sample time parameter sets the sample time of both sample- and frame-based outputs.

Setting of Samples Per Frame Parameter	Output Frame Status
1	Sample based
n (any integer greater than 1)	Frame based, frame size n

Chirp

Shaping the Frequency Sweep by Setting Frequency Sweep and Sweep Mode

The basic shape of the output instantaneous frequency sweep, $f_{i}(t)$, is set by the Frequency sweep and Sweep mode parameters, described in the following table.

Parameters for Setting Sweep Shape	Possible Settings	Parameter Description
Frequency sweep	Linear Quadratic Logarithmic Swept cosine	Determines whether the sweep frequencies vary linearly, quadratically, or logarithmically. Linear and swept cosine sweeps both vary linearly.
Sweep mode	Unidirectional Bidirectional	Determines whether the sweep is unidirectional or bidirectional. For details, see "Unidirectional and Bidirectional Sweep Modes" on page 9-79.

The following diagram illustrates the possible shapes of the frequency sweep that you can obtain by setting the Frequency sweep and Sweep mode parameters.

Possible Shapes of the Output Instantaneous Frequency Sweep

Swept Cosine and Linear Sweeps

Negative Sweeps ($\mathbf{f}_{\mathrm{i}}\left(\mathbf{t}_{\mathrm{g}}\right)<\mathbf{f}_{0}$)

> Quadratic and Logarithmic Sweeps Logarithmic sweeps cannot be negative.

These diagrams apply only to quadratic sweeps.

Positive Sweeps

For information on how to set the frequency values in your sweep, see "Setting Instantaneous Frequency Sweep Values" on page 9-80.

Unidirectional and Bidirectional Sweep Modes

The Sweep mode parameter determines whether your sweep is unidirectional or bidirectional, which affects the shape of your output frequency sweep (see "Shaping the Frequency Sweep by Setting Frequency Sweep and Sweep Mode" on page 9-78). The following table describes the characteristics of unidirectional and bidirectional sweeps.

Chirp

「

Sweep mode Parameter Settings	Sweep Characteristics
Unidirectional	- Lasts for one Sweep time, $T_{s w}$ - Repeats once every $T_{s w}$
Bidirectional	- Lasts for twice the $\mathbf{S w e e p}$ time, $2 * T_{s w}$ - Repeats once every $2 * T_{s w}$ - First half is identical to its unidirectional counterpart. - Second half is a mirror image of the first half.

The following diagram illustrates a linear sweep in both sweep modes. For information on setting the frequency values in your sweep, see "Setting Instantaneous Frequency Sweep Values" on page 9-80.

Unidirectional Linear Sweep

Bidirectional Linear Sweep

Setting Instantaneous Frequency Sweep Values

Set the following parameters to tune the frequency values of your output frequency sweep. Note that because this is a source block, the simulation will pause while the block dialog box is open. You must close the dialog box by clicking $\mathbf{O K}$ to resume the simulation.

- Initial frequency $(\mathrm{Hz}), f_{0}$
- Target frequency (Hz), $f_{i}\left(t_{g}\right)$
- Target time (seconds), t_{g}

The following table summarizes the sweep values at specific times for all Frequency sweep settings. For information on the formulas used to compute sweep values at other times, see "Block Computation Methods" on page 9-81.

Instantaneous	Frequency Sweep Values		
Frequency Sweep	Sweep Value at $\boldsymbol{t}=\mathbf{0}$	Sweep Value at $\boldsymbol{t}=\boldsymbol{t}_{\boldsymbol{g}}$	Time When Sweep Value is Target Frequency, $\left.\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{t}_{\boldsymbol{g}}\right)$
Linear	f_{0}	$f_{i}\left(t_{\mathrm{g}}\right)$	t_{g}
Quadratic	f_{0}	$f_{i}\left(t_{\mathrm{g}}\right)$	t_{g}
Logarithmic	f_{0}	$f_{i}\left(t_{\mathrm{g}}\right)$	t_{g}
Swept cosine	f_{0}	$2 f_{i}\left(t_{\mathrm{g}}\right)-f_{0}$	$t_{\mathrm{g}} / 2$

Block Computation Methods

The Chirp block uses one of two formulas to compute the block output, depending on the Frequency Sweep parameter setting. For details, see the following sections:

- "Equations for Output Computation" on page 9-81
- "Output Computation Method for Linear, Quadratic, and Logarithmic Frequency Sweeps" on page 9-83
- "Output Computation Method for Swept Cosine Frequency Sweep" on page 9-83

Equations for Output Computation. The following table shows the equations used by the block to compute the user-specified output frequency sweep, $f_{i}(t)$, the block output, $y_{\text {chirp }}(t)$, and the actual output frequency sweep, $f_{i(a c t u a l)}(t)$. The only time the user-specified sweep is not the actual output sweep is when the Frequency sweep parameter is set to Swept cosine.

Chirp

Note The following equations apply only to unidirectional sweeps in which $f_{i}(0)<f_{i}\left(t_{g}\right)$. To derive equations for other cases, you might find it helpful to examine the following table and the diagram in "Shaping the Frequency Sweep by Setting Frequency Sweep and Sweep Mode" on page 9-78.

The table below contains the following variables:

- $f_{i}(t)$ - the user-specified frequency sweep
- $f_{i(a c t u a l)}(t)$ - the actual output frequency sweep, usually equal to $f_{i}(t)$
- $y(t)$ - the Chirp block output
- $\psi(t)$ - the phase of the chirp signal, where $\psi(0)=0$, and $2 \pi f_{i}(t)$ is the derivative of the phase
$f_{i}(t)=\frac{1}{2 \pi} \cdot \frac{d \psi(t)}{d t}$
- ϕ_{0} - the Initial phase parameter value, where $y_{\text {chirp }}(0)=\cos \left(\phi_{0}\right)$

Equations Used by the Chirp Block for Unidirectional Positive Sweeps

Frequency Sweep	Block Output Chirp Signal	User-Specified Frequency Sweep, $f_{i}(\boldsymbol{f})$	β	Actual Frequency Sweep, $\boldsymbol{f}_{\text {i(actual) }}{ }^{(\boldsymbol{f})}$
Linear	$y(t)=\cos \left(\psi(t)+\phi_{0}\right)$	$f_{i}(t)=f_{0}+\beta t$	$\beta=\frac{f_{i}\left(t_{g}\right)-f_{0}}{t_{g}}$	$f_{i(a c t u a l)}{ }^{(t)}=f_{i}(t)$
Quadratic	Same as Linear	$f_{i}(t)=f_{0}+\beta t^{2}$	$\beta=\frac{f_{i}\left(t_{g}\right)-f_{0}}{t_{g}^{2}}$	$f_{i(a c t u a l)}{ }^{(t)}=f_{i}(t)$
Logarithmic	Same as Linear	$\begin{aligned} & f_{i}(t)=f_{0}\left(\frac{f_{i}\left(t_{g}\right)}{f_{0}}\right)^{t_{g}} \\ & \text { Where } f_{i}\left(t_{\mathrm{g}}\right)>f_{0}>0 \end{aligned}$	N/A	$f_{i(a c t u a l)}{ }^{(t)}=f_{i}(t)$
Swept cosine	$y(t)=\cos \left(2 \pi f_{i}(t) t+\phi_{0}\right)$	Same as Linear	Same as Linear	$f_{i(\text { actual })}(t)=f_{i}(t)+\beta t$

Output Computation Method for Linear, Quadratic, and Logarithmic Frequency Sweeps. The derivative of the phase of a chirp function gives the instantaneous frequency of the chirp function. The Chirp block uses this principle to calculate the chirp output when the Frequency Sweep parameter is set to Linear, Quadratic, or Logarithmic.

$$
\begin{array}{ll}
y_{\text {chirp }}(t)=\cos \left(\psi(t)+\phi_{0}\right) & \begin{array}{l}
\text { Linear, quadratic, or logarithmic chirp } \\
\text { signal with phase } \psi(t)
\end{array} \\
f_{i}(t)=\frac{1}{2 \pi} \cdot \frac{d \psi(t)}{d t} & \begin{array}{l}
\text { Phase derivative is instantaneous } \\
\text { frequency }
\end{array}
\end{array}
$$

For instance, if you want a chirp signal with a linear instantaneous frequency sweep, you should set the Frequency Sweep parameter to Linear, and tune the linear sweep values by setting other parameters appropriately. Note that because this is a source block, the simulation will pause while the block dialog box is open. You must close the dialog box by clicking OK to resume the simulation. The block will output a chirp signal, the phase derivative of which is the specified linear sweep. This ensures that the instantaneous frequency of the output is the linear sweep you desired. For equations describing the linear, quadratic, and logarithmic sweeps, see "Equations for Output Computation" on page 9-81.

Output Computation Method for Swept Cosine Frequency Sweep. To generate the swept cosine chirp signal, the block sets the swept cosine chirp output as follows.

$$
\begin{array}{ll}
y_{\text {chirp }}(t)=\cos \left(\psi(t)+\phi_{0}\right)=\cos \left(2 \pi f_{i}(t) t+\phi_{0}\right) & \begin{array}{l}
\text { Swept cosine chirp } \\
\text { output (instantaneous } \\
\\
\text { frequency equation, } \\
\\
\\
\\
\text { shown above, does not } \\
\text { hold.) }
\end{array}
\end{array}
$$

Note that the instantaneous frequency equation, shown above, does not hold for the swept cosine chirp, so the user-defined frequency sweep, $f_{i}(t)$, is not the actual output frequency sweep, $f_{i(a c t u a l)}(t)$, of the swept cosine chirp. Thus, the swept cosine output might not behave as you expect. To learn more about swept cosine chirp behavior, see "Cautions Regarding the Swept Cosine Sweep" on page 9-84 and "Equations for Output Computation" on page 9-81.

Chirp

Cautions Regarding the Swept Cosine Sweep

When you want a linearly swept chirp signal, we recommend you use a linear frequency sweep. Though a swept cosine frequency sweep also yields a linearly swept chirp signal, the output might have unexpected frequency content. For details, see the following two sections.

Swept Cosine Instantaneous Output Frequency at the Target Time is not the Target Frequency. The swept cosine sweep value at the Target time is not necessarily the Target frequency. This is because the user-specified sweep is not the actual frequency sweep of the swept cosine output, as noted in "Output Computation Method for Swept Cosine Frequency Sweep" on page 9-83. See the table called "Instantaneous Frequency Sweep Values" for the actual value of the swept cosine sweep at the Target time.

Swept Cosine Output Frequency Content May Greatly Exceed Frequencies in the Sweep. In Swept cosine mode, you should not set the parameters so that $1 / T_{s w}$ is very large compared to the values of the Initial frequency and Target frequency parameters. In such cases, the actual frequency content of the swept cosine sweep might be closer to $1 / T_{s w}$, far exceeding the Initial frequency and Target frequency parameter values.

Dialog Box

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters" in the online Simulink documentation for details.

Frequency sweep

The type of output instantaneous frequency sweep, $f_{i}(\mathrm{t})$: Linear, Logarithmic, Quadratic, or Swept cosine. Tunable.

Sweep mode

The directionality of the chirp signal: Unidirectional or Bidirectional. Nontunable.

Initial frequency $(\mathbf{H z})$

For Linear, Quadratic, and Swept cosine sweeps, the initial frequency, f_{0}, of the output chirp signal. For Logarithmic sweeps, Initial frequency is one less than the actual initial frequency of the sweep. Also, when the sweep is Logarithmic, you must set the Initial frequency to be less than the Target frequency. Tunable.

Target frequency (Hz)

For Linear, Quadratic, and Logarithmic sweeps, the instantaneous frequency, $f_{i}\left(t_{\mathrm{g}}\right)$, of the output at the Target time, t_{g}. For a Swept cosine sweep, Target frequency is the instantaneous frequency of the output at half the Target time, $t_{\mathrm{g}} / 2$. When Frequency sweep is Logarithmic, you must set the Target frequency to be greater than the Initial frequency. Tunable.

Target time (sec)

For Linear, Quadratic, and Logarithmic sweeps, the time, t_{g}, at which the Target frequency, $f_{i}\left(t_{\mathrm{g}}\right)$, is reached by the sweep. For a Swept cosine sweep, Target time is the time at which the sweep reaches $2 f_{i}\left(t_{g}\right)-f_{0}$. You must set Target time to be no greater than Sweep time, $T_{s w} \geq t_{g}$. Tunable.

Sweep time (sec)

In Unidirectional Sweep mode, the Sweep time, $T_{s w}$, is the period of the output frequency sweep. In Bidirectional Sweep mode, the Sweep time is half the period of the output frequency sweep. You must set Sweep time to be no less than Target time, $T_{s w} \geq t_{g}$. Tunable.

Initial phase (radians)

The phase, ϕ_{0}, of the cosine output at $t=0 ; y_{\text {chirp }}(t)=\cos \left(\phi_{0}\right)$. Tunable.

Sample time

The sample period, T_{S}, of the output. The output frame period is $\mathrm{M}_{\mathrm{o}} * \mathrm{~T}_{\mathrm{S}}$.

Samples per frame

The number of samples, M_{0}, to buffer into each output frame.

Output data type

The data type of the output, single-precision or double-precision.

The first few examples demonstrate how to use the Chirp block's main parameters, how to view the output in the time domain, and how to view the output spectrogram:

- "Example 1: Setting a Final Frequency Value for Unidirectional Sweeps" on page 9-87
- "Example 2: Bidirectional Sweeps" on page 9-89
- "Example 3: When Sweep Time is Greater Than Target Time" on page 9-90

Examples 4 and 5 illustrate Chirp block settings that might produce unexpected outputs:

- "Example 4: Output Sweep with Negative Frequencies" on page 9-91
- "Example 5: Output Sweep with Frequencies Greater Than Half the Sampling Frequency" on page 9-92

Example 1: Setting a Final Frequency Value for Unidirectional Sweeps. Often times, you might want a unidirectional sweep for which you know the initial and final frequency values. You can specify the final frequency of a unidirectional sweep by setting Target time equal to Sweep time, in which case the Target frequency becomes the final frequency in the sweep. The following model demonstrates this method.

This technique might not work for swept cosine sweeps. For details, see "Cautions Regarding the Swept Cosine Sweep" on page 9-84.

Open the Example 1 model by typing doc_chirp_ref at the MATLAB command line. You can also rebuild the model yourself; see the following list for model parameter settings (leave unlisted parameters in their default states).

Chirp

Since Target time is set to equal Sweep time (1 second), the Target frequency (25 Hz) is the final frequency of the unidirectional sweep.

Run your model to see the time domain output, and then type the following command to view the chirp output spectrogram.

```
spectrogram(dsp_examples_yout,hamming(128),110,[0:.01:40],400)
```

Chirp Block Parameters for Example 1
Frequency sweep Linear
Sweep mode Unidirectional
Initial frequency 0
Target frequency 25
Target time 1
Sweep time 1
Initial phase 0
Sample time 1/400
Samples per frame 400
Vector Scope Block Parameters for Example 1
Input domain Time
Time display span 6
Signal To Workspace Block Parameters for Example 1
Variable name dsp_examples_yout
Configuration Dialog Parameters for Example 1
Stop time 5
Example 2: Bidirectional Sweeps. Change the Sweep mode parameter in theExample 1 model to Bidirectional, and leave all other parameters the sameto view the following bidirectional chirp. Note that in the bidirectional sweep,the period of the sweep is twice the Sweep time (2 seconds), whereas it was oneSweep time (1 second) for the unidirectional sweep in Example 1.

Open the Example 2 model by typing doc_chirp_ref2 at the MATLAB command line.

Chirp

Run your model to see the time domain output, and then type the following command to view the chirp output spectrogram.

```
spectrogram(dsp_examples_yout,hamming(128),110,[0:.01:40],400)
```

Example 3: When Sweep Time is Greater Than Target Time. Setting Sweep time to 1.5 and leaving the rest of the parameters as in the Example 1 model gives the following output. The sweep still reaches the Target frequency $(25 \mathrm{~Hz})$ at the Target time (1 second), but since Sweep time is greater than Target time, the sweep continues on its linear path until one Sweep time (1.5 seconds) is traversed.

Unexpected behavior might arise when you set Sweep time greater than Target time; see "Example 4: Output Sweep with Negative Frequencies" on page 9-91 for details.

Open the Example 3 model by typing doc_chirp_ref3 at the MATLAB command line.

Run your model to see the time domain output, and then type the following command to view the chirp output spectrogram.

```
spectrogram(dsp_examples_yout,hamming(128),110,[0:.01:40],400)
```

Example 4: Output Sweep with Negative Frequencies. Modify the Example 1 model by changing Sweep time to 1.5 , Initial frequency to 25 , and Target frequency to 0 . The output chirp of this example might not behave as you expect because the sweep contains negative frequencies between 1 and 1.5 seconds. The sweep reaches the Target frequency of 0 Hz at one second, then continues on its negative slope, taking on negative frequency values until it traverses one Sweep time (1.5 seconds).

The spectrogram might reflect negative sweep frequencies along the x-axis so they appear to be positive. If you unexpectedly get a chirp output with a spectrogram resembling the one below, your chirp's sweep might contain negative frequencies. See the next example for another possible unexpected chirp output.

Open the Example 4 model by typing doc_chirp_ref4 at the MATLAB command line.

Chirp

Run your model to see the time domain output, and then type the following command to view the chirp output spectrogram.

```
spectrogram(dsp_examples_yout,hamming(128),110,[0:.1:30],400);
```

Example 5: Output Sweep with Frequencies Greater Than Half the Sampling Frequency. Modify the Example 1 model by changing the Target frequency parameter to 275. The output chirp of this model might not behave as you expect because the sweep contains frequencies greater than half the sampling frequency (200 Hz), which causes aliasing. If you unexpectedly get a chirp output with a spectrogram resembling the one following, your chirp's sweep might contain frequencies greater than half the sampling frequency. See the previous example for another possible unexpected chirp output.

Open the Example 5 model by typing doc_chirp_ref5 at the MATLAB command line.

Run your model to see the time domain output, and then type the following command to view the chirp output spectrogram.

```
spectrogram(dsp_examples_yout, hamming(64),60,256,400)
```


Supported Data Types

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Signal From Workspace
Signal Generator
Sine Wave
chirp
spectrogram

Signal Processing Blockset
Simulink
Signal Processing Blockset
Signal Processing Toolbox
Signal Processing Toolbox

Cholesky Factorization

Purpose
Library
Description

Factor square Hermitian positive definite matrix into triangular components.
Math Functions / Matrices and Linear Algebra / Matrix Factorizations
The Cholesky Factorization block uniquely factors the square Hermitian positive definite input matrix S as

$$
S=L L^{*}
$$

where L is a lower triangular square matrix with positive diagonal elements and L^{*} is the Hermitian (complex conjugate) transpose of L. The block outputs a matrix with lower triangle elements from L and upper triangle elements from L^{*}. The output is always sample based. The output is not in the same form as the output of the MATLAB chol function. In order to convert the output of the Cholesky Factorization block to the MATLAB form, use the following equation:

```
R = triu(LL');
```

Here, LL' is the output of the Cholesky Factorization block. Due to roundoff error, these equations do not produce a result that is exactly the same as the MATLAB result.

Block Output Composed of Land L*

Input Requirements for Valid Output

The block output is valid only when its input has the following characteristics:

- Hermitian - The block does not check whether the input is Hermitian; it uses only the diagonal and upper triangle of the input to compute the output.

Cholesky Factorization

- Real-valued diagonal entries - The block disregards any imaginary component of the input's diagonal entries.
- Positive definite - Set the block to notify you when the input is not positive definite as described in "Response to Nonpositive Definite Input."

Response to Nonpositive Definite Input

To generate a valid output, the block algorithm requires a positive definite input (see "Input Requirements for Valid Output" on page 9-94). Set the Non-positive definite input parameter to determine how the block responds to a nonpositive definite input:

- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid factorization. A partial factorization will be present in the upper left corner of the output.
- Warning - Display a warning message in the MATLAB Command Window, and continue the simulation. The output is not a valid factorization. A partial factorization will be present in the upper left corner of the output.
- Error - Display an error dialog and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog box, it is set to Ignore in the Real-Time Workshop code generated for this block.

Performance Comparisons with Other Blocks

Note that L and L^{*} share the same diagonal in the output matrix. Cholesky factorization requires half the computation of Gaussian elimination (LU decomposition), and is always stable.

Cholesky Factorization

Dialog Box

Non-positive definite input

Response to nonpositive definite matrix inputs: Ignore, Warning, or Error. See "Response to Nonpositive Definite Input" on page 9-95. Nontunable.

References

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

Supported

 Data Types| Port | Supported Data Types |
| :--- | :--- |
| S | • Double-precision floating point |
| | \bullet Single-precision floating point |
| LL' | • Double-precision floating point |
| | \bullet Single-precision floating point |

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Cholesky Factorization

See Also | Autocorrelation LPC | Signal Processing Blockset | |
| :--- | :--- | :--- |
| Cholesky Inverse | Signal Processing Blockset | |
| Cholesky Solver | Signal Processing Blockset | |
| | LDL Factorization | Signal Processing Blockset |
| | LU Factorization | Signal Processing Blockset |
| QR Factorization | Signal Processing Blockset | |
| chol | MATLAB | |

See "Factoring Matrices" on page 6-8 for related information.

Cholesky Inverse

Purpose
Library
Description

sym. Pos. Def.
invere
(Chol)

Compute inverse of Hermitian positive definite matrix using Cholesky factorization

Math Functions / Matrices and Linear Algebra / Matrix Inverses
The Cholesky Inverse block computes the inverse of the Hermitian positive definite input matrix S by performing Cholesky factorization.

$$
S^{-1}=\left(L L^{*}\right)^{-1}
$$

L is a lower triangular square matrix with positive diagonal elements and L^{*} is the Hermitian (complex conjugate) transpose of L. Only the diagonal and upper triangle of the input matrix are used, and any imaginary component of the diagonal entries is disregarded. Cholesky factorization requires half the computation of Gaussian elimination (LU decomposition), and is always stable. The output is always sample based.

The algorithm requires that the input be Hermitian positive definite. When the input is not positive definite, the block reacts with the behavior specified by the Non-positive definite input parameter. The following options are available:

- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid inverse.
- Warning - Display a warning message in the MATLAB Command Window, and continue the simulation. The output is not a valid inverse.
- Error - Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog box, it is set to Ignore in the Real-Time Workshop code generated for this block.

Dialog Box

Non-positive definite input

Response to nonpositive definite matrix inputs. Nontunable.

References

Supported
Data Types
Data Types

See Also

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Cholesky Factorization	Signal Processing Blockset
Cholesky Solver	Signal Processing Blockset
LDL Inverse	Signal Processing Blockset
LU Inverse	Signal Processing Blockset
Pseudoinverse	Signal Processing Blockset
inv	MATLAB

See "Inverting Matrices" on page 6-9 for related information.

Cholesky Solver

Purpose
Solve $\mathrm{S} X=\mathrm{B}$ for X when S is square Hermitian positive definite matrix
Library
Description

Math Functions / Matrices and Linear Algebra / Linear System Solvers

The Cholesky Solver block solves the linear system $\mathrm{S} X=\mathrm{B}$ by applying Cholesky

Algorithm

A length-M vector input for right side B is treated as an $M-b y-1$ matrix.
Cholesky factorization uniquely factors the Hermitian positive definite input matrix S as

$$
S=L L^{*}
$$

where L is a lower triangular square matrix with positive diagonal elements.
The equation $\mathrm{S} X=\mathrm{B}$ then becomes

Cholesky Solver

$$
L L^{*} X=B
$$

which is solved for X by making the substitution $Y=L^{*} X$, and solving the following two triangular systems by forward and backward substitution, respectively.

$$
\begin{aligned}
& L Y=B \\
& L^{*} X=Y
\end{aligned}
$$

Dialog Box

Non-positive definite input

Response to nonpositive definite matrix inputs. Nontunable.

Supported Data Types

See Also

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Autocorrelation LPC
Cholesky Factorization
Cholesky Inverse
LDL Solver
LU Solver
QR Solver
chol

Signal Processing Blockset
MATLAB

Cholesky Solver

See "Solving Linear Systems" on page 6-6 for related information.

Purpose
Decimate signal using Cascaded Integrator-Comb filter

Library
Description

Filtering / Multirate Filters

The CIC Decimation block performs a sample rate decrease (decimation) on an input signal by an integer factor. Cascaded Integrator-Comb (CIC) filters are a class of linear phase FIR filters comprised of a comb section and an integrator section.

The transfer function of a CIC decimator filter is

$$
H(z)=H_{I}{ }^{N}(z) H_{C}{ }^{N}(z)=\frac{\left(1-z^{-R M}\right)^{N}}{\left(1-z^{-1}\right)^{N}}=\left[\sum_{k=0}^{R M-1} z^{-k}\right]^{N}
$$

where

- H_{I} is the transfer function of the integrator portion of the filter.
- H_{C} is the transfer function of the comb portion of the filter.
- N is the number of stages. The number of stages in a CIC filter is defined as the number of stages in either the comb section or the integrator section of the filter, not as the total number of stages throughout the entire filter.
- R is the decimation factor.
- M is the differential delay.

The CIC Decimation block supports real and complex fixed-point inputs. Each channel of a complex input is treated as two real input channels.

CIC Filter Structures

Some of the filter structures supported by the CIC Decimation and CIC Interpolation blocks exactly match those created by the mfilt CIC objects of the Filter Design Toolbox. If you have the Filter Design Toolbox installed, you can create an mfilt object in the MATLAB workspace to specify in the Multirate filter variable parameter of this block. Otherwise, you can specify the CIC filter completely using only block dialog parameters. Using the block parameters also allows you to specify a resampler phase R for the filter, and to specify that the word length of the output should be the same as that of the final filter stage.

CIC Decimation

This block can be used to create either of the following CIC filter structures:

- Decimator
- Zero-latency decimator

Decimator. This decimator has a latency of N, where N is the number of stages in either the comb or the integrator section of the filter.

Zero-latency decimator. This filter is the classical Hogenauer CIC decimator, which has zero latency.

The word length and fraction length at each stage of the decimator are shown in the following table. You specify the word length for each filter stage in the Word length for each of the ($\mathbf{2}^{*} \mathbf{N}$) filter stages parameter. The calculation for each fraction length is shown below:

Decimator Word Lengths and Fraction Lengths

	Word Length	Fraction Length
Filter Input	InputWL	InputFL
$1^{\text {st }}$ Stage Output	StageOneWL	InputFL
$2^{\text {nd }}$ Stage Output	StageTwoWL	InputFL + (StageTwoWL - StageOneWL)
$3^{\text {rd }}$ Stage Output	StageThreeWL	StageTwoFL + (StageThreeWL - StageTwoWL)
$4^{\text {th }}$ Stage Output	StageFourWL	StageThreeFL + (StageFourWL - StageThreeWL)

Decimator Word Lengths and Fraction Lengths

	Word Length	Fraction Length
$\mathrm{N}^{\text {th }}$ Stage Output	Stage (N)WL	Stage (N-1)FL + (Stage (N)WL - Stage (N-1)WL)
Filter Output	OutputWL	FinalStageFL + (OutputWL - FinalStageWL)

Constraints and Conversions

The classic paper on CIC filters by Eugene B. Hogenauer, "An Economical Class of Digital Filters for Decimation and Interpolation" [3], describes the constraints on CIC decimator filters. These constraints are enforced by the CIC Decimation block.

CIC decimators have the following two constraints:

- The word lengths of the filter stages must be nonincreasing. That is, the word length of each filter stage must be the same size as, or smaller than, the word length of the previous filter stage.
- The number of bits of the first filter stage must be greater than or equal to the quantity $B_{\text {max }}$.

The formula for $B_{\text {max }}$, the most significant bit at the filter output, is given in the Hogenauer paper.

$$
B_{\max }=\operatorname{ceil}\left(N \log _{2} R M+B_{\text {in }}-1\right)
$$

where $B_{i n}$ is the number of bits of the input.
The conversions denoted by the Convert blocks in the decimator diagrams in "CIC Filter Structures" on page 9-103 perform the changes between the word lengths of each stage. When you specify word lengths that do not follow the constraints described in this section, the block returns an error.

When you specify the word lengths correctly, the most significant bit $B_{\max }$ stays the same throughout the filter, while the word length of each stage either decreases or stays the same. This can cause the fraction length to change throughout the filter as least significant bits are truncated to decrease the word length, as shown in "Decimator Word Lengths and Fraction Lengths" on page 9-104.

When you select Same as final filter stage for the Output data type parameter, the final conversion shown in "CIC Filter Structures" on page 9-103 is not performed.

Sharing Models

You can share models that include CIC Decimation blocks among different people in your company, whether they have the Filter Design Toolbox installed or not. If you have the Filter Design Toolbox installed, you can configure a CIC Decimation block by selecting Multirate object in workspace for the Filter specified via parameter and entering a multirate filter object name in the Multirate filter variable parameter. As long as you run the model first, you can then share it with others who have the Signal Processing Blockset, even if they do not have the Filter Design Toolbox installed. When the Filter Design Toolbox is not installed, the block dialog parameters will automatically be populated with the values that correspond to the multirate filter object with which you ran the model previously.

CIC Decimation

Dialog Box

Filter specified via

Choose to design the CIC filter either through parameters in the dialog, or by defining a CIC multirate filter object (mfilt) in the MATLAB workspace. This parameter is only visible when you have the Filter Design Toolbox installed.

CIC Decimation

Multirate filter variable

Specify the multirate filter variable that you have defined in the MATLAB workspace that defines the CIC filter you want to create. This parameter is only visible when you select Multirate object in workspace for the Filter specified via parameter.

The variable name you enter into this field must be the name of a filter object created with mfilt.cicdecim, a Filter Design Toolbox function.

Filter structure

Select one of the following CIC filter structures:

- Decimator - CIC decimator with latency N
- Zero-latency decimator - Classical Hogenauer CIC decimator with zero latency

Refer to "CIC Filter Structures" on page 9-103 for diagrams of these filter structures.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Decimation factor (R)

Specify the decimation factor of the filter.
This parameter is only visible when you select Dialog for the Filter specified via parameter.

Resampler phase (0 to R-1)

Specify the number of sample periods by which to delay the downsample operation internal to the CIC filter. The resampler phase must be an integer between 0 and 1 less than the decimation factor.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Differential delay (M)

Specify the differential delay of the comb portion of the filter, M, as shown in the diagrams in "CIC Filter Structures" on page 9-103.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Number of stages (\mathbf{N})

Specify the number of filter stages. This number is equal to the number of stages in either the comb portion of the filter or in the integrator portion of the filter. This value is not equal to the total number of stages in the comb and integrator sections combined.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Word length for each of the ($2^{*} \mathbf{N}$) filter stages

Enter the word length, in bits, of each of the stages of the filter. You need to enter a value for each stage in both the integrator and comb sections of the filter. Therefore, you need to enter a vector of length $(2 * \mathrm{~N})$.

Alternately, you can enter a single integer when the word lengths of all the filter stages are the same.

The word lengths of the filter stages of a decimator must be nonincreasing. For more information about valid values for this parameter, refer to "Constraints and Conversions" on page 9-105.

Note The word length of the input signal to the block must be shorter than the word length that you designate for the first filter stage (in accordance with the equation for $B_{\max }$ in "Constraints and Conversions" on page 9-105). Otherwise, the block will return an error.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Output data type

Choose how you will specify the output word length and fraction length. Refer to the table "Decimator Word Lengths and Fraction Lengths" on page 9-104 for more information.

- When you select Same as final filter stage, the final conversion shown in the diagrams in "CIC Filter Structures" on page 9-103 is not

CIC Decimation

performed. Therefore, the output word length is the same as the final filter stage word length, and the output fraction length is Stage ($\mathrm{N}-1$) FL + (Stage (N)WL - Stage (N-1)WL)
where Stage (N) is the final filter stage, as shown in the table "Decimator Word Lengths and Fraction Lengths" on page 9-104.

- When you select Same as input, these characteristics will match those of the block input.
- When you select User-defined, the Output word length parameter appears. You define the word length of the output, and the output fraction length is

FinalStageFL + (OutputWL - FinalStageWL)
as shown in "Decimator Word Lengths and Fraction Lengths" on page 9-104.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Output word length

Specify the word length of the output of the filter in bits. This parameter is only visible when you select User-defined for the Output data type parameter.

Launch Filter Visualization Tool (FVTool)

Select to open the Filter Visualization Tool. Deselect to close FVTool. For more information on this GUI, refer to the fvtool reference page.

This check box is only visible when you have the Filter Design Toolbox installed.

References

[1] Donadio, M., "Cascaded Integrator-Comb (CIC) Filter Introduction," http://www.dspguru.com/info/tutor/cic.htm
[2] Frerking, Marvin E., Digital Signal Processing in Communications Systems, Kluwer Academic Publishers, 1994.
[3] Hogenauer, E.B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-29(2): pp. 155-162, 1981.

[4] "LogicCore Cascaded Integrator-Comb (CIC) Filter V3.0" (product specification)
 http://www.xilinx.com/ipcenter/catalog/logicore/docs/cic.pdf
 [5] Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays, Springer Verlag, 2001.

Supported Data Types

See Also

- Fixed point (signed only)
- 8 -, 16-, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

CIC Interpolation
FIR Decimation
FIR Interpolation
filter
mfilt.cicdecim
mfilt.cicinterp

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Filter Design Toolbox
Filter Design Toolbox
Filter Design Toolbox

CIC Interpolation

Purpose
Interpolate signal using Cascaded Integrator-Comb filter
Library

Description

Filtering / Multirate Filters
The CIC Interpolation block performs a sample rate increase (interpolation) on an input signal by an integer factor. Cascaded Integrator-Comb (CIC) filters are a class of linear phase FIR filters comprised of a comb section and an integrator section.

The transfer function of a CIC interpolator filter is

$$
H(z)=H_{I}^{N}(z) H_{C}^{N}(z)=\frac{\left(1-z^{-R M}\right)^{N}}{\left(1-z^{-1}\right)^{N}}=\left[\sum_{k=0}^{R M-1} z^{-k}\right]^{N}
$$

where

- H_{I} is the transfer function of the integrator portion of the filter.
- H_{C} is the transfer function of the comb portion of the filter.
- N is the number of stages. The number of stages in a CIC filter is defined as the number of stages in either the comb section or the integrator section of the filter, not as the total number of stages throughout the entire filter.
- R is the interpolation factor.
- M is the differential delay.

The CIC Interpolation block supports real and complex fixed-point inputs. Each channel of a complex input is treated as two real input channels.

CIC Filter Structures

Some of the filter structures supported by the CIC Interpolation and CIC Decimation blocks exactly match those created by the mfilt CIC objects of the Filter Design Toolbox. If you have the Filter Design Toolbox installed, you can create an mfilt object in the MATLAB workspace to specify in the Multirate filter variable parameter of this block. Otherwise, you can specify the CIC filter completely using only block dialog parameters. Using the block parameters also allows you to specify a resampler phase R for the filter, and to specify that the word length of the output should be the same as that of the final filter stage.

CIC Interpolation

This block can be used to create either of the following CIC filter structures:

- Interpolator
- Zero-latency interpolator

Interpolator. This interpolator has a latency of N, where N is the number of stages in either the comb or the integrator section of the filter.

Zero-latency interpolator. This filter is the classical Hogenauer CIC interpolator, which has zero latency.

The word length and fraction length at each stage of the interpolator are shown in the following table. When you select User-defined for the Filter stages word length mode parameter, you specify the word length for each filter stage in the Word length for each of the $\left(2^{*} \mathbf{N}\right)$ filter stages parameter. When you select Use minimum number of bits per stage, the filter stage word lengths are automatically set to the minimum number of bits possible in a valid CIC interpolator, in accordance with the formula for W_{j} in "Constraints and Conversions" on page 9-114. The calculation for each fraction length is shown below:

Interpolator Word Lengths and Fraction Lengths

	Word Length	Fraction Length	
Filter Input	InputWL	InputFL	
$1^{\text {st }}$ Stage Output	StageOneWL	InputFL	

CIC Interpolation

Interpolator Word Lengths and Fraction Lengths

>	Word Length \quad Fraction Length

$\mathrm{N}^{\text {th }}$ Stage Output	Stage (N)WL	InputFL
Filter Output	OutputWL	InputFL + (OutputWL - FinalStageWL)

Constraints and Conversions

The classic paper on CIC filters by Eugene B. Hogenauer, "An Economical Class of Digital Filters for Decimation and Interpolation" [3], describes the constraints on CIC interpolator filters. These constraints are enforced by the CIC Interpolation block.

CIC interpolators have the following two constraints:

- The word lengths of the filter stages must be nondecreasing. That is, the word length of each filter stage must be the same size as, or greater than, the word length of the previous filter stage.
- The word length of each filter stage must be greater than or equal to the quantity W_{j}.

The formula for W_{j}, the minimum register width, is derived in the Hogenauer paper. The formula for W_{j} is given by

$$
W_{j}=\operatorname{ceil}\left(B_{i n}+\log _{2} G_{j}\right)
$$

where G_{j}, the maximum register growth up to the j th stage, is given by

$$
G_{j}= \begin{cases}2^{j}, & j=1,2, \ldots, N \\ \frac{2^{2 N-j}(R M)^{j-N}}{R}, & j=N+1, \ldots, 2 N\end{cases}
$$

When the differential delay, M, is 1 , there is also a special condition for the register width of the last comb, W_{N}, that is given by

$$
W_{N}=B_{i n}+N-1 \quad \text { if } M=1
$$

The conversions denoted by the Convert blocks in the integrator diagrams in "CIC Filter Structures" on page 9-103 perform the changes between the word

CIC Interpolation

lengths of each stage. When you specify word lengths that do not follow the constraints described in this section, the block returns an error.

The fraction lengths and scalings of the filter stages will not change, because at each stage the word length is either staying the same or increasing. The scaling of the signal can change at the output after the final filter stage if you choose the output word length to be less than the word length of the final filter stage.

When you select Same as final filter stage for the Output data type parameter, the final conversion shown in "CIC Filter Structures" on page 9-112 is not performed.

Sharing Models

You can share models that include CIC Interpolation blocks among different people in your company, whether they have the Filter Design Toolbox installed or not. If you have the Filter Design Toolbox installed, you can configure a CIC Interpolation block by selecting Multirate object in workspace for the Filter specified via parameter and entering a multirate filter object name in the Multirate filter variable parameter. As long as you run the model first, you can then share it with others who have the Signal Processing Blockset, even if they do not have the Filter Design Toolbox installed. When the Filter Design Toolbox is not installed, the block dialog parameters will automatically be populated with the values that correspond to the multirate filter object with which you ran the model previously.

CIC Interpolation

Dialog Box

Filter specified via

Choose to design the CIC filter either through parameters in the dialog, or by defining a CIC multirate filter object (mfilt) in the MATLAB
workspace. This parameter is only visible when you have the Filter Design Toolbox installed.

Multirate filter variable

Specify the multirate filter variable that you have defined in the MATLAB workspace that defines the CIC filter you want to create. This parameter is
only visible when you select Multirate object in workspace for the Filter specified via parameter.

The variable name you enter into this field must be the name of a filter object created with mfilt. cicinterp, a Filter Design Toolbox function.

Filter structure

Select one of the following CIC filter structures:

- Interpolator - CIC interpolator with latency N
- Zero-latency interpolator - Classical Hogenauer CIC interpolator with zero latency

Refer to "CIC Filter Structures" on page 9-112 for diagrams of these filter structures.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Interpolation factor (R)

Specify the interpolation factor of the filter.
This parameter is only visible when you select Dialog for the Filter specified via parameter.

Resampler phase (0 to R-1)

Specify the number of sample periods by which to delay the upsample operation internal to the CIC filter. The resampler phase must be an integer between 0 and 1 less than the interpolation factor.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Differential delay (M)

Specify the differential delay of the comb portion of the filter, M, as shown in the diagrams in "CIC Filter Structures" on page 9-103.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Number of stages (\mathbf{N})

Specify the number of filter stages. This number is equal to the number of stages in either the comb portion of the filter or in the integrator portion of

CIC Interpolation

the filter. This value is not equal to the total number of stages in the comb and integrator sections combined.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Filter stages word length mode

Specify the method by which the word lengths of the filter stages are determined. When you select Use minimum number of bits per stage, the filter stage word lengths are automatically set to the minimum number of bits possible in a valid CIC interpolator, in accordance with the formula for W_{j} in "Constraints and Conversions" on page 9-114. When you select User-defined, the Word length for each of the ($\mathbf{2}^{*} \mathrm{~N}$) filter stages parameter appears.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Word length for each of the $(2 * N)$ filter stages

Enter the word length, in bits, of each of the stages of the filter. You need to enter a value for each stage in both the integrator and comb sections of the filter. Therefore, you need to enter a vector of length $(2 * \mathrm{~N})$.

Alternately, you can enter a single integer if the word lengths of all the filter stages are the same.

The word lengths of the filter stages of an interpolator must be nondecreasing. For more information about valid values for this parameter, refer to "Constraints and Conversions" on page 9-105.

Note The word length of the input signal to the block must be shorter than the word length that you designate for the first filter stage (in accordance with the formula for W_{j} in "Constraints and Conversions" on page 9-114). Otherwise, the block will return an error.

This parameter is only visible when you select Dialog for the Filter specified via parameter, and when you select User-defined for the Filter stages word length mode parameter.

Output data type

Choose how you will specify the output word length and fraction length. Refer to the table "Interpolator Word Lengths and Fraction Lengths" on page 9-113 for more information.

- When you select Same as final filter stage, the final conversion shown in the diagrams in "CIC Filter Structures" on page 9-112 is not performed. Therefore, the output word length is the same as the final filter stage word length, and the output fraction length is the input fraction length, as shown in the table "Interpolator Word Lengths and Fraction Lengths" on page 9-113.
- When you select Same as input, these characteristics will match those of the block input.
- When you select User-defined, the Output word length parameter appears. You define the word length of the output, and the output fraction length is
InputFL + (OutputWL - FinalStageWL)
as shown in "Decimator Word Lengths and Fraction Lengths" on page 9-104.

This parameter is only visible when you select Dialog for the Filter specified via parameter.

Output word length

Specify the word length of the output of the filter in bits. This parameter is only visible when you select User-defined for the Output data type parameter.

Launch Filter Visualization Tool (FVTool)

Select to open the Filter Visualization Tool. Deselect to close FVTool. For more information on this GUI, refer to the fvtool reference page.

This check box is only visible when you have the Filter Design Toolbox installed.

References

[1] Donadio, M., "Cascaded Integrator-Comb (CIC) Filter Introduction," http://www.dspguru.com/info/tutor/cic.htm

CIC Interpolation

[2] Frerking, Marvin E., Digital Signal Processing in Communications Systems, Kluwer Academic Publishers, 1994.
[3] Hogenauer, E.B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-29(2): pp. 155-162, 1981.
[4] "LogicCore Cascaded Integrator-Comb (CIC) Filter V3.0" (product specification)
http://www.xilinx.com/ipcenter/catalog/logicore/docs/cic.pdf
[5] Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays, Springer Verlag, 2001.

Supported Data Types

See Also

- Fixed point (signed only)
- 8 -, 16 -, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

CIC Decimation
FIR Decimation
FIR Interpolation
filter
mfilt.cicdecim
mfilt.cicinterp

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Filter Design Toolbox
Filter Design Toolbox
Filter Design Toolbox

Complex Cepstrum

Purpose Compute complex cepstrum of input

Library Transforms

Description
The Complex Cepstrum block computes the complex cepstrum of each channel in the real-valued M-by-N input matrix, u. For both sample-based and frame-based inputs, the block assumes that each input column is a frame containing M consecutive samples from an independent channel. The block does not accept complex-valued inputs.

The input is altered by the application of a linear phase term so that there is no phase discontinuity at $\pm \pi$ radians. That is, each input channel is independently zero padded and circularly shifted to have zero phase at π radians.

The output is a real M_{0}-by-N matrix, where M_{0} is specified by the FFT length parameter. Each output column contains the length $-\mathrm{M}_{0}$ complex cepstrum of the corresponding input column.

```
y = cceps(u,Mo) % Equivalent MATLAB code
```

When you select the Inherit FFT length from input port dimensions check box, the output frame size matches the input frame size $\left(\mathrm{M}_{0}=\mathrm{M}\right)$. In this case, a sample-based length-M row vector input is processed as a single channel (that is, as an M-by- 1 column vector), and the output is a length-M row vector. A 1-D vector input is always processed as a single channel, and the output is a $1-\mathrm{D}$ vector.

The output is always sample based, and the output port rate is the same as the input port rate.

Complex Cepstrum

Dialog Box

Inherit FFT length from input port dimensions

When selected, matches the output frame size to the input frame size.

FFT length

The number of frequency points at which to compute the FFT, which is also the output frame size, M_{0}. This parameter is available when you do not select Inherit FFT length from input port dimensions.

Supported
Data Types Data Types

See Also
DCT
FFT
Real Cepstrum
cceps

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

Complex Exponential

Purpose Compute complex exponential function

Library

Description
\square
$\exp (x)$

Dialog Box

Supported Data Types

See Also

Math Functions / Math Operations

The Complex Exponential block computes the complex exponential function for each element of the real input, u.

$$
y=e^{j u}=\cos u+j \sin u
$$

where $j=\sqrt{-1}$. The output is complex, with the same size and frame status as the input.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Math Function
Sine Wave
exp

Simulink
Signal Processing Blockset
MATLAB

Constant Diagonal Matrix

Purpose
Library

Description

Generate square, diagonal matrix

- Signal Processing Sources
- Math Functions / Matrices and Linear Algebra / Matrix Operations

The Constant Diagonal Matrix block outputs a square diagonal matrix constant. The Constant along diagonal parameter determines the values along the matrix diagonal. This parameter can be a scalar to be repeated for all elements along the diagonal, or a vector containing the values of the diagonal elements. To generate the identity matrix, set the Constant along diagonal to 1 , or use the Identity Matrix block.

The output is frame based when you select the Frame-based output check box; otherwise, the output is sample based.

The Main pane of the Constant Diagonal Matrix block dialog appears as follows:

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters" in the online Simulink documentation for details.

Constant(s) along diagonal

Specify the values of the elements along the diagonal. You can input a scalar or a vector. Tunable.

When you specify any data type information in this field, it is overridden by the value of the Output data type parameter on the Data Types pane, unless you select Inherit from 'Constant(s) along diagonal'.

Constant Diagonal Matrix

Frame-based output

Select to cause the output of the block to be frame based. Otherwise, the output is sample based.

The Data types pane of the Constant Diagonal Matrix block dialog appears as follows:

Output data type

Specify the output data type in one of the following ways:

- Choose one of the built-in data types from the list.
- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit from 'Constant(s) along diagonal' to set the output data type and scaling to match the values of the Constant(s) along diagonal parameter on the Main pane.

Constant Diagonal Matrix

- Choose Inherit via back propagation to set the output data type and scaling to match the next block downstream.

The value of this parameter overrides any data type information specified in the Constant(s) along diagonal parameter on the Main pane, except when you select Inherit from 'Constant(s) along diagonal'.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned. This parameter is only visible when you select Fixed-point for the Output data type parameter.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed - point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from Simulink Fixed Point. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed - point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Constant Diagonal Matrix

Constant Ramp

Purpose
Library
Description

Generate ramp signal with length based on input dimensions
Signal Operations
The Constant Ramp block generates the constant ramp signal

$$
y=(0: L-1) * m+b
$$

where m is the slope specified by the scalar Slope parameter, and b is the y-intercept specified by the scalar Offset parameter.

For a matrix input, the length L of the output ramp is equal to either the number of rows or the number of columns in the input, as determined by the Ramp length equals number of parameter. For a 1-D vector input, L is equal to the length of the input vector. The output, y, is always a 1-D vector.

The Main pane of the Constant Ramp block dialog appears as follows:

Ramp length equals number of

Specify the dimension of the input matrix that determines the length of the output ramp, Rows or Columns.

Constant Ramp

Slope

Specify the scalar slope of the ramp.

Offset

Specify the scalar y-intercept of the ramp.
The Data types pane of the Constant Ramp block dialog appears as follows:

Output data type

Specify the output data type in one of the following ways:

- Choose Same as input to force the data type of the output to be the same as the data type of the input to the block.
- Choose one of the built-in data types from the list.
- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.

Constant Ramp

- Choose Inherit via back propagation to set the output data type and scaling to match the next block downstream.

This block differs from other Signal Processing Blockset blocks in that unless you choose Same as input for this parameter, the data types of the input and the output do not need to be the same.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned. This parameter is only visible when you select Fixed-point for the Output data type parameter.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed - point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from Simulink Fixed Point. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed - point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Constant Ramp

Contiguous Copy

Purpose

Library
Description

Contigúous Copt

Note The Contiguous Copy block is still supported but is likely to be obsoleted in a future release.

Create a discontiguous input in a contiguous block of memory for Real-Time Workshop code generated from blocks linked to versions of the DSP Blockset prior to 4.0
dspobslib
The Contiguous Copy block copies the input to a contiguous block of memory, and passes this new copy to the output. The output is identical to the input, but is guaranteed to reside in a contiguous section of memory.

Because Simulink employs an efficient copy-by-reference method for propagating data in a model, some operations produce outputs with discontiguous memory locations.

Although this does not present a problem during simulation, blocks linked to versions of the DSP Blockset prior to 4.0 may require contiguous inputs for code generation with Real-Time Workshop. When such blocks are used in a model intended for code generation, they should be preceded by the Contiguous Copy block to ensure that their inputs are contiguous.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point

Contiguous Copy

- Custom data types
- Boolean
- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

Convert 1-D to 2-D

Purpose
Library
Description
reshape(U,M,N)

Reshape 1-D or 2-D input to a 2-D matrix with specified dimensions
Signal Management / Signal Attributes
The Convert 1-D to 2-D block reshapes a length- M_{i} 1-D vector or an $\mathrm{M}_{\mathrm{i}}-\mathrm{by}-\mathrm{N}_{\mathrm{i}}$ matrix to an M_{0}-by- N_{0} matrix, where M_{0} is specified by the Number of output rows parameter, and N_{0} is specified by the Number of output columns parameter.

$$
y=\text { reshape }(u, M o, \text { No }) \quad \text { \% Equivalent MATLAB code }
$$

The input is reshaped columnwise, as shown in the two cases below. The length- 6 vector and the 2 -by- 3 matrix are both reshaped to the same 3 -by- 2 output matrix.

An error is generated when $\left(\mathrm{M}_{0} * \mathrm{~N}_{\mathrm{o}}\right) \neq\left(\mathrm{M}_{\mathrm{i}} * \mathrm{~N}_{\mathrm{i}}\right)$. That is, the total number of input elements must be conserved in the output.

The output is frame based when you select the Frame-based output check box; otherwise, the output is sample based.

Dialog Box

Biock Parameters: Convert 1-D to 2-D			? ${ }^{\text {a }}$
$\begin{array}{\|l\|l} \text { Convert 1-D to 2-D (mask) (link) } \\ \text { Output a (2-D) matrix signal. } \end{array}$			
-Parameters			
Number of output rows:			
1			
Number of output columns:			
1			
「 Frame-based output			
QK	Cancel	Help	$\Delta p p l y$

Number of output rows

The number of rows, M_{0}, in the output matrix.

Number of output columns

The number of rows, N_{0}, in the output matrix.

Frame-based output

Creates a frame-based output when selected.

Convert 1-D to 2-D

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Buffer	Signal Processing Blockset
	Convert 2-D to 1-D	Signal Processing Blockset
	Frame Status Conversion	Signal Processing Blockset
	Reshape	Simulink
	Submatrix	Signal Processing Blockset

Purpose
Convert 2-D matrix input to 1-D vector

Library

Description

```
U(:)
```


Dialog Box

Signal Management / Signal Attributes

The Convert 2-D to 1-D block reshapes an M-by-N matrix input to a 1-D vector with length $\mathrm{M} * \mathrm{~N}$.

```
y = u(:) % Equivalent MATLAB code
```

The input is reshaped columnwise, as shown below for a 3-by-2 matrix.

The output is always sample-based.

Convert 2-D to 1-D

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Buffer	Signal Processing Blockset
	Convert 1-D to 2-D	Signal Processing Blockset
	Frame Status Conversion	Signal Processing Blockset
	Reshape	Simulink
	Submatrix	Signal Processing Blockset

Purpose Compute convolution of two inputs

Library

Description

Signal Operations

The Convolution block mathematically convolves analogous columns of an M_{u}-by-N input matrix u and an M_{v}-by- N input matrix v.

The Convolution block does not accept sample-based full-dimension matrix inputs, or mixed sample-based row vector and column vector inputs. All outputs are sample based.

The Convolution block accepts both real and complex floating-point and fixed-point inputs. Fixed-point signals are not supported for the frequency domain.

Convolving Frame-Based Inputs

Matrix inputs to the Convolution block must be frame based. The output, y, is a frame-based $\left(\mathrm{M}_{u}+\mathrm{M}_{v}-1\right)$-by-N matrix whose j th column has elements

$$
y_{i(), j}=\sum_{k=1}^{\max \left(M_{u}, M_{v}\right)} u_{k, j} v_{(i-k+1), j} \quad 1 \leq i \leq\left(M_{u}+M_{v}-1\right)
$$

Inputs u and v are zero when indexed outside of their valid ranges. When both inputs are real, the output is real; when one or both inputs are complex, the output is complex.

When one input is a column vector (single channel) and the other is a matrix (multiple channels), the single-channel input is independently convolved with each channel of the multichannel input. For example, when u is a M_{u}-by- 1 column vector and v is an M_{v}-by-N matrix, the output is an $\left(\mathrm{M}_{u}+\mathrm{M}_{v}-1\right)$-by- N matrix whose j th column has elements

$$
y_{i, j}=\sum_{k=1}^{\max \left(M_{u}, M_{v}\right)} u_{k} v_{(i-k+1), j} \quad 1 \leq i \leq\left(M_{u}+M_{v}-1\right)
$$

Convolution

Convolving Sample-Based Inputs

When u and v are sample-based vectors with lengths M_{u} and M_{v}, the Convolution block performs the vector convolution

$$
y_{i}=\sum_{k=1}^{\max \left(M_{u}, M_{v}\right)} u_{k} v_{(i-k+1)} \quad 1 \leq i \leq\left(M_{u}+M_{v}-1\right)
$$

The dimensions of the sample-based output vector are determined by the dimensions of the input vectors:

- When both inputs are row vectors, or when one input is a row vector and the other is a 1-D vector, the output is a 1-by- $\left(\mathrm{M}_{u}+\mathrm{M}_{v}-1\right)$ row vector.
- When both inputs are column vectors, or when one input is a column vector and the other is a 1-D vector, the output is a $\left(\mathrm{M}_{u}+\mathrm{M}_{v}-1\right)$-by- 1 column vector.
- When both inputs are 1-D vectors, the output is a 1-D vector of length $\mathrm{M}_{u}+\mathrm{M}_{v}-1$.

Fixed-Point Data Types

The following diagram shows the data types used within the Convolution block for fixed-point signals (time domain only).

You can set the product output, accumulator, and output data types in the block dialog as discussed below.

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the
accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Dialog Box

The Main pane of the Convolution block dialog appears as follows:

Computation domain

Set the domain in which the block computes convolutions:

- Time - The block computes in the time domain, which minimizes memory use.
- Frequency - The block computes in the frequency domain, which might require fewer computations than computing in the time domain, depending on the input length.
- Fastest - The block computes in the domain, which minimizes the number of computations.

The Fixed-point pane of the Convolution block dialog appears as follows:

Convolution

Note Fixed-point signals are only supported for the time domain. To use the parameters on this pane, make sure Time is selected for the Computation domain parameter on the Main pane.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-27 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

Convolution

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:

```
ideal product output word length = word length of first input +
word length of second input
ideal product output fraction length = fraction length of first input
+ fraction length of second input
```

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as first input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as

Convolution

each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information.

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:

If at least one of the inputs is real:
ideal accumulator word length $=$ ideal product output word length + floor(log2(MIN
$(($ number of rows first input, number of rows second input $)-1)))+1$
ideal accumulator fraction length $=$
ideal product output fraction length
If both inputs are complex:
ideal accumulator word length = ideal product output word length

+ floor(log2(MIN
$(($ number of rows first input, number of rows second input $)-1)))+2$
ideal accumulator fraction length $=$ ideal product output fraction length

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as first input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Convolution

Output

Choose how you will specify the data type and scaling of the output of the block:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
A special case occurs when Inherit via internal rule is specified for Accumulator, and both block inputs are complex. In that case, the output word length will be one less than the accumulator word length.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as first input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types

See Also

Correlation
conv

Signal Processing Blockset
MATLAB

Purpose Compute cross-correlation of two inputs

Library

Description

Statistics

 an M_{u}-by- N input matrix u and an M_{v}-by-N input matrix v.The Correlation block computes the cross-correlation of analogous columns of

The frame status of both inputs to the Correlation block must be the same. The block does not accept sample-based full-dimension matrix inputs or 2-D row vector inputs. The outputs are always sample based.

The Convolution block accepts both real and complex floating-point and fixed-point inputs. Fixed-point signals are not supported for the frequency domain.

Correlating Frame-Based Inputs

Matrix inputs to the Correlation block must be frame based. The output, y, is a frame-based ($\mathrm{M}_{u}+\mathrm{M}_{v}-1$)-by- N matrix whose j th column has elements

$$
y_{\left(i+M_{v}\right), j}=\sum^{\max \left(M_{u}, M_{v}\right)} u_{k, j} v_{(k-i), j}^{*} \quad-M_{u}<i<M_{v}
$$

where $*$ denotes the complex conjugate. Inputs u and v are zero when indexed outside of their valid ranges. When both inputs are real, the output is real; when one or both inputs are complex, the output is complex.

When one input is a column vector (single channel) and the other is a matrix (multiple channels), the single-channel input is independently cross-correlated with each channel of the multichannel input. For example, when u is a M_{u}-by- -1 column vector and v is an M_{v}-by-N matrix, the output is an $\left(\mathrm{M}_{u}+\mathrm{M}_{v}-1\right)$-by- N matrix whose j th column has elements

$$
y_{\left(i+M_{v}\right), j}=\sum_{k=1}^{\max \left(M_{u}, M_{v}\right)} u_{k} v_{(k-i), j}^{*} \quad-M_{u}<i<M_{v}
$$

Correlation

Correlating Sample-Based Inputs

The Correlation block does not support sample-based matrix inputs or 2-D row vector inputs. Therefore, all sample-based inputs are column vectors or 1-D vectors. When u and v are sample-based vectors with lengths M_{u} and M_{v}, the Correlation block performs the vector cross-correlation

$$
y_{\left(i+M_{v}\right)}=\sum_{k=1}^{\max \left(M_{u}, M_{v}\right)} u_{k} v_{(k-i)}^{*} \quad-M_{u}<i<M_{v}
$$

The dimensions of the sample-based output vector are determined by the dimensions of the input vectors:

- When both inputs are column vectors, or when one input is a column vector and the other is a 1-D vector, the output is a $\left(\mathrm{M}_{u}+\mathrm{M}_{v}-1\right)$-by- 1 column vector.
- When both inputs are 1-D vectors, the output is a 1-D vector of length $\mathrm{M}_{u}+\mathrm{M}_{v}-1$.

Fixed-Point Data Types

The following diagram shows the data types used within the Correlation block for fixed-point signals (time domain only).

You can set the product output, accumulator, and output data types in the block dialog as discussed below.

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Dialog Box

The Main pane of the Correlation block dialog appears as follows:

Computation domain

Set the domain in which the block computes correlations:

- Time - The block computes in the time domain, which minimizes memory use.
- Frequency - The block computes in the frequency domain, which might require fewer computations than computing in the time domain, depending on the input length.
- Fastest - The block computes in the domain, which minimizes the number of computations.

The Fixed-point pane of the Correlation block dialog appears as follows:

Correlation

Note Fixed-point signals are only supported for the time domain. To use the parameters on this pane, make sure Time is selected for the Computation domain parameter on the Main pane.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-27 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:

```
ideal product output word length \(=\) word length of first input +
word length of second input
ideal product output fraction length \(=\) fraction length of first input
+ fraction length of second input
```

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as first input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as

Correlation

each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information.

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:

If at least one of the inputs is real:
ideal accumulator word length $=$ ideal product output word length + floor($\log 2$ (MIN
$(($ number of rows first input, number of rows second input $)-1)))+1$
ideal accumulator fraction length $=$
ideal product output fraction length
If both inputs are complex:
ideal accumulator word length $=$ ideal product output word length

+ floor(log2(MIN
$(($ number of rows first input, number of rows second input $)-1)))+2$
ideal accumulator fraction length $=$ ideal product output fraction length

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as first input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Correlation

Output

Choose how you will specify the word length and fraction length of the output of the block:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
A special case occurs when Inherit via internal rule is specified for Accumulator, and both block inputs are complex. In that case, the output word length will be one less than the accumulator word length.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as first input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types

See Also
Autocorrelation
Convolution
xcorr

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

Purpose Count up or down through specified range of numbers

Library

Description

Signal Management / Switches and Counters
The Counter block increments or decrements an internal counter each time it receives a trigger event at the Clk port. A trigger event at the Rst port resets the counter to its initial state.

The input to the Rst port must be a real sample based scalar. The input to the Clk port can be a real sample-based scalar, or a real frame-based vector (that is, single channel). When both inputs are sample based, they must have the same sample period. When the Clk input is frame based, the frame period must equal the sample period of the Rst input.

Sections of This Reference Page

- "Setting the Count Event Parameter" on page 9-155
- "Setting the Counter Size and Initial Count Parameters" on page 9-157
- "Sample-Based Operation" on page 9-157
- "Frame-Based Operation" on page 9-158
- "Free-Running Operation" on page 9-159
- "Examples" on page 9-159
- "Dialog Box" on page 9-162
- "Supported Data Types" on page 9-164
- "See Also" on page 9-164

Setting the Count Event Parameter

The trigger event for both inputs is specified by the Count event parameter, and can be one of the following:

- Rising edge - Triggers a count or reset operation when the Clk or Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a count or reset operation when the Clk or Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a count or reset operation when the Clk or Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a count or reset operation at each sample time when the Clk or Rst input is not zero.
- Free running disables the Clk port, and enables the Samples per output frame and Sample time parameters. The block increments or decrements the counter at a constant interval, T_{s}, specified by the Sample time parameter (for more information, see "Free-Running Operation" on page 9-159). The Rst port behaves as if the Count event parameter were set to Non-zero sample.

Abstract

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset and clock signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a trigger event at the C1k or Rst port, and when it applies the trigger. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page $2-58$ and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page $2-58$ and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Setting the Counter Size and Initial Count Parameters

At the start of the simulation, the block sets the counter to the value specified by the Initial count parameter, which can be any integer in the range defined by the Counter size parameter. The Counter size parameter allows you to choose from three standard counter ranges, or to specify an arbitrary counter limit:

- 8 bits specifies a counter with a range of 0 to 255 .
- 16 bits specifies a counter with a range of 0 to 65535 .
- 32 bits specifies a counter with a range of 0 to $2^{32}-1$.
- User defined enables the supplementary Maximum count parameter, which allows you to specify an arbitrary integer as the upper count limit. The range of the counter is then 0 to the Maximum count value.

Sample-Based Operation

The block operates in sample-based mode when the Clk input is a sample-based scalar. Sample-based vectors and matrices are not accepted.

Counter

When the Count direction parameter is set to Up, a sample-based trigger event at the Clk input causes the block to increment the counter by one. The block continues incrementing the counter when triggered until the counter value reaches the upper count limit (that is 255 for an 8 -bit counter). At the next Clk trigger event, the block resets the counter to 0 , and resumes incrementing the counter with the subsequent Clk trigger event.

When the Count direction parameter is set to Down, a sample-based trigger event at the Clk input causes the block to decrement the counter by one. The block continues decrementing the counter when triggered until the counter value reaches 0 . At the next Clk trigger event, the block resets the counter to the upper count limit (that is 255 for an 8 -bit counter), and resumes decrementing the counter with the subsequent Clk trigger event.

Between triggering events the block holds the output at its most recent value. The block resets the counter to its initial state when the trigger event specified in the Count event menu is received at the optional Rst input. When trigger events are received simultaneously at the Clk and Rst ports, the block first resets the counter, and then increments or decrements appropriately. (If you do not need to reset the counter during the simulation, you can disable the Rst port by clearing the Reset input check box.)

The Output pop-up menu provides three options for the output port configuration of the block icon:

- Count configures the block icon to show a Cnt port, which produces the current value of the counter as a sample-based scalar with the same sample period as the inputs.
- Hit configures the block icon to show a Hit port. The Hit port produces zeros while the value of the counter does not equal the integer Hit value parameter setting. When the counter value does equal the Hit value setting, the block generates a value of 1 at the Hit port. The output is sample based with the same sample period as the inputs.
- Count and Hit configures the block icon with both ports.

Frame-Based Operation

The block operates in frame-based mode when the Clk input is a frame-based vector (that is, single channel). Multichannel frame-based inputs are not accepted.

Frame-based operation is the same as sample-based operation, except that the block increments or decrements the counter by the total number of trigger events contained in the Clk input frame. A trigger event that is split across two consecutive frames is counted in the frame that contains the conclusion of the event. When a trigger event is received at the Rst port, the block first resets the counter, and then increments or decrements the counter by the number of trigger events contained in the Clk frame.

The Cnt and Hit outputs are sample-based scalars with sample period equal to the Clk input frame period.

Free-Running Operation

The block operates in free-running mode when you select Free running from the Count event menu.

The Rst port behaves as if the Count event parameter were set to Non-zero sample (triggers a reset at each sample time that the Rst input is not zero).

The Clk input port is disabled in this mode, and the block simply increments or decrements the counter using the constant sample period specified by the Sample time parameter, T_{s}. The Cnt output is a frame-based M-by-1 matrix containing the count value at each of M consecutive sample times, where M is specified by the Samples per output frame parameter. The Hit output is a frame-based M-by-1 matrix containing the hit status (0 or 1) at each of those M consecutive sample times. Both outputs have a frame period of $\mathrm{M} * \mathrm{~T}_{\mathrm{s}}$.

Examples

In the model below, the Clk port of the Counter block is driven by the Simulink Pulse Generator block, and the Rst port is triggered by an N-Sample Enable block. All of the Counter block's inputs and outputs are multiplexed into a single To Workspace block using a 4-port Mux block.

To run the model, first select Configuration Parameters from the Simulation menu. In the Select pane, click Solver, and set the Stop time to 30. Then adjust the block parameters as described below. (Use the default settings for the Pulse Generator and To Workspace blocks.)

- Set the N-Sample Enable block parameters as follows:
- Trigger count $=6$
- Active level = High (1)
- Set the Counter block parameters as follows:
- Count direction: Down
- Count event: Rising edge
- Counter size: User defined
- Maximum count: 20
- Initial count: 5
- Output: Count and Hit
- Hit value: 4
- Reset input ∇
- Count data type: Double
- Hit data type: Logical
- Set the Number of inputs parameter of the Mux block to 4.

The figure below shows the first 22 samples of the model's four-column output, yout. The first column is the Counter block's Clk input, the second column is the block's Rst input, the third column is the block's Cnt output, and the fourth column is the block's Hit output.

You can see that the seventh input samples to both the Clk and Rst ports of the Counter block represent trigger events (rising edges), so at this time step the block first resets the counter to its initial value of 5 , and then immediately decrements the count to 4 . When the counter reaches its minimum value of 0 , it rolls over to its maximum value of 20 with the following trigger event at the Cnt port.

Counter

Dialog Box

Count direction

The counter direction, Up or Down. Tunable, except in the Simulink external mode.

Count event

The type of event that triggers the block to increment, decrement, or reset the counter when received at the Clk or Rst ports. Free running disables the Clk port, and counts continuously with the period specified by the Sample time parameter. For more information on all the possible settings, see "Setting the Count Event Parameter" on page 9-155.

Counter size

The range of integer values the block should count through before recycling to zero. For more information, see "Setting the Counter Size and Initial Count Parameters" on page 9-157.

Maximum count

The counter's maximum value when Counter size is set to User defined. Tunable.

Initial count

The counter's initial value at the start of the simulation and after reset. Tunable, except in the Simulink external mode.

Output

Selects the output port(s) to enable: Cnt, Hit, or both.

Hit value

The scalar value whose occurrence in the count should be flagged by a 1 at the (optional) Hit output. This parameter is available when Hit or Count and Hit are selected in the Output menu. Tunable, except in the Simulink external mode.

Reset input

Enables the Rst input port when selected.

Samples per output frame

The number of samples, M, in each output frame. This parameter is available when you select Free running in the Count event menu.

Sample time

The output sample period, T_{S}, in free-running mode. This parameter is available when you select Free running in the Count event menu.

Count data type

The data type of the output from the Cnt output port. This parameter is available when the Output parameter is set to Count or Count and Hit.

Hit data type

The data type of the output from the Hit output port. For information on the Logical and Boolean options of this parameter, see "Effects of Enabling and Disabling Boolean Support" on page 7-18. This parameter is
available when the Output parameter is set to Hit or the Output parameter is set to Count and Hit and the Count data type parameter is set to Double.

Supported Data Types

Port	Supported Data Types
Clk	- Double-precision floating point - Single-precision floating point
Rst	- Double-precision floating point - Single-precision floating point - Boolean
Cnt	- Double-precision floating point - Single-precision floating point - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Hit	- Logical - Boolean - The block might output Boolean values from the Hit output port depending on the Hit data type parameter setting, as described in "Effects of Enabling and Disabling Boolean Support" on page 7-18. To learn how to disable Boolean output support, see "Steps to Disabling Boolean Support" on page 7-19.

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Edge Detector	Signal Processing Blockset
	N-Sample Enable	Signal Processing Blockset
	N-Sample Switch	Signal Processing Blockset

Covariance AR Estimator

Purpose

Library

Description

Estimator G.

Compute estimate of autoregressive (AR) model parameters using covariance method

Estimation / Parametric Estimation

The Covariance AR Estimator block uses the covariance method to fit an autoregressive (AR) model to the input data. This method minimizes the forward prediction error in the least squares sense.

The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only) representing a frame of consecutive time samples from a single-channel signal, which is assumed to be the output of an AR system driven by white noise. The block computes the normalized estimate of the AR system parameters, $A(z)$, independently for each successive input frame.

$$
H(z)=\frac{G}{A(z)}=\frac{G}{1+a(2) z^{-1}+\ldots+a(p+1) z^{-p}}
$$

The order, p, of the all-pole model is specified by the Estimation order parameter. To guarantee a valid output, you must set the Estimation order parameter to be less than or equal to half the input vector length.

The top output, A, is a column vector of length $p+1$ with the same frame status as the input, and contains the normalized estimate of the AR model coefficients in descending powers of z.

$$
\left[\begin{array}{llll}
1 & a(2) & \ldots & a(p+1)
\end{array}\right]
$$

The scalar gain, G, is provided at the bottom output (G).
See the Burg AR Estimator block reference page for a comparison of the Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

Covariance AR Estimator

Dialog Box

References

Supported Data Types

Estimation order

The order of the AR model, p. To guarantee a nonsingular output, you must set p to be less than the input length. Otherwise, the output might be singular.

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Port	Supported Data Types
Input	\bullet Double-precision floating point - Single-precision floating point
A	- Double-precision floating point - Single-precision floating point
G	- Double-precision floating point - Single-precision floating point

The output data type is the same as the input data type. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Covariance AR Estimator

See Also
Burg AR Estimator Covariance Method Modified Covariance AR Estimator Yule-Walker AR Estimator arcov

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

Covariance Method

Purpose
 Compute parametric spectral estimate using covariance method

Library Estimation / Power Spectrum Estimation

Description

The Covariance Method block estimates the power spectral density (PSD) of the input using the covariance method. This method fits an autoregressive (AR) model to the signal by minimizing the forward prediction error in the least squares sense. The order of the all-pole model is the value specified by the Estimation order parameter, and the spectrum is computed from the FFT of the estimated AR model parameters. To guarantee a valid output, you must set the Estimation order parameter to be less than or equal to half the input vector length.

The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only) representing a frame of consecutive time samples from a single-channel signal. The block's output (a column vector) is the estimate of the signal's power spectral density at $\mathrm{N}_{\mathrm{fft}}$ equally spaced frequency points in the range $\left[0, \mathrm{~F}_{\mathrm{s}}\right.$), where F_{s} is the signal's sample frequency.

When you select Inherit FFT length from input dimensions, $\mathrm{N}_{\mathrm{fft}}$ is specified by the frame size of the input, which must be a power of 2 . When you do not select Inherit FFT length from input dimensions, $\mathrm{N}_{\text {fft }}$ is specified as a power of 2 by the FFT length parameter, and the block zero pads or truncates the input to $\mathrm{N}_{\mathrm{fft}}$ before computing the FFT. The output is always sample based.

See the Burg Method block reference for a comparison of the Burg Method, Covariance Method, Modified Covariance Method, and Yule-Walker Method blocks.

Dialog Box

References

Estimation order

The order of the AR model. To guarantee a nonsingular output, you must set the value of this parameter to be less than the input length. Otherwise, the output might be singular.

Inherit FFT length from input dimensions

When selected, uses the input frame size as the number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT. Tunable.

FFT length

The number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT. When $\mathrm{N}_{\mathrm{fft}}$ exceeds the input frame size, the frame is zero-padded as needed. This parameter is enabled when you do not select Inherit FFT length from input dimensions.

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Covariance Method

Supported
 Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point
Output	• Double-precision floating point
	- Single-precision floating point

The output data type is the same as the input data type. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Burg Method	Signal Processing Blockset
Covariance AR Estimator	Signal Processing Blockset
Short-Time FFT	Signal Processing Blockset
Modified Covariance Method	Signal Processing Blockset
Yule-Walker Method	Signal Processing Blockset
pcov	Signal Processing Toolbox

See "Power Spectrum Estimation" on page 6-5 for related information.

Create Diagonal Matrix

Purpose

Library

Description

Create square diagonal matrix from diagonal elements

Math Functions / Matrices and Linear Algebra / Matrix Operations

The Create Diagonal Matrix block populates the diagonal of the M-by-M matrix output with the elements contained in the length-M vector input, D. The elements off the diagonal are zero.

```
A = diag(D) Equivalent MATLAB code
```

The output is always sample based.

Dialog Box

Create Diagonal Matrix

Supported
 Data Types

Port	Supported Data Types
D	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
A	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Constant Diagonal Matrix	Signal Processing Blockset
	Extract Diagonal	Signal Processing Blockset
	diag	MATLAB

Cumulative Product

Compute cumulative product of channel, column, or row elements

Math Functions / Math Operations
The Cumulative Product block computes the cumulative product of elements in each channel, column, or row of the M-by-N input matrix.

The inputs can be sample-based or frame-based vectors and matrices. The output always has the same dimensions, rate, frame status, data type, and complexity as the input.

The Cumulative Product block accepts real and complex fixed-point and floating-point inputs.

Sections of This Reference Page

- "Input and Output Characteristics" on page 9-173
- "Multiplying Along Channels" on page 9-174
- "Resetting the Cumulative Product Along Channels" on page 9-176
- "Multiplying Along Columns" on page 9-177
- "Multiplying Along Rows" on page 9-178
- "Dialog Box" on page 9-180
- "Supported Data Types" on page 9-184
- "See Also" on page 9-184

Input and Output Characteristics

Valid Input. The block computes the cumulative product of both sample- and frame-based vector and matrix inputs. Inputs can be real or complex. When multiplying along channels or columns, 1-D unoriented vectors are treated as column vectors. When multiplying along rows, 1-D vectors are treated as row vectors.

Valid Reset Signal. The optional reset port, Rst, accepts scalar values, which can be any built-in Simulink data type including boolean. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

Output Characteristics. The output always has the same dimensions, rate, frame status, data type, and complexity as the data signal input.

Cumulative Product

Multiplying Along Channels

When the Multiply input along parameter is set to Channels (running product), the block computes the cumulative product of the elements in each input channel. The running product of the current input takes into account the running product of all previous inputs. See the following sections for more information:

- "Multiplying Along Channels of Frame-Based Inputs" on page 9-174
- "Multiplying Along Channels of Sample-Based Inputs" on page 9-175
- "Resetting the Cumulative Product Along Channels" on page 9-176

Multiplying Along Channels of Frame-Based Inputs. For frame-based inputs, the block treats each input column as an independent channel. As the following figure and equation illustrate, the output has the following characteristics:

- The first row of the first output is the same as the first row of the first input.
- The first row of each subsequent output is the element-wise product of the first row of the current input (time t), and the last row of the previous output (time $t-T_{f}$, where T_{f} is the frame period).
- The output has the same size, dimension, frame status, data type, and complexity as the input.

Given an M-by-N frame-based input, u, the output, y, is a frame-based M-by-N matrix whose first row has elements

$$
y_{1, j}(t)=u_{1, j}(t) \cdot y_{M, j}\left(t-T_{f}\right)
$$

Product Along Channels for Frame-Based Inputs
$\mathrm{T}_{\mathrm{f}}=$ Frame period

Cumulative Product

Multiplying Along Channels of Sample-Based Inputs. For sample-based inputs, the block treats each element of the input matrix as an independent channel. As the following figure and equation illustrate, the output has the following characteristics:

- The first output is the same as the first input.
- Each subsequent output is the element-wise product of the current input (time t) and the previous output (time $t-T_{s}$, where T_{s} is the sample period).
- The output has the same size, dimension, frame status, data type, and complexity as the input.

Given an M-by-N sample-based input, u, the output, y, is a sample-based M-by-N matrix with the elements

$$
\begin{array}{ll}
y_{i, j}(t)=u_{i, j}(t) \cdot y_{i, j}\left(t-T_{s}\right) & 1 \leq i \leq M \\
1 \leq j \leq N
\end{array}
$$

For convenience, length-M 1-D vector inputs are treated as M-by-1 column vectors when multiplying along channels, and the output is a length-M 1-D vector.

Product Along Channels for Sample-Based Inputs $\quad \mathrm{T}_{\mathrm{s}}=$ Sample period

Cumulative Product

Resetting the Cumulative Product Along Channels. When you set the Multiply input along parameter to Channels (running product), you can set the block to reset the running product whenever it detects a reset event at the optional Rst port. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. The input to the Rst port can be of the Boolean data type.

When the block is reset for sample-based inputs, the block initializes the current output to the values of the current input. For frame-based inputs, the block initializes the first row of the current output to the values in the first row of the current input.

The Reset port parameter specifies the reset event, which can be one of the following:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Multiplying Along Columns

When the Multiply input along parameter is set to Columns, the block computes the cumulative product of each column of the input, where the current cumulative product is independent of the cumulative products of previous inputs.

```
y = cumprod(u) % Equivalent MATLAB code
```

The output has the same size, dimension, frame status, data type, and complexity as the input. The m th output row is the element-wise product of the first m input rows.

Cumulative Product

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose j th column has elements

$$
y_{i, j}=\prod_{k=1}^{i} u_{k, j} \quad 1 \leq i \leq M
$$

The block treats length-M 1-D vector inputs as M-by-1 column vectors when multiplying along columns.

Product Along Columns

Multiplying Along Rows

When the Multiply input along parameter is set to Rows, the block computes the cumulative product of the row elements, where the current cumulative product is independent of the cumulative products of previous inputs.

$$
y=\text { cumprod }(u, 2) \quad \% \text { Equivalent MATLAB code }
$$

The output has the same size, dimension, frame status, and data type as the input. The nth output column is the element-wise product of the first n input columns.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose i th row has elements

$$
y_{i, j}=\prod_{k=1}^{j} u_{i, k} \quad 1 \leq j \leq N
$$

The block treats length-N 1-D vector inputs as 1-by-N row vectors when multiplying along rows.

Product Along Rows

Fixed-Point Data Types

The following diagram shows the data types used within the Cumulative Product block for fixed-point signals.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15. You can set the accumulator, product output, intermediate product, and output data types in the block dialog as discussed in "Dialog Box" below.

Cumulative Product

Dialog Box

The Main pane of the Cumulative Product block dialog appears as follows:

Multiply input along

The dimension along which to compute the cumulative products. The options allow you to multiply along Channels (running product), Columns, and Rows. For more information, see the following sections:

- "Multiplying Along Channels" on page 9-174
- "Multiplying Along Columns" on page 9-177
- "Multiplying Along Rows" on page 9-178

Reset port

Determines the reset event that causes the block to reset the product along channels. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Multiply input along parameter to Channels (running product).

For more information, see "Resetting the Cumulative Product Along Channels" on page 9-176.

The Fixed-point pane of the Cumulative Product block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Intermediate product

As shown in "Fixed-Point Data Types" on page 9-179, the output of the multiplier is cast to the intermediate product data type before the next element of the input is multiplied into it. Use this parameter to specify how

Cumulative Product

you would like to designate the intermediate product word and fraction lengths:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the intermediate product, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the intermediate product. This block requires power-of-two slope and a bias of zero.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-179 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-179 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the accumulator data type in this block. Note that the accumulator data type is only used when both inputs to the multiplier are complex:

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.

Cumulative Product

- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the word length and fraction length of the output of the block:

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Cumulative Product

See Also

Input and Output Ports	Supported Data Types
Data input port, In	\bullet Double-precision floating point
	\bullet Single-precision floating point
	\bullet Fixed point (signed only)
	$\bullet 8-, 16-$-, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers
	All built-in Simulink data types:
Reset input port, Rst	\bullet Double-precision floating point
	• Single-precision floating point
	\bullet Boolean
	$\bullet 8-, 16-$, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers
Output port	Always has same data type as data input

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Cumulative Sum
Matrix Product
cumprod

Signal Processing Blockset
Signal Processing Blockset
MATLAB

Compute cumulative sum of channel, column, or row elements

Math Functions / Math Operations

The Cumulative Sum block computes the cumulative sum of the elements in each channel, column, or row of the M-by-N input matrix.

The inputs can be sample-based or frame-based vectors and matrices. The output always has the same dimensions, rate, frame status, data type, and complexity as the input.

The Cumulative Sum block accepts real and complex fixed-point and floating-point inputs.

Sections of This Reference Page

- "Input and Output Characteristics" on page 9-185
- "Summing Along Channels" on page 9-186
- "Resetting the Cumulative Sum Along Channels" on page 9-187
- "Summing Along Columns" on page 9-189
- "Summing Along Rows" on page 9-190
- "Dialog Box" on page 9-191
- "Supported Data Types" on page 9-194
- "See Also" on page 9-195

Input and Output Characteristics

Valid Input. The block computes the cumulative sum of both sample- and frame-based vector and matrix inputs. Inputs can be real or complex. When summing along channels or columns, 1-D unoriented vectors are treated as column vectors. When summing along rows, 1-D vectors are treated as row vectors.

Valid Reset Signal. The optional reset port, Rst, accepts scalar values, which can be any built-in Simulink data type including boolean. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

Output Characteristics. The output always has the same dimensions, rate, frame status, data type, and complexity as the data signal input.

Cumulative Sum

Summing Along Channels

When the Sum input along parameter is set to Channels (running sum), the block computes the cumulative sum of the elements in each input channel. The running sum of the current input takes into account the running sum of all previous inputs. See the following sections for more information:

- "Summing Along Channels of Frame-Based Inputs" on page 9-186
- "Summing Along Channels of Sample-Based Inputs" on page 9-187
- "Resetting the Cumulative Sum Along Channels" on page 9-187

Summing Along Channels of Frame-Based Inputs. For frame-based inputs, the block treats each input column as an independent channel. As the following figure and equation illustrate, the output has the following characteristics:

- The first row of the first output is the same as the first row of the first input.
- The first row of each subsequent output is the sum of the first row of the current input (time t), and the last row of the previous output (time $t-T_{f}$, where T_{f} is the frame period).
- The output has the same size, dimension, frame status, data type, and complexity as the input.

Given an M-by-N frame-based input, u, the output, y, is a frame-based M-by-N matrix whose first row has elements

$$
y_{1, j}(t)=u_{1, j}(t)+y_{M, j}\left(t-T_{f}\right)
$$

Sum Along Channels for Frame-Based Inputs

Summing Along Channels of Sample-Based Inputs. For sample-based inputs, the block treats each element of the input matrix as an independent channel. As the following figure and equation illustrate, the output has the following characteristics:

- The first output is the same as the first input.
- Each subsequent output is the sum of the current input (time t) and the previous output (time $t-T_{s}$, where T_{s} is the sample period).
- The output has the same size, dimension, frame status, data type, and complexity as the input.

Given an M-by-N sample-based input, u, the output, y, is a sample-based M-by-N matrix with the elements

$$
\begin{array}{ll}
y_{i, j}(t)=u_{i, j}(t)+y_{i, j}\left(t-T_{s}\right) & 1 \leq i \leq M \\
1 \leq j \leq N
\end{array}
$$

Sum Along Channels for Sample-Based Inputs

$$
\mathrm{T}_{\mathrm{s}}=\text { Sample period }
$$

Resetting the Cumulative Sum Along Channels. When you set the Sum input along parameter to Channels (running sum), you can set the block to reset the running sum whenever it detects a reset event at the optional Rst port. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. The input to the Rst port can be of the boolean data type.

When the block is reset for sample-based inputs, the block initializes the current output to the values of the current input. For frame-based inputs, the

Cumulative Sum

block initializes the first row of the current output to the values in the first row of the current input.

The Reset port parameter specifies the reset event, which can be one of the following:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Summing Along Columns

When the Sum input along parameter is set to Columns, the block computes the cumulative sum of each column of the input, where the current cumulative sum is independent of the cumulative sums of previous inputs.

```
y = cumsum(u) % Equivalent MATLAB code
```

The output has the same size, dimension, frame status, data type, and complexity as the input. The m th output row is the sum of the first m input rows.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose j th column has elements

$$
y_{i, j}=\sum_{k=1}^{i} u_{k, j} \quad 1 \leq i \leq M
$$

The block treats length-M 1-D vector inputs as M-by-1 column vectors when summing along columns.

Cumulative Sum

Sum Along Columns

Summing Along Rows

When the Sum input along parameter is set to Rows, the block computes the cumulative sum of the row elements, where the current cumulative sum is independent of the cumulative sums of previous inputs.

$$
y=\text { cumsum }(u, 2) \quad \% \text { Equivalent MATLAB code }
$$

The output has the same size, dimension, frame status, and data type as the input. The nth output column is the sum of the first n input columns.

Given an M-by-N input, u, the output, y, is an M-by-N matrix whose i th row has elements

$$
y_{i, j}=\sum_{k=1}^{j} u_{i, k} \quad 1 \leq j \leq N
$$

The block treats length-N 1-D vector inputs as 1-by-N row vectors when summing along rows.

Sum Along Rows

Fixed-Point Data Types

The following diagram shows the data types used within the Cumulative Sum block for fixed-point signals.

You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" below.

Dialog Box The Main pane of the Cumulative Sum block dialog appears as follows:

Cumulative Sum

Sum input along

The dimension along which to compute the cumulative summations. The options allow you to sum along Channels (running sum), Columns, and Rows. For more information, see the following sections:

- "Summing Along Channels" on page 9-186
- "Summing Along Columns" on page 9-189
- "Summing Along Rows" on page 9-190

Reset port

Determines the reset event that causes the block to reset the sum along channels. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Sum input along parameter to Channels (running sum). For more information, see "Resetting the Cumulative Sum Along Channels" on page 9-187.

The Fixed-point pane of the Cumulative Sum block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Accumulator

Use this parameter to specify how you would like to designate this accumulator word and fraction lengths:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Cumulative Sum

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types

Input and Output Ports	Supported Data Types
Data input port, In	\bullet Double-precision floating point
	\bullet Single-precision floating point
	\bullet Fixed point (signed only)
	$\bullet 8-, 16$-, and 32 -bit signed integers
	$\bullet 8-, 16$-, and 32-bit unsigned integers
	All built-in Simulink data types:
Reset input port, Rst	\bullet Double-precision floating point
	\bullet Single-precision floating point
	\bullet Boolean
	$\bullet 8-, 16-$, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers
Output port	Always has same data type as data input

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Cumulative Product	Signal Processing Blockset
	Difference	Signal Processing Blockset
	Matrix Sum	Signal Processing Blockset
	cumsum	MATLAB

Purpose	Convert magnitude data to decibels $(\mathrm{dB}$ or dBm$)$
Library	Math Functions / Math Operations
Description	The dB Conversion block converts a linearly scaled power or amplitude input to dB or dBm. The Input signal parameter specifies whether the input is a power signal or a voltage signal, and the Convert to parameter controls the scaling of the output. When selected, the Add eps to input to protect against "log($\mathbf{0})=-$-inf" parameter adds a value of eps to all power and voltage inputs. When this option is not enabled, zero-valued inputs produce - inf at the output. The size and frame status of the output are the same as the input.

Power Inputs

Select Power as the Input signal parameter when the input, u, is a real, nonnegative, power signal (units of watts). When the Convert to parameter is set to dB , the block performs the dB conversion

$$
y=10 * \log 10(u) \quad \text { \% Equivalent MATLAB code }
$$

When the Convert to parameter is set to dBm , the block performs the dBm conversion

$$
y=10 * \log 10(u)+30
$$

The dBm conversion is equivalent to performing the dB operation after converting the input to milliwatts.

Voltage Inputs

Select Amplitude as the Input signal parameter when the input, u, is a real voltage signal (units of volts). The block uses the scale factor specified in ohms by the Load resistance parameter, R, to convert the voltage input to units of power (watts) before converting to dB or dBm . When the Convert to parameter is set to dB , the block performs the dB conversion

$$
y=10^{*} \log 10\left(\operatorname{abs}(u)^{\wedge} 2 / R\right)
$$

When the Convert to parameter is set to dBm , the block performs the dBm conversion

$$
y=10 * \log 10\left(\operatorname{abs}(u)^{\wedge} 2 / R\right)+30
$$

The dBm conversion is equivalent to performing the dB operation after converting the (abs (u)^2/R) result to milliwatts.

Dialog Box

Convert to

The logarithmic scaling to which the input is converted, dB or dBm . Tunable.

Input signal

The type of input signal, Power or Amplitude. Nontunable.

Load resistance

The scale factor used to convert voltage inputs to units of power. Tunable.

Add eps to input to protect against " $\log (0)=-i n f$ "

When selected, adds eps to all input values (power or voltage). Tunable.

Supported Data Types

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

dB Conversion

See Also
dB Gain
Math Function
log10

Signal Processing Blockset
Simulink
MATLAB

Purpose Apply decibel gain

Library

Description

Math Functions / Math Operations
The dB Gain block multiplies the input by the decibel values specified in the Gain parameter. For an M-by-N input matrix u with elements $u_{i j}$, the Gain parameter can be a real M-by-N matrix with elements $g_{i j}$ to be multiplied element-wise with the input, or a real scalar.

$$
y_{i j}=10 u_{i j}^{\left(g_{i j} / k\right)}
$$

The value of k is 10 for power signals (select Power as the Input signal parameter) and 20 for voltage signals (select Amplitude as the Input signal parameter).

The value of the equivalent linear gain

$$
g_{i j}^{l i n}=10^{\left(g_{i j} / k\right)}
$$

is displayed in the block icon below the dB gain value. The size and frame status of the output are the same as the input.

The dB Gain block supports real and complex floating-point and fixed-point data types.

Fixed-Point Data Types

The following diagram shows the data types used within the dB Gain subsystem block for fixed-point signals.

The settings for the fixed-point parameters of the Gain block in the diagram above are as follows:

- Round integer calculations toward: Floor
- Saturate on integer overflow - unselected
- Parameter data type mode - Inherit via internal rule
- Output data type mode - Inherit via internal rule

Refer to the Gain reference page for more information.

Dialog Box

Supported Data Types

See Also

Gain

The dB gain to apply to the input, a scalar or a real M-by-N matrix. Tunable.

Input signal

The type of input signal: Power or Amplitude. Tunable.

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

dB Conversion	Signal Processing Blockset
Math Function	Simulink
log10	MATLAB

Purpose Compute discrete cosine transform (DCT) of input

Library

Description

Transforms

The DCT block computes the unitary discrete cosine transform (DCT) of each channel in the M-by-N input matrix, u.

$$
y=\operatorname{dct}(u) \quad \% \text { Equivalent MATLAB code }
$$

For both sample-based and frame-based inputs, the block assumes that each input column is a frame containing M consecutive samples from an independent channel. The frame size, M, must be a power of two. To work with other frame sizes, use the Zero Pad block to pad or truncate the frame size to a power-of-two length.
The output is an M-by-N matrix whose l th column contains the length-M DCT of the corresponding input column.

$$
y(k, l)=w(k) \sum_{m=1}^{M} u(m, l) \cos \frac{\pi(2 m-1)(k-1)}{2 M}, \quad k=1, \ldots, M
$$

where

$$
w(k)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{M}}, & k=1 \\
\sqrt{\frac{2}{M}}, & 2 \leq k \leq M
\end{array}\right.
$$

The output is always sample based, and the output port rate and data type (real/complex) are the same as those of the input port.

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are processed as single channels (that is, as M-by- 1 column vectors), and the output has the same dimension as the input.

The Sine and cosine computation parameter determines how the block computes the necessary sine and cosine values. This parameter has two settings, each with its advantages and disadvantages, as described in the following table.

Sine and Cosine Computation Parameter Setting	Sine and Cosine Computation Method	Effect on Block Performance
Table lookup	The block computes and stores the trigonometric values before the simulation starts, and retrieves them during the simulation. When you generate code from the block, the processor running the generated code stores the trigonometric values computed by the block in a speed-optimized table, and retrieves the values during code execution.	The block usually runs much more quickly, but requires extra memory for storing the precomputed trigonometric values.
Trigonometric fcn	The block computes sine and cosine values during the simulation. When you generate code from the block, the	The block usually runs more processor running the generated slowly, but does not need extra data memory. For code generation, the block requires a support library to emulate the trigonometric functions, increasing the size of the generated code.
	cosine values while the code runs.	

Fixed-Point Data Types

The diagrams below show the data types used within the DCT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the DCT block dialog as discussed in "Dialog Box" on page 9-204.
Inputs to the DCT block are first cast to the output data type and stored in the output buffer. Each butterfly stage processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type.

Butterfly Stage Data Types

Twiddle Multiplication Data Types

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Dialog Box

The Main pane of the DCT block dialog appears as follows:

Sine and cosine computation

Sets the block to compute sines and cosines by either looking up sine and cosine values in a speed-optimized table (Table lookup), or by making sine and cosine function calls (Trigonometric fon). See the table above.

The Fixed-point pane of the DCT block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations. The sine table values do not obey this parameters; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The sine table values do not obey this parameters; they always round to Nearest.

Sine table

Choose how you will specify the word length of the values of the sine table. The fraction length of the sine table values is always equal to the word length minus one:

- When you select Same word length as input, the word length of the sine table values will match that of the input to the block.
- When you select Specify word length, you are able to enter the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-202 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:

```
product output word length =
output word length + sine table values word length
product output fraction length =
output fraction length + sine table values fraction length
```

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-202 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the accumulator data type in this block:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:

$$
\text { accumulator word length }=\text { product output word length }+1
$$

accumulator fraction length $=$ product output fraction length

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Inherit via internal rule, the output word length and fraction length are automatically set according to the following equations:

```
output word length \(=\) input word length
    + floor \((\log 2(D C T\) length -1\())+1\)
output fraction length \(=\) input fraction length
```

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.
$\begin{array}{ll}\text { Supported } & \text { - Double-precision floating point } \\ \text { Data Types } & \text { - Single-precision floating point } \\ & \text { • Fixed point (signed only) } \\ & \bullet 8-, 16-\text {-, and } 32 \text {-bit signed integers }\end{array}$

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Complex Cepstrum	Signal Processing Blockset
	FFT	Signal Processing Blockset
	IDCT	Signal Processing Blockset
	Real Cepstrum	Signal Processing Blockset
	dct	Signal Processing Toolbox

Purpose
Delay discrete-time input by specified number of samples or frames

Library

Description

Signal Operations

The Delay block delays a discrete-time input by the number of samples or frames specified in the Delay units and Delay parameters. The Delay value must be an integer value greater than or equal to zero. Also, when you enter a value of zero for the Delay parameter, any initial conditions you might have
entered have no effect on the output.

The Delay block allows you to set the initial conditions of the signal that is being delayed. The initial conditions must be numeric. Select the Show additional parameters check box in order to specify the initial conditions.

This block reference contains the following topics:

- Sample-Based Operation - Use the Delay block with a sample-based input signal
- Frame-Based Operation - Use the Delay block with a frame-based input signal

Sample-Based Operation

When the input is a sample-based M-by-N matrix, where $M \geq 1$ and $N \geq 1$, the block treats each of the $\mathrm{M} * \mathrm{~N}$ matrix elements as an independent channel.

When the input is a sample-based scalar, the Delay parameter can be a scalar integer by which to equally delay all channels. When the input is a sample-based vector, the Delay parameter can be a scalar integer by which to equally delay all channels, or a vector whose length is equal to the number of channels. When the input is a sample-based M-by-N matrix, where $\mathrm{M}>1$ and $\mathrm{N}>1$, then the Delay parameter can be a scalar integer by which to equally delay all channels or an M-by-N matrix of nonnegative integers that specify the number of sample intervals to delay each channel of the input.

There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also be the same or different along each channel. Refer to "Sample-Based Operation Examples" on page 9-213, for descriptions of the behavior of the block in each of these four cases.

Delay

Frame-Based Operation

When the input is a frame-based M-by-N matrix, the block treats each of the N columns as an independent channel, and delays each channel as specified by the Delay parameter.

When the input is frame based, the Delay parameter can be a scalar integer by which to equally delay all channels or a vector whose length is equal to the number of channels.

There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also be constant or varying along each channel. Refer to "Frame-Based Operation Examples" on page 9-217, for descriptions of the behavior of the block in each of these four cases.

Resetting the Delay

The Delay block resets the delay whenever it detects a reset event at the optional Rst port. The reset signal rate must be a positive integer multiple of the rate of the data signal input.

The reset event is specified by the Reset port parameter, and can be one of the following:

- None disables the Rst port.
- Rising edge triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge triggers a reset operation when the Rst input is Rising edge or Falling edge (as described above).
- Non-zero sample triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Delay

Dialog Box

Delay units

Select whether you want to delay your input by a specified number of Samples or Frames. You can choose to delay your signal by a certain number of samples or frames regardless of whether your input is sample or frame based.

Delay (samples) or Delay (frames)

See "Sample-Based Operation" on page 9-209 and "Frame-Based Operation" on page 9-210 for a description of what format to use for each configuration of the block dialog.

Specify different initial conditions for each channel

Select this check box when you want the initial conditions to vary across the channels. When you do not select this check box, the initial conditions are the same across the channels.

Specify different initial conditions within a channel

Select this check box when you want the initial conditions to vary within the channels. When you do not select this check box, the initial conditions are the same within the channels.

Initial conditions

Enter a scalar, vector, matrix, or cell array of initial condition values depending on your choice for the Specify different initial conditions for each channel and Specify different initial conditions within a channel check boxes. See "Sample-Based Operation" on page 9-209 and "Frame-Based Operation" on page 9-210 for a description of what format to use for each configuration of the block dialog.

Reset port

Determines the reset event that causes the block to reset the delay. For more information, see "Resetting the Delay" on page 9-210.

Sample-Based Operation Examples

There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also be the same or different along each channel. The next sections describe the behavior of the block for each of these four cases:

- "Case 1 - Use the Same Initial Conditions for Each Channel and Within a Channel" on page 9-213
- "Case 2 - Use Different Initial Conditions for Each Channel and the Same Initial Conditions Within a Channel" on page 9-214
- "Case 3 - Use the Same Initial Conditions for Each Channel and Different Initial Conditions Within a Channel" on page 9-215
- "Case 4 - Use Different Initial Conditions for Each Channel and Within a Channel" on page 9-216

Case 1 - Use the Same Initial Conditions for Each Channel and Within a Channel

Enter a scalar value for the initial conditions. This value is used as the constant initial condition value for each of the channels.

For example, suppose your input is a sample-based matrix.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

You want the initial conditions of your four-channel signal to be identical and zero for the first two samples:

1 For the Delay (samples) parameter, type 2.
2 Clear the Specify different initial conditions for each channel and Specify different initial conditions within a channel check boxes.
3 For the Initial conditions parameter, specify a scalar value of 0 .
The output of the delay block is

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

Note how 0 , the scalar initial condition value, is used for each channel and within the channels. It is the output at sample time zero and sample time one.

Case 2 - Use Different Initial Conditions for Each Channel and the Same Initial Conditions Within a Channel

The initial conditions can be either a matrix for matrix input or a vector for vector input. These initial condition values are used as the constant initial condition value for each of the channels.

For example, suppose your input is a sample-based matrix.
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right],\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right], \ldots$
You want the initial conditions of your four-channel signal to be

```
7 9
```

11 13
for the first two samples:
1 For the Delay (samples) parameter, type 2.
2 Select the Specify different initial conditions for each channel check box.
3 Clear the Specify different initial conditions within a channel check box.

4 For the Initial conditions parameter, type [79; 11 13].
The output of the delay block is
$\left[\begin{array}{cc}7 & 9 \\ 11 & 13\end{array}\right],\left[\begin{array}{cc}7 & 9 \\ 11 & 13\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{l}2 \\ 2\end{array}\right],\left[\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right], \ldots$
Note how the initial condition matrix is the output at sample time zero and sample time one. Different initial conditions are used for each channel; the same initial condition value is used within a channel.

Case 3 - Use the Same Initial Conditions for Each Channel and Different Initial Conditions Within a Channel

In this case, when the input is a sample-based vector, the Delay parameter can be a scalar integer by which to equally delay all channels or a vector whose length is equal to the number of channels. All the values of this vector must be equal.

Enter the initial conditions as a vector, where the vector length is equal to the delay value. These values are used as the initial condition value along each of the channels to be delayed.

For example, suppose your input is a sample-based matrix.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

You want the initial conditions of your four channel signal to be the same along each of the channels to be delayed:

1 For the Delay (samples) parameter, type 2.
2 Clear the Specify different initial conditions for each channel check box.
3 Select the Specify different initial conditions within a channel check box.

Delay

4 For the Initial conditions parameter, type [10 20].
The output of the delay block is

$$
\left[\begin{array}{ll}
10 & 10 \\
10 & 10
\end{array}\right],\left[\begin{array}{ll}
20 & 20 \\
20 & 20
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right], \ldots
$$

Note how the first element of the initial conditions vector is the output, for all channels, at sample time zero. The second element of the initial conditions vector is the output, for all channels, at sample time one. The same initial conditions are used for each channel, but different initial condition values are used with a channel.

Case 4 - Use Different Initial Conditions for Each Channel and Within a Channel

Enter a cell array for your initial condition values. Each cell of the cell array represents the delay values for one channel. The cell array must have the same size as your input signal. Or, when you have a nonmatrix input and a scalar delay value, you can enter the initial conditions as a matrix.

For example, suppose your input is a sample-based vector.

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & 3
\end{array}\right], \ldots
$$

You want the initial conditions of your two channel signal to be different for each channel and along each channel:

1 For the Delay (samples) parameter, type 2.
2 Select the Specify different initial conditions for each channel and Specify different initial conditions within a channel check boxes.
3 For the Initial conditions parameter, type [10 20; 30 40]
The output of the delay block is

$$
\left[\begin{array}{ll}
10 & 20
\end{array}\right],\left[\begin{array}{ll}
30 & 40
\end{array}\right],\left[\begin{array}{ll}
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2
\end{array}\right] \cdots
$$

Note that the first row of the initial conditions vector is the output at sample time zero. The second row of the initial conditions vector is the output at sample time one. Different initial conditions are used for each channel and within the channels.

In addition, suppose your input is a sample-based matrix.
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right],\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right], \ldots$
You want the initial conditions of your two-channel signal to be different for each channel and along each channel.

1 For the Delay (samples) parameter, type 2.
2 Select the Specify different initial conditions for each channel and the Specify different initial conditions within a channel check boxes.
3 For the Initial conditions parameter, type \{[11 15] [12 16]; [13 17] [14 18]\}. Note that the dimensions of the cell array match the dimensions of the input. Also, each element of the cell array represents the initial conditions within one channel.
The output of the delay block is

$$
\left[\begin{array}{ll}
11 & 12 \\
13 & 14
\end{array}\right],\left[\begin{array}{ll}
15 & 16 \\
17 & 18
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right], \ldots
$$

Note how each element of the cell array represents the initial conditions within a channel. The first element, a vector, represents the initial conditions within channel 1 . The second element, a vector, represents the initial conditions within channel 2 , and so on. Different initial conditions are used for each channel and within the channels.

Frame-Based Operation Examples

There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also be constant or varying along each channel. The next sections describe the behavior of the block for each of these four cases:

- "Case 1 - Use the Same Initial Conditions for Each Channel and Within a Channel" on page 9-218
- "Case 2 - Use Different Initial Conditions for Each Channel and the Same Initial Conditions Within a Channel" on page 9-218
- "Case 3 - Use the Same Initial Conditions for Each Channel and Different Initial Conditions Within a Channel" on page 9-219
- "Case 4- Use Different Initial Conditions for Each Channel and Within a Channel" on page 9-220

Case 1 - Use the Same Initial Conditions for Each Channel and Within a Channel

Enter a scalar value for the initial conditions. This value is used as the constant initial condition value for each of the channels.

For example, suppose your input is a frame-based matrix.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right],\left[\begin{array}{lll}
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6
\end{array}\right],\left[\begin{array}{lll}
7 & 7 & 7 \\
8 & 8 & 8 \\
9 & 9 & 9
\end{array}\right], \ldots
$$

You want the initial conditions of your three-channel signal to be identical and zero for the first frame:

1 For the Delay (frames) parameter, type 1.
2 Clear the Specify different initial conditions for each channel and the Specify different initial conditions within a channel check boxes.
3 For the Initial conditions parameter, specify a scalar value of 0 .
The output of the delay block is

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right],\left[\begin{array}{lll}
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6
\end{array}\right],\left[\begin{array}{lll}
7 & 7 & 7 \\
8 & 8 & 8 \\
9 & 9 & 9
\end{array}\right], \ldots
$$

Note how 0 , the scalar initial condition value, is used across the channels and within the channels for the first frame. This frame is the output at sample time zero.

Case 2 - Use Different Initial Conditions for Each Channel and the Same Initial Conditions Within a Channel

The initial conditions must be a vector of length N , where $N \geq 1$. N is also equal to the number of channels in your signal. These initial condition values are used as the constant initial condition value for each of the channels.

For example, suppose your input is a frame-based matrix.
$\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right],\left[\begin{array}{lll}4 & 4 & 4 \\ 5 & 5 & 5 \\ 6 & 6 & 6\end{array}\right],\left[\begin{array}{lll}7 & 7 & 7 \\ 8 & 8 & 8 \\ 9 & 9 & 9\end{array}\right], \ldots$

You want the initial conditions of your three-channel signal to be [0 10 20] for the first frame:

1 For the Delay (frames) parameter, type 1.
2 Select the Specify different initial conditions for each channel check box.
3 Clear the Specify different initial conditions within a channel check box.
4 For the Initial conditions parameter, type [llll $\left.\begin{array}{lll}0 & 10 & 20\end{array}\right]$.
The output of the delay block is

$$
\left[\begin{array}{lll}
0 & 10 & 20 \\
0 & 10 & 20 \\
0 & 10 & 20
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right],\left[\begin{array}{lll}
4 & 4 & 4 \\
5 & 5 & 5 \\
6 & 6 & 6
\end{array}\right],\left[\begin{array}{lll}
7 & 7 & 7 \\
8 & 8 & 8 \\
9 & 9 & 9
\end{array}\right], \ldots
$$

Note how the initial condition vector is expanded to create the frame that is output at sample time zero. Different initial conditions are used for each channel, but the same initial condition value is used with a channel.

Case 3 - Use the Same Initial Conditions for Each Channel and Different Initial Conditions Within a Channel

In this case, the Delay parameter can be a scalar integer by which to equally delay all channels or a vector whose length is equal to the number of channels. All the values of this vector must be equal.

Enter the initial conditions as a vector. These values are used as the initial condition value along each of the channels to be delayed. The initial condition vector must have length equal to the value of the Delay (frames) parameter multiplied by the frame length. For example, if you want to delay your signal by two frames with frame length two and an initial condition value of 3 , enter your initial condition vector as $\left[\begin{array}{llll}3 & 3 & 3 & 3\end{array}\right]$.

For example, suppose your input is a frame-based matrix.
$\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right],\left[\begin{array}{lll}4 & 4 & 4 \\ 5 & 5 & 5 \\ 6 & 6 & 6\end{array}\right],\left[\begin{array}{lll}7 & 7 & 7 \\ 8 & 8 & 8 \\ 9 & 9 & 9\end{array}\right], \ldots$

Delay

You want the initial conditions of your three-channel signal to be the same along each of the channels to be delayed:

1 For the Delay (frame) parameter, type 1.
2 Clear the Specify different initial conditions for each channel check box.
3 Select the Specify different initial conditions within a channel check box.
4 For the Initial conditions parameter, type [$\left.\begin{array}{lll}10 & 20 & 30\end{array}\right]$.
The output of the delay block is
$\left[\begin{array}{lll}10 & 10 & 10 \\ 20 & 20 & 20 \\ 30 & 30 & 30\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right],\left[\begin{array}{lll}4 & 4 & 4 \\ 5 & 5 & 5 \\ 6 & 6 & 6\end{array}\right],\left[\begin{array}{lll}7 & 7 & 7 \\ 8 & 8 & 8 \\ 9 & 9 & 9\end{array}\right], \ldots$

Note how the initial condition vector defines the initial condition values within each of the three channels. The same initial conditions are used for each channel, but different initial condition values are used with a channel.

Case 4- Use Different Initial Conditions for Each Channel and Within a Channel

Enter a cell array for your initial condition values. Or, when you have a scalar delay value, you can enter the initial conditions as a matrix.

For example, suppose your input is a frame-based matrix.
$\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right],\left[\begin{array}{lll}4 & 4 & 4 \\ 5 & 5 & 5 \\ 6 & 6 & 6\end{array}\right],\left[\begin{array}{lll}7 & 7 & 7 \\ 8 & 8 & 8 \\ 9 & 9 & 9\end{array}\right], \ldots$
You want the initial conditions of your three-channel signal to be different for each channel and along each channel.

1 For the Delay (frames) parameter, type 1.
2 Select the Specify different initial conditions for each channel and the Specify different initial conditions within a channel check boxes.

3 For the Initial conditions parameter, type either [10 20 30; 4050 60; 7080 90] or $\{[104070] ;[205080] ;[306090]\}$. Note that each cell of the cell array represents the delay along one channel.
Regardless of whether you use a matrix or cell array, the output of the delay block is
$\left[\begin{array}{llll}10 & 20 & 30 \\ 40 & 50 & 60 \\ 70 & 80 & 90\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right],\left[\begin{array}{lll}4 & 4 & 4 \\ 5 & 5 & 5 \\ 6 & 6 & 6\end{array}\right],\left[\begin{array}{lll}7 & 7 & 7 \\ 8 & 8 & 8 \\ 9 & 9 & 9\end{array}\right] \ldots$

Note how the initial condition matrix is the output at sample time zero. The elements of the initial condition cell array define the initial condition values within each channel. The first element, a vector, represents the initial conditions within channel 1 . The second element, a vector, represents the initial conditions within channel 2, and so on. Different initial conditions are used for each channel and within the channels.

Supported Data Types

See Also

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- Custom data types
- Boolean
- 8 -, 16 -, and 32 -bit signed integers
- 8-, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Unit Delay
Variable Fractional Delay
Variable Integer Delay

Simulink
Signal Processing Blockset
Signal Processing Blockset

Delay Line

Purpose Rebuffer sequence of inputs with one-sample shift
Library Signal Management / Buffers
Description
The Delay Line block buffers the input samples into a sequence of overlapping or underlapping matrix outputs. In the most typical use (sample-based inputs), each output differs from the preceding output by only one sample, as illustrated below for scalar input.

Note that the first output of the block in the example above is all zeros; this is because the Initial Conditions parameter is set to zero. Due to the latency of the Delay Line block, all outputs are delayed by one frame, the entries of which are defined by the Initial Conditions parameter.

Sample-Based Operation

In sample-based operation, the Delay Line block buffers a sequence of sample-based length-N vector inputs (1-D, row, or column) into a sequence of overlapping frame-based M_{0}-by-N matrix outputs, where M_{0} is specified by the Delay line size parameter ($\mathrm{M}_{0}>1$). That is, each input vector becomes a row in the frame-based output matrix.

At each sample time the new input vector is added in the last row of the output, so each output overlaps the previous output by $\mathrm{M}_{0}-1$ samples. Therefore, the output sample period and frame period is the same as the input sample period ($\mathrm{T}_{\mathrm{so}}=\mathrm{T}_{\mathrm{si}}$, and $\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{si}}$). When $\mathrm{M}_{\mathrm{o}}=1$, the input is simply passed through to the output and retains the same dimension, but becomes frame based. The latency of the block always causes an initial delay in the output; the value of the first output is specified by the Initial conditions parameter (see "Initial Conditions" on page 9-224 below). Sample-based full-dimension matrix inputs are not accepted.

The Delay Line block's sample-based operation is similar to that of a Buffer block with Buffer size equal to M_{0} and Buffer overlap equal to $M_{0}-1$, except that the Buffer block has a different latency.

In the model below, the block operates on a sample-based input with a Delay line size of 3 .

The input vectors in the example above do not begin appearing at the output until the second row of the second matrix due to the block's latency (see "Initial Conditions" on page 9-224 below). The first output matrix (all zeros in this example) reflects the block's Initial conditions setting. As for any sample-based input, the output frame rate and output sample rate are both equal to the input sample rate.

Frame-Based Operation

In frame-based operation, the Delay Line block rebuffers a sequence of frame-based M_{i}-by-N matrix inputs into a sequence of frame-based M_{0}-by-N matrix outputs, where M_{0} is the output frame size specified by the Delay line size parameter. Depending on whether M_{0} is greater than, less than, or equal to the input frame size, M_{i}, the output frames can be underlapped or overlapped. Each of the N input channels is rebuffered independently.
When $M_{0}>M_{i}$, the output frame overlap is the difference between the output and input frame size, $\mathrm{M}_{0}-\mathrm{M}_{\mathrm{i}}$. When $\mathrm{M}_{\mathrm{o}}<\mathrm{M}_{\mathrm{i}}$, the output is underlapped; the Delay Line block discards the first $\mathrm{M}_{\mathrm{i}}-\mathrm{M}_{0}$ samples of each input frame so that only the last M_{0} samples are buffered into the corresponding output frame.

Delay Line

When $\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}}$, the output data is identical to the input data, but is delayed by the latency of the block. Due to the block's latency, the outputs are always delayed by one frame, the entries of which are specified by the Initial conditions (see "Initial Conditions" below).

The output frame period is equal to the input frame period $\left(\mathrm{T}_{\mathrm{fo}_{\mathrm{o}}}=\mathrm{T}_{\mathrm{fi}}\right)$. The output sample period, $T_{s o}$, is therefore equal to $T_{f i} / M_{0}$, or equivalently, $T_{s i}\left(M_{i} / M_{0}\right)$

In the model below, the block rebuffers a two-channel frame-based input with a Delay line size of 3 .

The first output frame in the example is a product of the latency of the Delay Line block; it is all zeros because the Initial conditions is set to be zero. Since the input frame size, 4 , is larger than the output frame size, 3 , only the last three samples in each input frame are propagated to the corresponding output frame. The frame periods of the input and output are the same, and the output sample period is $\mathrm{T}_{\mathrm{si}}\left(\mathrm{M}_{\mathrm{i}} / \mathrm{M}_{\mathrm{o}}\right)$, or $4 / 3$ the input sample period.

Initial Conditions

The Delay Line block's buffer is initialized to the value specified by the Initial condition parameter. The block outputs this buffer at the first simulation step $(t=0)$. When the block's output is a vector, the Initial condition can be a vector of the same size, or a scalar value to be repeated across all elements of the initial output. When the block's output is a matrix, the Initial condition can be a matrix of the same size, a vector (of length equal to the number of matrix rows) to be repeated across all columns of the initial output, or a scalar to be repeated across all elements of the initial output.

Delay Line

Dialog Box

Delay line size

The number of rows in output matrix, M_{o}.

Initial conditions

The value of the block's initial output, a scalar, vector, or matrix.

Allow direct feedthrough

When you select this check box, the input data is not delayed by an extra frame before it is available at the output buffer. Instead, the input data is available immediately at the output port of the block.

Delay Line

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Buffer
Triggered Delay Line

Signal Processing Blockset
Signal Processing Blockset

Purpose Remove linear trend from vectors

Library

Description

Dialog Box

Supported
 Data Types

See Also

Statistics

The Detrend block removes a linear trend from the length-M input vector, u, by subtracting the straight line that best fits the data in the least squares sense.

The least squares line, $\hat{u}=a x+b$, is the line with parameters a and b that minimizes the quantity

$$
\sum_{i=1}^{M}\left(u_{i}-\hat{u}_{i}\right)^{2}
$$

for M evenly-spaced values of x, where u_{i} is the i th element in the input vector. The output, $y=u-\hat{u}$, is an M-by- 1 column vector (regardless of the input vector dimension) with the same frame status as the input.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Cumulative Sum
Difference
Least Squares Polynomial Fit
Unwrap
detrend

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
MATLAB

Difference

Purpose Compute element-to-element difference along rows or columns
Library Math Functions / Math Operations
Description
The Difference block computes the difference between adjacent elements in rows or columns of the M-by-N input matrix u.

Columnwise Differencing

When the Difference along parameter is set to Columns, the block computes differences between adjacent column elements.

```
y = diff(u) % Equivalent MATLAB code
```

For sample-based inputs, the output is a sample-based (M-1)-by-N matrix whose j th column has elements

$$
y_{i, j}=u_{i+1, j}-u_{i, j} \quad 1 \leq i \leq(M-1)
$$

For convenience, length-M 1-D vector inputs are treated as M-by-1 column vectors for columnwise differencing, and the output is 1-D.
For example, the following figure shows the block output for sample-based inputs:

For frame-based inputs, the output is a frame-based M-by-N matrix whose j th column has elements

$$
y_{i, j}=u_{i+1, j}-u_{i, j} \quad 2 \leq i \leq(M-1)
$$

The first row of the first output contains the difference between the first row of the first input and zero. The first row of each subsequent output contains the
difference between the first row of the current input (time t) and the last row of the previous input (time $t-T_{\mathrm{f}}$).

$$
y_{1, j}(t)=u_{1, j}(t)-u_{M, j}\left(t-T_{f}\right)
$$

For example, the following figure shows the block output for frame-based inputs:

Rowwise Differencing

When the Difference along parameter is set to Rows, the block computes differences between adjacent row elements. The result is the same regardless of the frame status of the input signal.

$$
y=\operatorname{diff}(u,[], 2) \quad \% \text { Equivalent MATLAB code }
$$

The output is an M-by-(N-1) matrix whose i th row has elements

$$
y_{i, j}=u_{i, j+1}-u_{i, j} \quad 1 \leq j \leq(N-1)
$$

The frame status of the output is the same as the input. For convenience, length-N 1-D vector inputs are treated as 1-by-N row vectors for rowwise differencing, and the output is 1-D.
For example, the following figure shows the block output for sample-based inputs. The output is the same for frame-based inputs:

Fixed-Point Data Types

The following diagram shows the data types used within the Difference block for fixed-point signals.

You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" below.

Dialog Box The Main pane of the Difference block appears as follows:

Difference along

Specify the dimension along which to compute element-to-element differences. Columns specifies columnwise differencing, while Rows specifies rowwise differencing. Nontunable.

The Fixed-point pane of the Difference block appears as follows:

Difference

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:
> ideal accumulator word length $=$ input word length +1
> ideal accumulator fraction length $=$ input fraction length

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameter dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Difference

Supported
Data Types

See Also
See Also

Cumulative Sum

diff

- Fixed point (signed only) page 7-2.
- Double-precision floating point
- Single-precision floating point
- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on

Signal Processing Blockset
MATLAB

Digital Filter

Purpose

Library
Description

Filter each channel of input over time using static or time-varying digital filter implementations

Filtering / Filter Designs

Note Use this block to efficiently implement floating-point and fixed-point filters for which you know the coefficients. The following Signal Processing Blockset blocks also implement digital filters, but serve slightly different purposes:

- Digital Filter Design - Use to design, analyze, and then efficiently implement floating-point filters. This block provides the same filter implementation as the Digital Filter block for floating-point signals.
- Filter Realization Wizard - Use to implement floating-point or fixed-point filters built from Sum, Gain, and Unit Delay blocks. You can either design the filter using block filter design and analysis parameters, or import the coefficients of a filter that you designed elsewhere.

The Digital Filter block independently filters each channel of the input signal with a specified digital IIR or FIR filter. The block can implement static filters with fixed coefficients, as well as time-varying filters with coefficients that change over time. You can tune the coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over time. The output frame status and dimensions are always the same as those of the input signal that is filtered. When inputs are frame based, the block treats each column as an independent channel; the block filters each column. When inputs are sample based, the block treats each element of the input as an individual channel.

The outputs of this block numerically match the outputs of the Digital Filter Design block and of the dfilt function in the Signal Processing Toolbox.

Sections of This Reference Page

- "Supported Filter Structures" on page 9-236
- "Specifying Initial Conditions" on page 9-237
- "Fixed-Point Data Types" on page 9-239
- "Dialog Box" on page 9-240
- "Filter Structure Diagrams" on page 9-248
- "Supported Data Types" on page 9-281
- "See Also" on page 9-281

Supported Filter Structures

The selection of filter structures offered in the Filter structure parameter depends on whether you set the Transfer function type to IIR (poles \& zeros), IIR (all poles), or FIR (all zeros), as summarized in the table below.

Note Each structure listed in the table below supports both fixed-point and floating-point signals.

The table also shows the vector or matrix of filter coefficients you must provide for each filter structure. For more information on how to specify filter coefficients for various filter structures, see "Specifying Static Filters" on page 3-10 and "Specifying Time-Varying Filters" on page 3-11.

Filter Structures and Filter Coefficients

Transfer Function Type	Supported Filter Structures	Filter Coefficient Specification
IIR (poles \& zeros)	Direct form I Direct form I transposed Direct form II Direct form II transposed	- Numerator coefficients vector [b0, b1, b2, ..., bn] - Denominator coefficients vector [a0, a1, a2, ... am]
	Biquadratic direct form I (SOS) Biquadratic direct form I transposed (SOS) Biquadratic direct form II (SOS) Biquadratic direct form II transposed (SOS)	- M-by-6 second-order section (SOS) matrix. - Scale values See "Specifying the SOS Matrix (Biquadratic Filter Coefficients)" on page 3-16.

Filter Structures and Filter Coefficients (Continued)

Transfer Function Type	Supported Filter Structures	Filter Coefficient Specification
IIR (all poles)	Direct form Direct form transposed	Denominator coefficients vector $[\mathrm{a} 0, \mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{am}]$
	Lattice AR	Reflection coefficients vector $[\mathrm{k} 1, \mathrm{k} 2, \ldots, \mathrm{kn}]$
FIR (all zeros)	Direct form Direct form symmetric Direct form antisymmetric Direct form transposed	Numerator coefficients vector $[\mathrm{b} 0, \mathrm{~b} 1, \mathrm{~b} 2, \ldots, \mathrm{bn}]$
	Lattice MA	Reflection coefficients vector $[\mathrm{k} 1, \mathrm{k} 2, \ldots, \mathrm{kn}]$

Specifying Initial Conditions

By default, the block initializes the internal filter states to zero, which is equivalent to assuming past inputs and outputs are zero. You can optionally use the Initial conditions parameter to specify nonzero initial conditions for the filter delays.

To determine the number of initial condition values you must specify, and how to specify them, refer to the following table on Valid Initial Conditions and "Number of Delay Elements (Filter States)" on page 9-239. The Initial conditions parameter can take one of four forms as described in the following table.

Valid Initial Conditions

Initial Condition	Examples	Description
Scalar	5 Each delay element for each channel is set to 5.	The block initializes all delay elements in the filter to the scalar value.

Valid Initial Conditions (Continued)
$\left.\begin{array}{l|l|l}\hline \text { Initial Condition } & \text { Examples } & \text { Description } \\ \hline \begin{array}{l}\text { Vector } \\ \text { (for applying the } \\ \text { same delay } \\ \text { elements to each } \\ \text { channel) }\end{array} & \begin{array}{l}\text { For a filter with two delay } \\ \text { elements: }\left[\mathrm{d}_{1} \mathrm{~d}_{2}\right]\end{array} & \begin{array}{l}\text { The delay elements for all } \\ \text { channels are } \mathrm{d} 1 \text { and } \mathrm{d} 2 .\end{array} \\ \text { initial condition for a corresponding } \\ \text { delay element. The block applies the } \\ \text { same vector of initial conditions to each } \\ \text { channel of the input signal. The vector } \\ \text { length must equal the number of delay } \\ \text { elements in the filter (specified in the } \\ \text { Number of Delay Elements (Filter } \\ \text { States) table). }\end{array}\right\}$

The number of delay elements (filter states) per input channel depends on the filter structure, as indicated in the following table.

Number of Delay Elements (Filter States)

Filter Structure	Number of Delay Elements Per Channel
Direct form Direct form transposed Direct form symmetric Direct form antisymmetric	\#_of_filter_coeffs-1
Direct form I Direct form I transposed	•\#_of_zeros-1 Direct form II Direct form II transposed
Biquadratic direct form I (SOS) Biquadratic direct form I transposed (SOS) Biquadratic direct form I (SOS) Biquadratic direct form I transposed (SOS)	max(\#_of_zeros, \#_of_poles)-1
Lattice AR \#_of_filter_sections Lattice MA	\#_of_reflection_coeffs

Fixed-Point Data Types

All structures supported by the Digital Filter block support fixed-point data types. You can specify intermediate fixed-point data types for quantities such as the coefficients, accumulator, and product output for each filter structure. Refer to "Filter Structure Diagrams" on page 9-248 for diagrams depicting the use of these intermediate fixed-point data types in each filter structure.

The Main pane of the Digital Filter block dialog appears as follows:

Transfer function type

Select the type of transfer function of the filter; IIR (poles \& zeros), IIR (all poles), or FIR (all zeros). Refer to "Supported Filter Structures" on page 9-236 for more information.

Filter structure

Select the filter structure. The selection of available structures varies depending the setting of the Transfer function type parameter. Refer to "Supported Filter Structures" on page 9-236 for more information.

Digital Filter

Coefficient source

Choose how you will specify filter coefficients: via dialog parameters or through input ports. To specify a static filter, choose Specify via dialog. To specify a time-varying filter, choose Input port(s). When you select Input ports(s), filter coefficients must come in through block ports. For more information, see "Specifying Static Filters" on page 3-10 and "Specifying Time-Varying Filters" on page 3-11.

Numerator coefficients

Specify the vector of numerator coefficients of the filter's transfer function.
This parameter is only visible when the Coefficient source parameter is set to Specify via dialog and when the selected filter structure lends itself to specification with numerator coefficients. Tunable.

Denominator coefficients

Specify the vector of denominator coefficients of the filter's transfer function.

This parameter is only visible when the Coefficient source parameter is set to Specify via dialog and when the selected filter structure lends itself to specification with denominator coefficients. Tunable.

Reflection coefficients

Specify the vector of reflection coefficients of the filter's transfer function.
This parameter is only visible when the Coefficient source parameter is set to Specify via dialog and when the selected filter structure lends itself to specification with reflection coefficients. Tunable.

SOS matrix (Mx6)

Specify an M-by-6 SOS matrix containing coefficients of a second-order section (SOS) filter, where M is the number of sections. You can use the ss2sos and tf2sos functions from the Signal Processing Toolbox to check whether your SOS matrix is valid. For more on the requirements of the SOS matrix, see "Specifying the SOS Matrix (Biquadratic Filter Coefficients)" on page 3-16.

This parameter is only visible when the selected filter structure is biquadratic. Tunable.

Digital Filter

Scale values

Specify the scale values to be applied before and after each stage of a biquadratic filter.

If you specify a scalar, that value is applied before the first filter stage. The rest of the scale values are set to 1 .

You can also specify a vector with $M+1$ elements, assigning a different value to each scale. Refer to "Filter Structure Diagrams" on page 9-248 for diagrams depicting the use of scale values in biquadratic filter structures.

This parameter is only visible when the selected filter structure is biquadratic. Tunable.

First denominator coefficient $=1$, remove a 0 term in the structure

Select this parameter to reduce the number of computations the block must make to produce the output by omitting the $1 / a_{0}$ term in the filter structure. The block output is invalid if you select this parameter when the first denominator filter coefficient is not always 1 for your time-varying filter.

This parameter is only enabled when the Coefficient source parameter is set to Input port(s) and when the selected filter structure lends itself to this specification. See "Removing the a0 Term in the Filter Structure" on page 3-15 for a diagram and details.

Coefficient update rate

Specify how often the block updates time-varying filters; once per sample or once per frame. This parameter only affects the output when the input signal is frame based.

This parameter is only enabled when the Coefficient source parameter is set to Input port (s). For more information, see "Specifying Time-Varying Filters" on page 3-11.

Initial conditions

Specify the initial conditions of the filter states. To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 9-237.

Initial conditions on zeros side

(Not shown in dialog above). Specify the initial conditions for the filter states on the side of the filter structure with the zeros $\left(\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots\right)$; see the diagram below.

This parameter is enabled only when the filter has both poles and zeros, and when you select a structure such as direct form I, which has separate filter states corresponding to the poles (a_{k}) and zeros (b_{k}). To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 9-237.

Initial conditions on poles side

(Not shown in dialog above). Specify the initial conditions for the filter states on the side of the filter structure with the poles $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$; see the diagram below.

This parameter is enabled only when the filter has both poles and zeros, and when you select a structure such as direct form I, which has separate filter states corresponding to the poles (a_{k}) and zeros (b_{k}). To learn how to specify initial conditions, see "Specifying Initial Conditions" on page 9-237.

The Fixed-point pane of the Digital Filter block dialog appears as follows:

Digital Filter

Rounding mode

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

Digital Filter

Stage I/O

Choose how you will specify the word length and the fraction length of the fixed-point data type going into and coming out of each stage of a biquadratic filter. Refer to "Filter Structure Diagrams" on page 9-248 for illustrations depicting the use of the stage I/O data type in this block.

This parameter is only visible when the selected filter structure is biquadratic:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word and fraction lengths of the stage input and output, in bits.
- When you select Slope and bias scaling, you are able to enter the word lengths, in bits, and the slopes of the stage input and output. This block requires power-of-two slope and a bias of zero.

Tap sum

Choose how you will specify the word length and the fraction length of the tap sum data type of a direct form symmetric or direct form antisymmetric filter. Refer to "Filter Structure Diagrams" on page 9-248 for illustrations depicting the use of the tap sum data type in this block.

This parameter is only visible when the selected filter structure is either Direct form symmetric or Direct form antisymmetric:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the tap sum accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the tap sum accumulator. This block requires power-of-two slope and a bias of zero.

Coefficients

Choose how you will specify the word length and the fraction length of the filter coefficients (numerator and/or denominator). Refer to "Filter Structure Diagrams" on page 9-248 for illustrations depicting the use of the coefficient data types in this block:

Digital Filter

- When you select Same word length as input, the word length of the filter coefficients will match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you are able to enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the coefficients, in bits. If applicable, you are able to enter separate fraction lengths for the numerator and denominator coefficients.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the coefficients. If applicable, you are able to enter separate slopes for the numerator and denominator coefficients. This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Filter Structure Diagrams" on page 9-248 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Digital Filter

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. Refer to "Filter Structure Diagrams" on page 9-248 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the accumulator data type in this block:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

State

Use this parameter to specify how you would like to designate the state word and fraction lengths. Refer to "Filter Structure Diagrams" on page 9-248 for illustrations depicting the use of the state data type in this block.

This parameter is not visible for direct form and direct form I filter structures.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Filter Structure Diagrams

The diagrams in the following sections show the filter structures supported by the Digital Filter block. They also show the data types used in the filter structures for fixed-point signals. You can set the coefficient, output, accumulator, product output, and state data types shown in these diagrams in the block dialog. This is discussed in "Dialog Box" on page 9-240.

- "IIR direct form I" on page 9-249
- "IIR direct form I transposed" on page 9-251
- "IIR direct form II" on page 9-253
- "IIR direct form II transposed" on page 9-255
- "IIR biquadratic direct form I" on page 9-258
- "IIR biquadratic direct form I transposed" on page 9-260
- "IIR biquadratic direct form II" on page 9-262
- "IIR biquadratic direct form II transposed" on page 9-264
- "IIR (all poles) direct form" on page 9-267
- "IIR (all poles) direct form transposed" on page 9-269
- "IIR (all poles) direct form lattice AR" on page 9-271
- "FIR (all zeros) direct form" on page 9-272
- "FIR (all zeros) direct form symmetric" on page 9-274
- "FIR (all zeros) direct form antisymmetric" on page 9-276
- "FIR (all zeros) direct form transposed" on page 9-278
- "FIR (all zeros) lattice MA" on page 9-280

IIR direct form I.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Numerator and denominator coefficients must be the same complexity as each other.
- When the numerator and denominator coefficients are specified via input ports and have different complexities from each other, you get an error.
- When the numerator and denominator coefficients are specified in the dialog and have different complexities from each other, the block does not error, but instead processes the filter as if two sets of complex coefficients

Digital Filter

are provided. The coefficient set that is real-valued is treated as if it is a complex vector with zero-valued imaginary parts.

- Numerator and denominator coefficients must have the same word length. They can have different fraction lengths.
- The State data type cannot be specified on the block mask for this structure, because the input and output states have the same data types as the input and output buffers.

IIR direct form I transposed.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Numerator and denominator coefficients must be the same complexity as each other.
- When the numerator and denominator coefficients are specified via input ports and have different complexities from each other, you get an error.
- When the numerator and denominator coefficients are specified in the dialog and have different complexities from each other, the block does not error, but instead processes the filter as if two sets of complex coefficients

Digital Filter

are provided. The coefficient set that is real-valued is treated as if it is a complex vector with zero-valued imaginary parts.

- States are complex when either the input or the coefficients are complex.
- Numerator and denominator coefficients must have the same word length. They can have different fraction lengths.

IIR direct form II.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Numerator and denominator coefficients must be the same complexity as each other.
- When the numerator and denominator coefficients are specified via input ports and have different complexities from each other, you get an error.
- When the numerator and denominator coefficients are specified in the dialog and have different complexities from each other, the block does not error, but instead processes the filter as if two sets of complex coefficients are provided. The coefficient set that is real-valued is treated as if it is a complex vector with zero-valued imaginary parts.
- States are complex when either the inputs or the coefficients are complex.

Digital Filter

- Numerator and denominator coefficients must have the same word length. They can have different fraction lengths.

IIR direct form II transposed.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Numerator and denominator coefficients must be the same complexity as each other.
- When the numerator and denominator coefficients are specified via input ports and have different complexities from each other, you get an error.
- When the numerator and denominator coefficients are specified in the dialog and have different complexities from each other, the block does not error, but instead processes the filter as if two sets of complex coefficients
are provided. The coefficient set that is real-valued is treated as if it is a complex vector with zero-valued imaginary parts.
- States are complex when either the inputs or the coefficients are complex.
- Numerator and denominator coefficients must have the same word length. They can have different fraction lengths.

Digital Filter

IIR biquadratic direct form I.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Specify the coefficients by a M-by-6 matrix in the block mask. You cannot specify coefficients by input ports for this filter structure.
- When the a0 element of any row is not equal to one, that row is normalized by a0 prior to filtering.
- States are complex when either the inputs or the coefficients are complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.
- Scale values must have the same complexity as the coefficient SOS matrix.
- The scale value parameter must be a scalar or a vector of length $M+1$, where M is the number of sections.
- The Stage I/O parameter determines the data type for the stage input and output data types. The stage input and stage output data type must have the same word length but can have different fraction lengths.

The following diagram shows the data types for one section of the filter.

The following diagram shows the data types between filter sections.

Digital Filter

IIR biquadratic direct form I transposed.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Specify the coefficients by a M-by-6 matrix in the block mask. You cannot specify coefficients by input ports for this filter structure.
- When the a0 element of any row is not equal to one, that row is normalized by a0 prior to filtering.
- States are complex when either the inputs or the coefficients are complex.
- Scale values must have the same complexity as the coefficient SOS matrix.
- The scale value parameter must be a scalar or a vector of length $\mathrm{M}+1$, where M is the number of sections.
- The Stage I/O parameter determines the data type for the stage input and output data types. The stage input and stage output data type must have the same word length but can have different fraction lengths.

The following diagram shows the data types for one section of the filter.

The following diagram shows the data types between filter sections.

IIR biquadratic direct form II.

The following constraints are applicable
when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Specify the coefficients by a M-by-6 matrix in the block mask. You cannot specify coefficients by input ports for this filter structure.
- When the a0 element of any row is not equal to one, that row is normalized by a0 prior to filtering.
- States are complex when either the inputs or the coefficients are complex.
- Scale values must have the same complexity as the coefficient SOS matrix.
- The scale value parameter must be a scalar or a vector of length $\mathrm{M}+1$, where M is the number of sections.
- The Stage I/O parameter determines the data type for the stage input and output data types. The stage input and stage output data type must have the same word length but can have different fraction lengths.

The following diagram shows the data types for one section of the filter.

The following diagram shows the data types between filter sections.

Digital Filter

IIR biquadratic direct form II transposed.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Numerator and denominator coefficients can be real or complex.
- Specify the coefficients by a M-by-6 matrix in the block mask. You cannot specify coefficients by input ports for this filter structure.
- When the a0 element of any row is not equal to one, that row is normalized by a0 prior to filtering.
- States are complex when either the inputs or the coefficients are complex.
- Scale values must have the same complexity as the coefficient SOS matrix.
- The scale value parameter must be a scalar or a vector of length $\mathrm{M}+1$, where M is the number of sections.
- The Stage I/O parameter determines the data type for the stage input and output data types. The stage input and stage output data type must have the same word length but can have different fraction lengths.

Digital Filter

The following diagram shows the data types for one section of the filter.

The following diagram shows the data types between filter sections.

IIR (all poles) direct form.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Denominator coefficients can be real or complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.

Digital Filter

IIR (all poles) direct form transposed.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Denominator coefficients can be real or complex.

IIR (all poles) direct form lattice AR.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Coefficients can be real or complex.

FIR (all zeros) direct form.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator coefficients can be real or complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.

Digital Filter

Digital Filter

FIR (all zeros) direct form symmetric.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator coefficients can be real or complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.
- It is assumed that the filter coefficients are symmetric. Only the first half of the coefficients are used for filtering.
- The Tap Sum parameter determines the data type the filter uses when it sums the inputs prior to multiplication by the coefficients.

Digital Filter

Digital Filter

FIR (all zeros) direct form antisymmetric.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Numerator coefficients can be real or complex.
- You cannot specify the state data type on the block mask for this structure, because the input and output states have the same data types as the input.
- It is assumed that the filter coefficients are antisymmetric. Only the first half of the coefficients are used for filtering.
- The Tap Sum parameter determines the data type the filter uses when it sums the inputs prior to multiplication by the coefficients.

Digital Filter

FIR (all zeros) direct form transposed.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs can be real or complex.
- Coefficients can be real or complex.
- States are complex when either the inputs or the coefficients are complex.

Digital Filter

FIR (all zeros) lattice MA.

The following constraints are applicable when processing a fixed-point signal with this filter structure:

- Inputs and coefficients can be real or complex.
- Coefficients can be real or complex.

Digital Filter Design

Purpose	Design and implement digital FIR and IIR filters
Library	Filtering / Filter Designs
Note Use this block to design, analyze, and then efficiently implement Nloating-point filters. The following blocks also implement digital filters, but serve slightly different purposes: - Digital Filter - Use to efficiently implement floating-point or fixed-point filters that you have already designed. This block provides the same exact filter implementation as the Digital Filter Design block.	
- Filter Realization Wizard - Use to implement floating-point or fixed-point filters built from Sum, Gain, and Unit Delay blocks. You can either design the filter within this block, or import the coefficients of a filter that you designed elsewhere.	

The Digital Filter Design block implements a digital FIR or IIR filter that you design using the Filter Design and Analysis Tool (FDATool) GUI. This block provides the same exact filter implementation as the Digital Filter block.

The block applies the specified filter to each channel of a discrete-time input signal, and outputs the result. The outputs of the block numerically match the outputs of the Digital Filter block, the filter function in MATLAB, and the filter function in the Filter Design Toolbox.

The sampling frequency, Fs, that you specify in the FDATool GUI should be identical to the sampling frequency of the Digital Filter Design block's input block. When the sampling frequencies of these blocks do not match, the Digital Filter Design block returns a warning message and inherits the sampling frequency of the input block.

Valid Inputs and Corresponding Outputs

The block accepts inputs that are sample-based or frame-based vectors and matrices. The block filters each input channel independently over time, where

- Each column of a frame-based vector or matrix is an independent channel.
- Each element of a sample-based vector or matrix is an independent channel.

The output has the same dimensions and frame status as the input.

Digital Filter Design

Designing the Filter

Double-click the Digital Filter Design block to open FDATool. Use FDATool to design or import a digital FIR or IIR filter. To learn how to design filters with this block and FDATool, see the following topics:

- "Digital Filter Design Block" on page 3-18
- Topic on the Filter Design and Analysis Tool (FDATool) in the Signal Processing Toolbox documentation.

Tuning the Filter During Simulation

You can tune the filter specifications in FDATool during simulations as long as your changes do not modify the filter length or filter order. The block's filter updates as soon as you apply any filter changes in FDATool.

Digital Filter Design

Dialog Box

-1) Block Parameters: Digital Filter Design				- \square
Current Filter Information Structure: Direct-Form II Transposed Order: 16 Sections: 1 Stable: Yes Source: Designed Magnitude Response (dB)				
Filter Order \qquad Frequency Specifications \qquad C Specify order: 10 Minimum order Options \qquad . 2 Density Factor: 16 wstop: Magnitude Specifications \qquad Units: Apass: 1 Astop: 80				
Design Filter				
Ready				

The FDATool GUI Opened from the Digital Filter Design Block
To get the Transform Filter button 커즤 and the Set Quantization
Parameters button \square install the Filter Design Toolbox. To get the Targets menu, install the Embedded Target for the TI TMS320C6000 ${ }^{\text {TM }}$ DSP Platform.

Digital Filter Design

To learn how to use the FDATool GUI, see "Designing the Filter" on page 9-283.

Supported • Double-precision floating point Data Types
 - Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Analog Filter Design	Signal Processing Blockset
Window Function	Signal Processing Blockset
fdatool	Signal Processing Toolbox
filter	Signal Processing Toolbox
fvtool	Signal Processing Toolbox
sptool	Signal Processing Toolbox
filter	Filter Design Toolbox

To learn how to use this block and FDATool, see the following topics:

- Chapter 3, "Filters" - Examples of when and how to use Signal Processing Blockset filtering blocks
- "Digital Filter Design Block" on page 3-18
- Topic on the Filter Design and Analysis Tool (FDATool) in the Signal Processing Toolbox documentation.

Digital FIR Filter Design

Note The Digital FIR Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

Purpose Design and implement a variety of FIR filters.
Library
Description

Filtering / Filter Designs
The Digital FIR Filter Design block designs a discrete-time (digital) FIR filter in one of several different band configurations using a window method. Most of these filters are designed using the fir1 function in the Signal Processing Toolbox, and are real with linear phase response. The block applies the filter to a discrete-time input using the Direct-Form II Transpose Filter block.

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

For complete details on the classical FIR filter design algorithm, see the description of the fir1 and fir2 functions in the Signal Processing Toolbox documentation.

Band Configurations

The band configuration for the filter is set from the Filter type pop-up menu. The band configuration parameters below this pop-up menu adapt appropriately to match the Filter type selection.

- Lowpass and Highpass

In lowpass and highpass configurations, the Filter order and Cutoff frequency parameters specify the filter design. Frequencies are normalized to
half the sample frequency. The figure below shows the frequency response of the default order-22 filter with cutoff at 0.4.

- Bandpass and Bandstop

In bandpass and bandstop configurations, the Filter order, Lower cutoff frequency, and Upper cutoff frequency parameters specify the filter design. Frequencies are normalized to half the sample frequency, and the actual filter order is twice the Filter order parameter value. The figure below shows the frequency response of the default order-22 filter with lower cutoff at 0.4 , and upper cutoff at 0.6 .

- Multiband

In the multiband configuration, the Filter order, Cutoff frequency vector, and Gain in the first band parameters specify the filter design. The Cutoff frequency vector contains frequency points in the range 0 to 1 , where 1 corresponds to half the sample frequency. Frequency points must appear in ascending order. The Gain in the first band parameter specifies the gain in the first band: 0 indicates a stopband, and 1 indicates a passband. Additional

Digital FIR Filter Design

bands alternate between passband and stopband. The figure below shows the frequency response of the default order-22 filter with five bands, the first a passband.
Cutoff frequency vector $=\left[\begin{array}{llll}0.2 & 0.4 & 0.6 & 0.8\end{array}\right]$

- Arbitrary shape

In the arbitrary shape configuration, the Filter order, Frequency vector, and Gains at these frequencies parameters specify the filter design. The Frequency vector, $f n$, contains frequency points in the range 0 to 1 (inclusive) in ascending order, where 1 corresponds to half the sample frequency. The Gains at these frequencies parameter, mn , is a vector containing the desired magnitude response at the corresponding points in the Frequency vector. (Note that the specifications for the Arbitrary shape configuration are similar to those for the Yule-Walker IIR Filter Design block. Arbitrary-shape filters are designed using the fir2 function in the Signal Processing Toolbox.)
The desired magnitude response of the design can be displayed by typing plot(fn,mn)

Duplicate frequencies can be used to specify a step in the response (such as band 2 below). The figure shows an order-100 filter with five bands.

The Window type parameter allows you to select from a variety of different windows. See the Window Function block reference for a complete description of the available options.

Digital FIR Filter Design

Dialog Box

The parameters displayed in the dialog box vary for different design/band combinations. Only some of the parameters listed below are visible in the dialog box at any one time.

Filter type

The type of filter to design: Lowpass, Highpass, Bandpass, Bandstop, Multiband, or Arbitrary Shape. Tunable.

Filter order

The order of the filter. The filter length is one more than this value. For the Bandpass and Bandstop configurations, the order of the final filter is twice this value.

Cutoff frequency

The normalized cutoff frequency for the Highpass and Lowpass filter configurations. A value of 1 specifies half the sample frequency. Tunable.

Digital FIR Filter Design

Lower cutoff frequency

The lower passband or stopband frequency for the Bandpass and Bandstop filter configurations. A value of 1 specifies half the sample frequency. Tunable.

Upper cutoff frequency

The upper passband or stopband frequency for the Bandpass and Bandstop filter configurations. A value of 1 specifies half the sample frequency. Tunable.

Cutoff frequency vector

A vector of ascending frequency points defining the cutoff edges for the Multiband filter. A value of 1 specifies half the sample frequency. Tunable.

Gain in the first band

The gain in the first band of the Multiband filter: 0 specifies a stopband, 1 specifies a passband. Additional bands alternate between passband and stopband. Tunable.

Frequency vector

A vector of ascending frequency points defining the frequency bands of the Arbitrary shape filter. The frequency range is 0 to 1 including the endpoints, where 1 corresponds to half the sample frequency. Tunable.

Gains at these frequencies

A vector containing the desired magnitude response for the Arbitrary shape filter at the corresponding points in the Frequency vector. Tunable.

Window type

The type of window to apply. See the Window Function block reference. Tunable.

Stopband ripple

The level (dB) of stopband ripple, R_{s}, for the Chebyshev window. Tunable.

Beta

The Kaiser window β parameter. Increasing Beta widens the mainlobe and decreases the amplitude of the window sidelobes in the window's frequency magnitude response. Tunable.

Digital FIR Filter Design

References

Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd ed. New York, NY: McGraw-Hill, 1993.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Digital FIR Raised Cosine Filter Design

Note The Digital FIR Raised Cosine Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

Purpose
 Design and implement a raised cosine FIR filter.

Library
Description

dspobslib
The Digital FIR Raised Cosine Filter Design block uses the firroos function in the Signal Processing Toolbox to design a lowpass, linear-phase, digital FIR filter with a raised cosine transition band. The block applies the filter to a discrete-time input using the Direct-Form II Transpose Filter block.

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The frequency response of the raised cosine filter is

$$
H(f)=\left\{\begin{array}{cc}
\frac{1}{2 f_{n 0}} & 0 \leq|f| \leq(1-R) f_{n 0} \\
{\left[\frac{1+\cos \frac{\pi}{2 R f_{n 0}}|f|-(1-R) f_{n 0}}{4 f_{n 0}}\right]} & (1-R) f_{n 0} \leq|f| \leq(1+R) f_{n 0} \\
0 & (1+R) f_{n 0} \leq|f| \leq 1
\end{array}\right.
$$

where $H(f)$ is the magnitude response at frequency $f, f_{\mathrm{n} 0}$ is the normalized cutoff frequency (-6 dB) specified by the Upper cutoff frequency parameter, and R is a rolloff factor in the range [0,1] determining the passband-to-stopband transition width.

Digital FIR Raised Cosine Filter Design

The Square-root raised cosine filter option designs a filter with magnitude response $\sqrt{H(f)}$. This is useful when the filter is part of a pair of matched filters.

When the Design method parameter is set to Rolloff factor, the secondary Rolloff factor parameter is enabled, and R can be directly specified. When Design method is set to Transition bandwidth, the secondary Transition bandwidth parameter is enabled, and the transition region bandwidth, Δf, can be specified in place of R. The transition region is centered on $f_{\mathrm{n} 0}$ and must be sufficiently narrow to satisfy

$$
0<\left(f_{n 0} \pm \frac{\Delta f}{2}\right)<1
$$

The Upper cutoff frequency and Transition bandwidth parameter values are normalized to half the sample frequency.

The Window type parameter allows you to apply a variety of different windows to the raised cosine filter. See the Window Function block reference for a complete description of the available options.

Algorithm

The filter output is computed by convolving the input with a truncated, delayed, windowed version of the filter's impulse response. The impulse response for the raised cosine filter is

$$
h\left(k T_{s}\right)=\frac{1}{F_{s}} ? \operatorname{sinc} ?\left(2 k T_{s} f_{n 0}\right) \frac{\cos \left(2 \pi R k T_{s} f_{n 0}\right)}{1-\left(4 R k T_{s} f_{n 0}\right)^{2}} \quad-\infty<k<\infty
$$

which has limits

$$
h(0)=\frac{1}{F_{s}}
$$

and

$$
h\left(\pm \frac{1}{4 R f_{n 0}}\right)=\frac{R}{2 F_{s}} \sin \left(\frac{\pi}{2 R}\right)
$$

The impulse response for the square-root raised cosine filter is

Digital FIR Raised Cosine Filter Design

$$
h\left(k T_{s}\right)=\frac{4 R \cos \left((1+R) 2 \pi k T_{s} f_{n 0}\right)+\frac{\sin \left((1-R) 2 \pi k T_{s} f_{n 0}\right)}{8 R k T_{s} f_{n 0}}}{\pi F_{s} \sqrt{\frac{1}{2 f_{n 0}}}\left(\left(8 R k T_{s} f_{n 0}\right)^{2}-1\right)} \quad-\infty<k<\infty
$$

which has limits

$$
h(0)=(-4 R-\pi+\pi R) \frac{\sqrt{2 f_{n 0}}}{\pi F_{s}}
$$

and

$$
\begin{aligned}
h\left(\pm \frac{1}{8 R f_{n 0}}\right)=-\frac{\sqrt{2 f_{n 0}}}{2 \pi F_{s}}\left[\pi(1+R) \sin \left(\frac{\pi(1+R)}{4 R}\right)\right. & -4 R \sin \left(\frac{\pi(R-1)}{4 R}\right) \\
& \left.+\pi(R-1) \cos \left(\frac{\pi(R-1)}{4 R}\right)\right]
\end{aligned}
$$

Digital FIR Raised Cosine Filter Design

Dialog Box

Filter order

The order of the filter. The filter length is one more than this value.

Upper cutoff frequency

The normalized cutoff frequency, $f_{\mathrm{n} 0}$. A value of 1 specifies half the sample frequency. Tunable.

Square-root raised cosine filter

Selects the square-root filter option, which designs a filter with magnitude response $\sqrt{H(f)}$. Tunable.

Design method

The method used to design the transition region of the filter, Rolloff factor or Transition bandwidth. Tunable.

Digital FIR Raised Cosine Filter Design

Rolloff factor

The rolloff factor, R, enabled when Rolloff factor is selected in the Design method parameter. Tunable.

Transition bandwidth

The transition bandwidth, Δf, enabled when Transition bandwidth is selected in the Design method parameter. Tunable.

Window type

The type of window to apply. See the Window Function block reference. Tunable.

Stopband attenuation in dB

The level (dB) of stopband attenuation, R_{s}, for the Chebyshev window. Tunable.

Beta

The Kaiser window β parameter. Increasing β widens the mainlobe and decreases the amplitude of the window sidelobes in the window's frequency magnitude response. Tunable.

Initial conditions

The filter's initial conditions, a scalar, vector, or matrix. See the Direct-Form II Transpose Filter block reference for complete syntax information.

References
Proakis, J. G. Digital Communications. Third ed. New York, NY: McGraw-Hill, 1995.
Proakis, J. G. and M. Salehi. Contemporary Communication Systems Using MATLAB. Boston, MA: PWS Publishing, 1998.

Digital IIR Filter Design

Note The Digital IIR Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

Purpose	Design and implement an IIR filter.
Library	dspobslib
Description	The Digital IIR Filter Design block designs a discrete-time (digital) IIR filter in a lowpass, highpass, bandpass, or bandstop configuration, and applies it to the input using the Direct-Form II Transpose Filter block.
	An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.
	The Design method parameter allows you to specify Butterworth, Chebyshev type I, Chebyshev type II, and elliptic filter designs. Note that for the bandpass and bandstop configurations, the actual filter length is twice the Filter order parameter value.

Filter Design	Description
Butterworth	The magnitude response of a Butterworth filter is maximally flat in the passband and monotonic overall.
Chebyshev type I	The magnitude response of a Chebyshev type I filter is equiripple in the passband and monotonic in the stopband.
Chebyshev type II	The magnitude response of a Chebyshev type II filter is monotonic in the passband and equiripple in the stopband.
Elliptic	The magnitude response of an elliptic filter is equiripple in both the passband and the stopband.

Digital IIR Filter Design

The design and band configuration of the filter are selected from the Design method and Filter type pop-up menus in the dialog box. For each combination of design method and band configuration, an appropriate set of secondary parameters is displayed.

The table below lists the available parameters for each design/band combination. For lowpass and highpass band configurations, these parameters include the passband edge frequency f_{np}, the stopband edge frequency f_{ns}, the passband ripple R_{p}, and the stopband attenuation R_{s}. For bandpass and bandstop configurations, the parameters include the lower and upper passband edge frequencies, $f_{\mathrm{np} 1}$ and $f_{\mathrm{np} 2}$, the lower and upper stopband edge frequencies, $f_{\mathrm{ns} 1}$ and $f_{\mathrm{ns} 2}$, the passband ripple R_{p}, and the stopband attenuation R_{s}. Frequency values are normalized to half the sample frequency, and ripple and attenuation values are in dB .

	Lowpass	Highpass	Bandpass	Bandstop
Butterworth	Order, f_{np}	Order, f_{np}	Order, $f_{\mathrm{np} 1}, f_{\mathrm{np} 2}$	Order, $f_{\mathrm{np} 1}, f_{\mathrm{np} 2}$
Chebyshev Type I	Order, $f_{\mathrm{np}}, \mathrm{R}_{\mathrm{p}}$	Order, $f_{\mathrm{np}}, \mathrm{R}_{\mathrm{p}}$	Order, $f_{\mathrm{np} 1}, f_{\mathrm{np} 2}, \mathrm{R}_{\mathrm{p}}$	Order, $f_{\mathrm{n} p 1}, f_{\mathrm{np} 2}, \mathrm{R}_{\mathrm{p}}$
Chebyshev Type II	Order, $f_{\mathrm{ns}}, \mathrm{R}_{\mathrm{s}}$	Order, $f_{\mathrm{ns}}, \mathrm{R}_{\mathrm{s}}$	Order, $f_{\mathrm{ns} 1}, f_{\mathrm{ns} 2}, \mathrm{R}_{\mathrm{s}}$	Order, $f_{\mathrm{n} 1}, f_{\mathrm{ns} 2}, \mathrm{R}_{\mathrm{s}}$
Elliptic	Order, $f_{\mathrm{np}}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$	Order, $f_{\mathrm{np}}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$	Order, $f_{\mathrm{np} 1}, f_{\mathrm{np} 2}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$	Order, $f_{\mathrm{np} 1}, f_{\mathrm{np} 2}, \mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{s}}$

The digital filters are designed using the Signal Processing Toolbox's filter design commands butter, cheby1, cheby2, and ellip.

Dialog Box

Digital IIR Filter Design

The parameters displayed in the dialog box vary for different design/band combinations. Only some of the parameters listed below are visible in the dialog box at any one time.

Design method

The filter design method: Butterworth, Chebyshev type I, Chebyshev type II, or Elliptic. Tunable.

Filter type

The type of filter to design: Lowpass, Highpass, Bandpass, or Bandstop. Tunable.

Filter order

The order of the filter for lowpass and highpass configurations. For bandpass and bandstop configurations, the length of the final filter is twice this value.

Passband edge frequency

The normalized passband edge frequency for the highpass and lowpass configurations of the Butterworth, Chebyshev type I, and elliptic designs. Tunable.

Lower passband edge frequency

The normalized lower passband frequency for the bandpass and bandstop configurations of the Butterworth, Chebyshev type I, and elliptic designs. Tunable.

Upper passband edge frequency

The normalized upper passband frequency for the bandpass and bandstop configurations of the Butterworth, Chebyshev type I, or elliptic designs. Tunable.

Stopband edge frequency

The normalized stopband edge frequency for the highpass and lowpass band configurations of the Chebyshev type II design. Tunable.

Lower stopband edge frequency

The normalized lower stopband frequency for the bandpass and bandstop configurations of the Chebyshev type II design. Tunable.

Digital IIR Filter Design

Upper stopband edge frequency

The normalized upper stopband frequency for the bandpass and bandstop filter configurations of the Chebyshev type II design. Tunable.

Passband ripple in dB

The passband ripple, in dB , for the Chebyshev type I and elliptic designs. Tunable.

Stopband attenuation in dB

The stopband attenuation, in dB , for the Chebyshev type II and elliptic designs. Tunable.

References

Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd ed. New York, NY: McGraw-Hill, 1993.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Direct-Form II Transpose Filter

Note The Direct-Form II Transpose Filter block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

Purpose Apply an IIR filter to the input.
Library
Description

Direct-Form II Transpose Filter

The Direct-Form II Transpose Filter block applies a transposed direct-form II IIR filter to the input.

This is a canonical form that has the minimum number of delay elements. The filter order is $\max (m, n)-1$.

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.
The filter is specified in the parameter dialog box by its transfer function,

$$
H(z)=\frac{B(z)}{A(z)}=\frac{b_{1}+b_{2} z^{-1}+\ldots+b_{m+1} z^{-(m-1)}}{a_{1}+a_{2} z^{-1}+\ldots+a_{n+1} z^{-(n-1)}}
$$

where the Numerator parameter specifies the vector of numerator coefficients,

$$
[b(1) \quad b(2) \ldots b(m)]
$$

Direct-Form II Transpose Filter

and the Denominator parameter specifies the vector of denominator coefficients,

```
[a(1) a(2) ... a(n)]
```

The filter coefficients are normalized by a_{1}.

Initial Conditions

In its default form, the filter initializes the internal filter states to zero, which is equivalent to assuming past inputs and outputs are zero. The block also accepts optional nonzero initial conditions for the filter delays. Note that the number of filter states (delay elements) per input channel is

$$
\max (m, n)-1
$$

The Initial conditions parameter may take one of four forms:

- Empty matrix

The empty matrix, [], causes a zero (0) initial condition to be applied to all delay elements in each filter channel.

- Scalar

The scalar value is copied to all delay elements in each filter channel. Note that a value of zero is equivalent to setting the Initial conditions parameter to the empty matrix, [].

- Vector

The vector has a length equal to the number of delay elements in each filter channel, $\max (m, n)-1$, and specifies a unique initial condition for each delay element in the filter channel. This vector of initial conditions is applied to each filter channel.

- Matrix

The matrix specifies a unique initial condition for each delay element, and can specify different initial conditions for each filter channel. The matrix must have the same number of rows as the number of delay elements in the filter, $\max (m, n)-1$, and must have one column per filter channel.

Direct-Form II Transpose Filter

Dialog Box

Numerator

The filter numerator vector. Tunable; the numerator coefficients can be adjusted while the simulation runs, but the vector length (i.e., the filter order) must remain the same.

Denominator

The filter denominator vector. Tunable; the denominator coefficients can be adjusted while the simulation runs, but the vector length (i.e., the filter order) must remain the same.

Initial conditions

The filter's initial conditions, a scalar, vector, or matrix.

References

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Purpose Generate discrete impulse

Library

Description

Examples

Signal Processing Sources

The Discrete Impulse block generates an impulse (the value 1) at output sample $D+1$, where D is specified by the Delay parameter ($D \geq 0$). All output samples preceding and following sample $D+1$ are zero.

When D is a length- N vector, the block generates an M-by-N matrix output representing N distinct channels, where frame size M is specified by the Samples per frame parameter. The impulse for the ith channel appears at sample $D(i)+1$. For $M=1$, the output is sample based; otherwise, the output is frame based.

The Sample time parameter value, T_{s}, specifies the output signal sample period. The resulting frame period is $\mathrm{M} * \mathrm{~T}_{\mathrm{s}}$.

Construct the model below.

Configure the Discrete Impulse block to generate a frame-based three-channel output of type double, with impulses at samples 1,4 , and 6 of channels 1,2 , and 3 , respectively. Use a sample period of 0.25 and a frame size of 4 . The corresponding settings should be as follows:

- Delay = $\left.\begin{array}{lll}0 & 3 & 5\end{array}\right]$
- Sample time $=0.25$
- Samples per frame $=4$
- Output data type $=$ double

Run the model and look at the output, yout. The first few samples of each channel are shown below.

```
yout(1:10,:)
ans =
    10
```


Discrete Impulse

0	0	0
0	0	0
0	1	0
0	0	0
0	0	1
0	0	0
0	0	0
0	0	0
0	0	0

The block generates an impulse at sample 1 of channel 1 (first column), at sample 4 of channel 2 (second column), and at sample 6 of channel 3 (third column).

Dialog Box The Main pane of the Discrete Impulse block dialog appears as follows:

Delay

The number of zero-valued output samples, D, preceding the impulse. A length- N vector specifies an N -channel output. This parameter is not tunable.

Sample time

The sample period, T_{s}, of the output signal. The output frame period is $\mathrm{M} * \mathrm{~T}_{\mathrm{s}}$. This parameter is not tunable.

Discrete Impulse

Samples per frame

The number of samples, M, in each output frame. This parameter is not tunable.

The Data Types pane of the Discrete Impulse block dialog appears as follows:

Output data type

Specify the output data type in one of the following ways:

- Choose one of the built-in data types from the list.
- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit via back propagation to set the output data type and scaling to match the next block downstream.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned. This parameter is only visible when you select Fixed-point for the Output data type parameter.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed - point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from Simulink Fixed Point. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed - point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Supported • Double-precision floating point
Data Types
- Single-precision floating point
- Fixed point
- Boolean

- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Data Type Conversion DSP Constant Multiphase Clock
N-Sample Enable
Signal From Workspace impz

Simulink
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

Downsample

$$
\begin{array}{ll}
\text { Purpose } & \text { Resample input at lower rate by deleting samples } \\
\text { Library } & \text { Signal Operations } \\
\text { Description } & \begin{array}{l}
\text { The Downsample block resamples each channel of the } \mathrm{M}_{\mathrm{i}} \text {-by-N input at a rate } \\
\mathrm{K} \text { times lower than the input sample rate by discarding } \mathrm{K} \text { - } 1 \text { consecutive } \\
\text { samples following each sample passed through to the output. The integer } \mathrm{K} \text { is } \\
\text { specified by the Downsample factor parameter. }
\end{array} \\
\begin{array}{l}
\text { The Sample offset parameter delays the output samples by an integer number } \\
\text { of sample periods, } \mathrm{D}, \text { where } 0 \leq \mathrm{D}<(\mathrm{K}-1) \text {, so that any of the } \mathrm{K} \text { possible output } \\
\text { phases can be selected. For example, when you downsample the sequence } \\
1,2,3, \ldots \text { by a factor of } 4, \text { you can select from the following four phases. }
\end{array} \\
\qquad \begin{array}{l}
1,2
\end{array}
\end{array}
$$

Input Sequence	Sample Offset, \mathbf{D}	Output Sequence (K=4)
$1,2,3, \ldots$	0	$0,1,5,9,13,17,21,25, \ldots$
$1,2,3, \ldots$	1	$0,2,6,10,14,18,22,26, \ldots$
$1,2,3, \ldots$	2	$0,3,7,11,15,19,23,27, \ldots$
$1,2,3, \ldots$	3	$0,4,8,12,16,20,24,28, \ldots$

The initial zero in each output sequence above is a result of the default zero Initial condition parameter setting for this example. See "Latency" on page 9-313 for more on the Initial condition parameter.

This block supports triggered subsystems if, for Sample-based mode, you select Force single-rate and, for Frame-based mode, you select Maintain input frame rate.

Sample-Based Operation

When the input is sample based, the block treats each of the $\mathrm{M} * \mathrm{~N}$ matrix elements as an independent channel, and downsamples each channel over time. The input and output sizes are identical.

The Sample-based mode parameter determines how the block represents the new rate at the output. There are two available options:

- Allow multirate

When you select Allow multirate, the sample period of the sample-based output is K times longer than the input sample period $\left(\mathrm{T}_{\mathrm{s} 0}=\mathrm{KT}_{\mathrm{si}}\right)$. The block is therefore multirate.

- Force single rate

When you select Force single rate, the block forces the output sample rate to match the input sample rate $\left(\mathrm{T}_{\mathrm{so}}=\mathrm{T}_{\mathrm{si}}\right)$ by repeating every Kth input sample K times at the output. The block is therefore single-rate. (The block's operation when you select Enforce single rate is similar to the operation of a Sample and Hold block with a repeating trigger event of period $\mathrm{KT}_{\mathrm{si}}$.)

The setting of the Frame-based mode pop-up menu does not affect sample-based inputs.

Frame-Based Inputs

When the input is frame based, the block treats each of the N input columns as a frame containing M_{i} sequential time samples from an independent channel. The block downsamples each channel independently by discarding K-1 rows of the input matrix following each row that it passes through to the output.

The Frame-based mode parameter determines how the block adjusts the rate at the output to accommodate the reduced number of samples. There are two available options:

- Maintain input frame size

The block generates the output at the slower (downsampled) rate by using a proportionally longer frame period at the output port than at the input port. For downsampling by a factor of K , the output frame period is K times longer than the input frame period $\left(\mathrm{T}_{\mathrm{fo}}=\mathrm{KT}_{\mathrm{fi}}\right)$, but the input and output frame sizes are equal.

The model below shows a single-channel input with a frame period of 1 second being downsampled by a factor of 4 to a frame period of 4 seconds. The input and output frame sizes are identical.

Downsample

- Maintain input frame rate

The block generates the output at the slower (downsampled) rate by using a proportionally smaller frame size than the input. For downsampling by a factor of K , the output frame size is K times smaller than the input frame size $\left(M_{o}=M_{i} / K\right)$, but the input and output frame rates are equal.
The model below shows a single-channel input of frame size 64 being downsampled by a factor of 4 to a frame size of 16 . The input and output frame rates are identical.

The setting of the Sample-based mode pop-up menu does not affect frame-based inputs.

Latency

Zero Latency. The Downsample block has zero tasking latency for the special combinations of input signal sampling and parameter settings shown in the table below. In all of these cases the block has single-rate operation.

Input Sampling	Parameter Settings
Sample-based	Downsample factor parameter, K, is 1, or Enforce single rate is selected (with D=0)
Frame-based	Downsample factor parameter, K, is 1, or Maintain input frame rate is selected

Zero tasking latency means that the block propagates input sample $\mathrm{D}+1$ (received at $t=0$) as the first output sample, followed by input sample $\mathrm{D}+1+\mathrm{K}$, input sample $\mathrm{D}+1+2 \mathrm{~K}$, and so on. The Initial condition parameter value is not used.

Nonzero Latency. The Downsample block is multirate for most settings other than those in the above table. The amount of latency for multirate operation depends on input signal sampling and the Simulink tasking mode, as shown in the table below.

Multirate...	Sample-Based Latency	Frame-Based Latency
Single-tasking	None, for $\mathrm{D}=0$ One sample, for $\mathrm{D}>0$	One frame $\left(\mathrm{M}_{\mathrm{i}}\right.$ samples $)$
Multitasking	One sample	One frame $\left(\mathrm{M}_{\mathrm{i}}\right.$ samples $)$

The only case of nonzero single-rate latency occurs in sample-based mode, when you select Force single rate with $\mathrm{D}>0$. The latency in this case is one sample.

In all cases of one-sample latency, the initial condition for each channel appears as the first output sample. Input sample $\mathrm{D}+1$ appears as the second output sample for each channel, followed by input sample $\mathrm{D}+1+\mathrm{K}$, input sample $\mathrm{D}+1+2 \mathrm{~K}$, and so on. The Initial condition parameter can be an M_{i}-by-N matrix

Downsample

containing one value for each channel, or a scalar to be applied to all signal channels.

In all cases of one-frame latency, the M_{i} rows of the initial condition matrix appear in sequence as the first M_{i} output rows. Input sample $\mathrm{D}+1$ (i.e, row $\mathrm{D}+1$ of the input matrix) appears in the output as sample $\mathrm{M}_{\mathrm{i}}+1$, followed by input sample $\mathrm{D}+1+\mathrm{K}$, input sample $\mathrm{D}+1+2 \mathrm{~K}$, and so on. The Initial condition value can be an M_{i}-by- N matrix, or a scalar to be repeated across all elements of the M_{i}-by-N matrix. See the example below for an illustration of this case.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Examples Construct the frame-based model shown below.

Adjust the block parameters as follows:

- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 second. This represents an output frame period of 1 second $(0.25 * 4)$. The first channel should contain the positive ramp signal $1,2, \ldots, 100$, and the second channel should contain the negative ramp signal $-1,-2, \ldots,-100$. The settings are
- Signal $=\left[(1: 100)^{\prime} \quad(-1:-1:-100)^{\prime}\right]$
- Sample time $=0.25$
- Samples per frame $=4$
- Configure the Downsample block to downsample the two-channel input by decreasing the output frame rate by a factor of 2 relative to the input frame rate. Set a sample offset of 1 , and a 4 -by- 2 initial condition matrix of
$\left[\begin{array}{ll}11 & -11 \\ 12 & -12 \\ 13 & -13 \\ 14 & -14\end{array}\right]$
- Downsample factor = 2
- Sample offset = 1
- Initial condition $=\left[\begin{array}{lllll}11 & -11 ; 12 & -12 ; 13 & -13 ; 14 & -14\end{array}\right]$
- Frame-based mode = Maintain input frame size
- Configure the Probe blocks by clearing the Probe width and Probe complex signal check boxes (if desired).

This model is multirate because there are at least two distinct frame rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, open the Configuration Parameters dialog box. From the list on the left side of the dialog box, click Solver. From the Type list, select Fixed-step, and from the Solver list, select discrete (no continuous states). From the Tasking mode for periodic sample times list, select MultiTasking. Additionally, set the Stop time parameter to 30.

Run the model and look at the output, yout. The first few samples of each channel are shown below.

```
yout =
    11 -11
    12-12
    13-13
    14-14
    2 -2
    4-4
    6 -6
    8-8
    10-10
    12-12
    14-14
```


Downsample

Since we ran this frame based multirate model in multitasking mode, the first row of the initial condition matrix appears as the first output sample, followed by the other three initial condition rows. The second row of the first input matrix (that is, row D+1, where D is the Sample offset) appears in the output as sample 5 (that is sample $\mathrm{M}_{\mathrm{i}}+1$, where M_{i} is the input frame size).

Dialog Box

Downsample factor

The integer factor, K , by which to decrease the input sample rate.

Sample offset

The sample offset, D , which must be an integer in the range $[0, \mathrm{~K}-1]$.

Initial condition

The value with which the block is initialized for cases of nonzero latency; a scalar or matrix.

Sample-based mode

The method by which to implement downsampling for sample-based inputs: Allow multirate (that is, decrease the output sample rate), or Force single-rate (that is, force the output sample rate to match the
input sample rate by repeating every K th input sample K times at the output).

Frame-based mode

The method by which to implement downsampling for frame-based inputs: Maintain input frame size (that is, decrease the frame rate), or Maintain input frame rate (that is, decrease the frame size).

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8-, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Downsample

See Also
FIR Decimation
FIR Rate Conversion
Repeat
Sample and Hold
Upsample

Signal Processing Blockset

DSP Constant

Purpose
 Library
 Description

Generate discrete- or continuous-time constant signal

Signal Processing Sources

The DSP Constant block generates a signal whose value remains constant throughout the simulation. The Constant value parameter specifies the constant to output, and can be any valid MATLAB expression that evaluates to a scalar, vector, or matrix.

When Sample mode is set to Continuous, the output is a continuous-time signal. When Sample mode is set to Discrete, the Sample time parameter is visible, and the signal has the discrete output period specified by the Sample time parameter.

You can set the output signal to Frame-based, Sample-based, or Sample-based (interpret vectors as 1-D) with the Output parameter.

The Main pane of the DSP Constant block dialog box appears as follows:

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters" in the online Simulink documentation for details.

Constant value

Specify the constant to generate. This parameter is tunable; values entered here can be tuned, but their dimensions must remain fixed.

When you specify any data type information in this field, it is overridden by the value of the Output data type parameter in the Data Types pane, unless you select Inherit from 'Constant value'.

Sample mode

Specify the sample mode of the output, Discrete for a discrete-time signal or Continuous for a continuous-time signal.

Output

Specify whether the output is Sample-based (interpret vectors as 1-D), Sample-based, or Frame-based. When you select Sample-based and the output is a vector, its dimension is constrained to match the Constant value dimension (row or column). When you select Sample - based (interpret vectors as 1-D), however, the output has no specified dimensionality.

Sample time

Specify the discrete sample period for sample-based outputs. When you select Frame-based for the Output parameter, this parameter is named Frame period, and is the discrete frame period for the frame-based output. This parameter is only visible when you select Discrete for the Sample mode parameter.
The Data Types pane of the DSP Constant block dialog box appears as follows:

DSP Constant

Output data type

Specify the output data type in one of the following ways:

- Choose one of the built-in data types from the list.
- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit from 'Constant value' to set the output data type and scaling to match the values of the Constant value parameter in the Main pane.
- Choose Inherit via back propagation to set the output data type and scaling to match the following block.

The value of this parameter overrides any data type information specified in the Constant value parameter in the Main pane, except when you select Inherit from 'Constant value'.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned. This parameter is only visible when you select Fixed-point for the Output data type parameter.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed - point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from Simulink Fixed Point. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed-point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.
Supported

- Double-precision floating point
Data Types
- Single-precision floating point
- Fixed point
- Custom data types
- Boolean
- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Constant
Signal From Workspace

Simulink
Signal Processing Blockset

Note The DSP Fixed-Point Attributes (DFPA) block is still supported but is likely to be obsoleted in a future release.

Purpose	Set fixed-point attributes of Signal Processing Blockset blocks on the system or subsystem level
Library	dspobslib
Description	The DSP Fixed-Point Attributes (DFPA) block enables you to set fixed-point attributes for Signal Processing Blockset blocks in your model on the system or subsystem level. This allows you to set fixed-point parameters for groups of blocks in one place, rather than on a block-by-block basis. The parameters Attibutes
listed below appear on various fixed-point Signal Processing Blockset block	
masks, and can be controlled by DFPA blocks.	

On nonsource blocks:

- Output word length

- Output fraction length
- Accumulator word length
- Accumulator fraction length
- Product output word length
- Product output fraction length
- State memory word length
- State memory fraction length
- Round integer calculations toward
- Saturate on integer overflow

On source blocks:

- Word length
- Set fraction length in output to
- Fraction length

DSP Fixed-Point Attributes

The blocks that have parameters that may be controlled by DFPA blocks are listed below:

- Autocorrelation
- Constant Diagonal Matrix
- Convolution
- Correlation
- Digital Filter
- Discrete Impulse
- DSP Constant
- DSP Gain
- DSP Product
- DSP Sum
- FFT
- FIR Decimation
- FIR Interpolation
- Identity Matrix
- IFFT
- Matrix Product
- Matrix Scaling
- Matrix Sum
- Sine Wave
- Window Function

Each of these blocks has an Allow overrides from DSP Fixed-Point
Attributes blocks check box that is selected by default. That means that any such blocks in models you build can automatically be configured from the top level of your model, without having to configure each block mask. If you do not want the fixed-point parameters of a particular block in your model to be controlled by DFPA blocks, clear the Allow overrides from DSP Fixed-Point Attributes blocks check box in that block's mask.

Place a DFPA block in any subsystem in your model that contains blocks with any of the fixed-point parameters listed above, if you want to control the blocks at the subsystem level. You can have a DFPA block in one, some, or all of the subsystems in your model. DFPA blocks in lower subsystems overrule the settings of DFPA blocks at higher levels.

DSP Fixed-Point Attributes

Dialog Box
When you double-click on a DFPA block in any model you have open, the DSP Fixed-Point Attributes GUI appears. This one instance of the GUI enables you to see the information for all DFPA blocks in open models. You can see the hierarchy of DFPA blocks in the left pane of the GUI, and settings for a particular DFPA block in the right pane of the GUI.

Left Pane

The left pane of the DSP Fixed-Point Attributes GUI displays the DSP Fixed-Point Attributes Block Hierarchy. This navigation tree displays the relative hierarchy of all DFPA blocks in models that are currently open.

Note The left pane displays the hierarchy of DFPA blocks in all models that are currently open. It does not display the hierarchy of subsystems in your models.

The top-level nodes in the hierarchy, designated by the icon, represent each model that you have open. The branches under each top-level model node show

DSP Fixed-Point Attributes

the DFPA blocks in that model. Settings in DFPA blocks that are at a lower level in the hierarchy have precedence over higher-level DFPA blocks for the subsystems that they control. Therefore, a DFPA block controls fixed-point settings for blocks that are in the same subsystem or a lower subsystem, unless

- A lower-level DFPA block overrides the settings.
- A particular fixed-point block does not have its Allow overrides from DSP Attributes blocks check box selected.

You can click on any branch in the hierarchy to select it. The information for the DFPA block selected in the left pane is displayed in the right pane.

Right Pane

The following buttons, rows, and columns allow you to specify the settings for the currently selected DFPA block:

Fixed-point attributes at level:

This button displays the path to the subsystem that contains the DFPA block currently selected in the DFPA Block Hierarchy. Click this button to bring the subsystem to the front of your screen.

Block output

This row allows you to set fixed-point block output attributes.
This row can override the Output word length and Output fraction length parameters on nonsource block masks. However, note that the settings in this row are ignored by the DSP Gain, DSP Product, and DSP Sum blocks.

This row can override the Word length and Fraction length parameters on source masks, if the Output data type parameter of the source block is set to Fixed-point.

The block output word length and fraction length may only be set in this row if the corresponding Set here check box is selected.

Accumulator

This row allows you to set fixed-point accumulator attributes. This row can override the Accumulator word length and Accumulator fraction length parameters on block masks. This row also overrides the Output word length and Output fraction length parameters for DSP Sum blocks.

The accumulator word length and fraction length may only be set in this row if the corresponding Set here check box is selected.

Product Output

This row allows you to set fixed-point product output attributes. This row can override the Product output word length and Product output fraction length parameters on block masks. This row also overrides the Output word length and Output fraction length parameters for DSP Gain and DSP Product blocks.

The product output word length and fraction length may only be set in this row if the corresponding Set here check box is selected.

State

This row allows you to set fixed-point state memory attributes. This row can override the State memory word length and State memory output fraction length parameters on block masks.

The state word length and fraction length may only be set in this row if the corresponding Set here check box is selected.

Rounding Mode

This column allows you to set the fixed-point rounding mode to Floor or Nearest. This column can override the Round integer calculations toward parameter on block masks.

The rounding mode may only be set in this column if the corresponding Set here check box is selected.

Overflow Mode

This column allows you to set the fixed-point overflow mode to Wrap or Saturate. This column can override the Saturate on integer overflow parameter on block masks.

The overflow mode may only be set in this column if the corresponding Set here check box is selected.

DSP Fixed-Point Attributes

Word length

This column allows you to set the word length, in bits, for the Block output, Accumulator, Product output, and State attributes. Each word length must be an integer number of bits between 2 and 128 .

Fraction length

This column allows you to set the fraction length, in bits, for the Block output, Accumulator, Product output, and State attributes. Each fraction length must be an integer number of bits.

Set here

The check boxes in this column allow you to specify whether each attribute is set by the currently selected DFPA block. If a Set here check box is not selected, the corresponding attribute is either set by a higher DFPA block, or is not set at all.

Source of attribute settings

This column indicates the level at which each attribute is set. If the Set here check box is selected for a certain row, the Source of attribute settings cell in that row is set to Here. If the Set here check box is not selected for a certain row, the Source of attribute settings cell for that row gives the path to the DFPA block controlling those attributes for the current subsystem. If the parameters in a row are not set in any DFPA block, the Source of attribute settings cell for that row has a dash-.

Supported This block sets attributes for Signal Processing Blockset blocks that perform Data Types

DSP Gain

Note The DSP Gain block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Simulink Gain block.

Purpose

Library

Description

Multiply the input by a constant
dspobslib
The DSP Gain block is a masked version of the Simulink Gain block. It multiplies the input by the gain, element-wise.

The input and the gain can each be a scalar, vector, or matrix. Either the gain must be a scalar, or it must have the same dimensions as the input:

- If the gain is a scalar, then the gain is multiplied to each element of the input.
- If the gain is a vector or a matrix, each element of the gain is multiplied to the corresponding element of the input.

The DSP Gain block accepts real and complex floating-point and fixed-point inputs.

Dialog Box

Gain value

Specify the value by which to multiply the input. The gain may be scalar, vector, or a matrix. The gain may not be Boolean.

Show additional parameters

If selected, additional parameters specific to implementation of the block become visible as shown.

Block Parameters: DSP Gain		区
-DSP Gain (mask) (link)		
Apply element-wise gain to input. Any fixed-point floating-point inputs.	ignore	
Parameters		
Gain value:		
1		
V .-....-Show additional parameters		
V Allow overrides from DSP Fixed-Point Attribu		
Fixed-point gain attributes: User-defined		\checkmark
Gain word length:		
16		
Gain fraction length:		
15		
Fixed-point output attributes: User-defined		\checkmark
Output word length:		
32		
Output fraction length:		
30		
Round integer calculations toward: Floor		∇
「 Saturate on integer overflow		
OK Cancel Help	Apply	

Allow overrides from DSP Fixed-Point Attributes blocks

If you select this parameter, fixed-point data types for this block may be set by DSP Fixed-Point Attributes (DFPA) blocks in your model. If this parameter is unselected, the data types are always set by the parameters in the block mask.

Note that the data type of the gain is always specified by the value in the DSP Gain block mask, and not by a DFPA block.

When a DSP Gain block is overridden by a DFPA block, the output data type of the DSP Gain block is controlled by the Product output attribute. The Output attribute of the DFPA block is ignored for DSP Gain blocks.

Fixed-point gain attributes

Choose how you will specify the word length and fraction length of the gain. If you select Same as input, these characteristics will match those of the input to the block. If you select User-defined, the Gain word length and Gain fraction length parameters become visible.

The Gain does not obey the Round integer calculations toward and Saturate on integer overflow parameters; it is always saturated and rounded to Nearest.

Gain word length

Specify the word length, in bits, of the gain. This parameter is only visible if User-defined is specified for the Fixed-point gain attributes parameter.

Gain fraction length

Specify the fraction length, in bits, of the gain. This parameter is only visible if User-defined is specified for the Fixed-point gain attributes parameter.

Fixed-point output attributes

Choose how you will specify the output word length and fraction length. If you select Same as input, these characteristics will match those of the input to the block. If you select User-defined, the Output word length and Output fraction length parameters become visible.

Output word length

Specify the word length, in bits, of the output. This parameter is only visible if User-defined is specified for the Fixed-point output attributes parameter.

Output fraction length

Specify the fraction length, in bits, of the output. This parameter is only visible if User-defined is specified for the Fixed-point output attributes parameter.

Round integer calculations toward

Select the rounding mode for fixed-point operations. The gain does not obey this parameter; it always rounds to Nearest.

Saturate on integer overflow

If selected, overflows saturate. The gain does not obey this parameter; it is always saturated.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point
- 8 -, 16 -, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

DSP Product
DSP Sum
Gain

Signal Processing Blockset
Signal Processing Blockset Simulink

DSP Product

Note The DSP Product block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Simulink Product block.

Purpose Perform element-wise multiplication of two inputs

Library

Description

dspobslib
The DSP Product block is a masked version of the Simulink Product block. The DSP Product block performs element-wise multiplication of two inputs.

The inputs to the DSP Product block can be scalar, vector, or matrix. Either both inputs must have the same dimensions, or at least one of the inputs must be a scalar:

- If one input is a scalar, it is multiplied to each element of the other input.
- If both inputs are vectors or a matrices, their corresponding elements are multiplied together.

The DSP Product block accepts real and complex floating-point and fixed-point inputs.

Dialog Box

Allow overrides from DSP Fixed-Point Attributes blocks

If you select this parameter, fixed-point data types for this block may be set by DSP Fixed-Point Attributes (DFPA) blocks in your model. If this parameter is unselected, the data types are always set by the parameters in the block mask.

When a DSP Product block is overridden by a DFPA block, the output data type of the DSP Product block is controlled by the Product output attribute. The Output attribute of the DFPA block is ignored for DSP Product blocks.

Fixed-point output attributes

Choose how you will specify the output word length and fraction length. If you select Same as first input, these characteristics will match those of the first input to the block. If you select User-defined, the Output word length and Output fraction length parameters become visible.

Output word length

Specify the word length, in bits, of the output. This parameter is only visible if User-defined is specified for the Fixed-point output attributes parameter.

Output fraction length

Specify the fraction length, in bits, of the output. This parameter is only visible if User-defined is specified for the Fixed-point output attributes parameter.

Round integer calculations toward

Select the rounding mode for fixed-point operations.

Saturate on integer overflow

If selected, overflows saturate.

Supported
 Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point
- 8 -, 16 -, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

DSP Gain	Signal Processing Blockset
DSP Sum	Signal Processing Blockset
Product	Simulink

Note The DSP Sum block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Simulink Sum block.

Purpose Add two inputs
Library
Description
dspobslib
The DSP Sum block is a masked version of the Simulink Sum block. This block adds two inputs.

The inputs to the DSP Sum block can be scalar, vector, or matrix. Either both inputs must have the same dimensions, or at least one of the inputs must be a scalar:

- If one input is a scalar, it is added to each element of the other input.
- If both inputs are vectors or a matrices, their corresponding elements are added together.

The DSP Sum block accepts real and complex floating-point and fixed-point inputs.

DSP Sum

Dialog Box

Allow overrides from DSP Fixed-Point Attributes blocks
If you select this parameter, fixed-point data types for this block may be set by DSP Fixed-Point Attributes (DFPA) blocks in your model. If this parameter is unselected, the data types are always set by the parameters in the block mask.

When a DSP Sum block is overridden by a DFPA block, the output data type of the DSP Sum block is controlled by the Accumulator attribute. The Output attribute of the DFPA block is ignored for DSP Sum blocks.

Fixed-point output attributes

Choose how you will specify the output word length and fraction length. If you select Same as first input, these characteristics will match those of the first input to the block. If you select User-defined, the Output word length and Output fraction length parameters become visible.

Output word length

Specify the word length, in bits, of the output. This parameter is only visible if User-defined is specified for the Fixed-point output attributes parameter.

Output fraction length

Specify the fraction length, in bits, of the output. This parameter is only visible if User-defined is specified for the Fixed-point output attributes parameter.

Round integer calculations toward

Select the rounding mode for fixed-point operations.

Saturate on integer overflow

If selected, overflows saturate.

Supported
 - Double-precision floating point Data Types
 - Single-precision floating point
 - Fixed point
 - 8 -, 16-, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

DSP Gain	Signal Processing Blockset
DSP Product	Signal Processing Blockset
Sum	Simulink

Purpose	Compute discrete wavelet transform (DWT) of input
Library	Transforms
Description	Note The DWT block is the same as the Dyadic Analysis Filter Bank block in the Multirate Filters library, but with different default settings. See the
Dyadic Analysis Filter Bank block reference page for more information on how to use the block.	

The DWT block computes the discrete wavelet transform (DWT) of each column of a frame-based input. By default, the output is a sample-based vector or matrix with the same dimensions as the input. Each column of the output is the DWT of the corresponding input column.

You must install the Wavelet Toolbox for the block to automatically design wavelet-based filters to compute the DWT. Otherwise, you must specify your own lowpass and highpass FIR filters by setting the Filter parameter to User defined.

For the same input, the DWT block and the dwt function, in the Wavelet Toolbox, do not produce the same results. Because the blockset is designed for real-time implementation and the toolbox is designed for analysis, the products handle boundary conditions and filter states differently. To make the output of the DWT block match the output of the dwt function, complete the following steps:

1 For the dwt function, set the boundary condition to zero-padding by typing dwtmode('zpd') at the MATLAB command prompt.
2 To match the latency of the DWT block, which is implemented using FIR filters, add zeros to the input of the dwt function. The number of zeros you add must be equal to the half the filter length.

For detailed information about how to use this block, see the Dyadic Analysis Filter Bank block reference page.

Examples

See "Examples" on page 9-347 in the Dyadic Analysis Filter Bank block reference page.

See Also
Dyadic Analysis Filter Bank IDWT
dwt

Signal Processing Blockset Signal Processing Blockset Wavelet Toolbox

Dyadic Analysis Filter Bank

Purpose	Decompose signals into subbands with smaller bandwidths and slower sample rates
Library	Filtering / Multirate Filters
Description	Note This block decomposes frame-based signals with frame size a multiple of 2^{n} into either n+1 or 2^{n} subbands. To decompose sample-based signals or frame-based signals of different sizes, use the Two-Channel Analysis Subband
Filter block. (You can connect multiple copies of the Two-Channel Analysis	
Subband Filter block to create a multilevel dyadic analysis filter bank.)	

The Dyadic Analysis Filter Bank block decomposes a broadband signal into a collection of subbands with smaller bandwidths and slower sample rates. The block uses a series of highpass and lowpass FIR filters to repeatedly divide the input frequency range, as illustrated in the n-Level Asymmetric Dyadic Analysis Filter Bank figure.

You can specify the filter bank's highpass and lowpass filters by providing vectors of filter coefficients. If you install the Wavelet Toolbox, you can also specify wavelet-based filters by selecting a wavelet from the Filter parameter. You must set the filter bank structure to asymmetric or symmetric, and specify the number of levels in the filter bank.

Input Requirements

- Input can be a frame-based vector or frame-based matrix.
- The input frame size must be a multiple of 2^{n}, where n is the number of filter bank levels. For example, a frame size of 16 would be appropriate for a three-level tree (16 is a multiple of 2^{3}).
- The block always operates along the columns of the inputs.

For an illustration of why the above input requirements exist, see the following figure called Outputs of a 3-Level Asymmetric Dyadic Analysis Filter Bank.

Output Characteristics

The output characteristics vary depending on the block's parameter settings, as summarized in the following list and figure:

- Number of levels parameter set to n

Dyadic Analysis Filter Bank

- Tree structure parameter setting:
- Asymmetric - Block produces $n+1$ output subbands
- Symmetric - Block produces 2^{n} output subbands
- Output parameter setting can be Multiple ports or Single port. The following figure illustrates the difference between the two settings for a 3 -level asymmetric dyadic analysis filter bank. For an explanation of the illustrated output characteristics, see the following table called Output Characteristics for n-level Dyadic Analysis Filter Bank.

For more information about the filter bank levels and structures, see "Dyadic Analysis Filter Banks" on page 3-67.

Outputs of a 3-Level Asymmetric Dyadic Analysis Filter Bank

Dyadic Analysis Filter Bank

The following table summarizes the different output characteristics of the block when it is set to output from single or multiple ports.
Output Characteristics for \mathbf{n}-level Dyadic Analysis Filter Bank

	Single Output Port	Multiple Output Ports
Output Description	Block concatenates all the subbands into one vector or matrix, and outputs the concatenated subbands from a single output port. Each output column contains subbands of the corresponding input channel.	Block outputs each subband from a separate output port. The topmost port outputs the subband with the highest frequencies. Each output column contains a subband for the corresponding input channel.
Output Frame Status	Sample-based	Frame-based
Output Frame Rate	Not applicable	Same as input frame rate (However, the output frame sizes can vary, so the output sample rates can vary).

Dyadic Analysis Filter Bank

Output Characteristics for n-level Dyadic Analysis Filter Bank (Continued)

	Single Output Port	Multiple Output Ports
Output Dimensions (Frame Size)	Same number of rows and columns as the input.	The output has the same number of columns as the input. The number of output rows is the output frame size. For an input with frame size M_{i} output y_{k} has frame size $\mathrm{M}_{\mathrm{o}, k}$: - Symmetric - All outputs have the frame size, $M_{i} / 2^{n}$ - Asymmetric - The frame size of each output (except the last) is half that of the output from the previous level. The outputs from the last two output ports have the same frame size since they originate from the same level in the filter bank. $M_{o, k}= \begin{cases}M_{i} / 2^{k} & (1 \leq k \leq n) \\ M_{i} / 2^{n} & (k=n+1)\end{cases}$
Output Sample Rate	Same as input sample rate.	Though the outputs have the same frame rate as the input, they have different frame sizes than the input. Thus, the output sample rates, $\mathrm{F}_{\mathrm{so}, \mathrm{k}}$, are different from the input sample rate, F_{si} : - Symmetric - All outputs have the sample rate $\mathrm{F}_{\mathrm{si}} / 2^{\mathrm{n}}$. - Asymmetric - $F_{s o, k}=\left\{\begin{array}{cc} F_{s i} / 2^{k} & (1 \leq k \leq n) \\ F_{s i} / 2^{n} & (k=n+1) \end{array}\right.$

Dyadic Analysis Filter Bank

Filter Bank Filters

You must specify the highpass and lowpass filters in the filter bank by setting the Filter parameter to one of the following options:

- User defined - Allows you to explicitly specify the filters with two vectors of filter coefficients in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters. The block uses the same lowpass and highpass filters throughout the filter bank. The two filters should be halfband filters, where each filter passes the frequency band that the other filter stops.
- Wavelet such as Biorthogonal or Daubechies - The block uses the specified wavelet to construct the lowpass and highpass filters using the Wavelet Toolbox function, wfilters. Depending on the wavelet, the block might enable either the Wavelet order or Filter order [synthesis / analysis] parameter. (The latter parameter allows you to specify different wavelet orders for the analysis and synthesis filter stages.) You must install the Wavelet Toolbox to use wavelets.
Specifying Filters with the Filter Parameter and Related Parameters

Filter	Sample Setting for Related Filter Specification Parameters	Corresponding Wavelet Function Syntax
User-defined	Filters based on Daubechies wavelets with wavelet order 3: - Lowpass FIR filter coefficients = [0.0352-0.0854-0.1350 0.4599 0.80690 .3327$]$ - Highpass FIR filter coefficients = [-0.3327 0.8069-0.4599-0.1350 0.08540 .0352$]$	None
Haar	None	wfilters('haar')
Daubechies	Wavelet order = 4	wfilters('db4')
Symlets	Wavelet order $=3$	wfilters('sym3')
Coiflets	Wavelet order = 1	wfilters('coif1')
Biorthogonal	Filter order [synthesis / analysis] = [3/1]	wfilters('bior3.1')

Dyadic Analysis Filter Bank

Specifying Filters with the Filter Parameter and Related Parameters (Continued)		
Filter	Sample Setting for Related Filter Specification Parameters	Corresponding Wavelet Function Syntax
Reverse Biorthogonal	Filter order [synthesis / analysis] = [3/1]	wfilters('rbio3.1')
Discrete Meyer	None	wfilters('dmey ')

Examples

Wavelets. The primary application for dyadic analysis filter banks and dyadic synthesis filter banks, is coding for data compression using wavelets.

At the transmitting end, the output of the dyadic analysis filter bank is fed to a lossy compression scheme, which typically assigns the number of bits for each filter bank output in proportion to the relative energy in that frequency band. This represents the more powerful signal components by a greater number of bits than the less powerful signal components.

At the receiving end, the transmission is decoded and fed to a dyadic synthesis filter bank to reconstruct the original signal. The filter coefficients of the complementary analysis and synthesis stages are designed to cancel aliasing introduced by the filtering and resampling.

Demos. See the following Signal Processing Blockset demos, which use the Dyadic Analysis Filter Bank block:

- Multi-level PR filter bank
- Denoising
- Wavelet transmultiplexer (WTM)

Note To see the version of the demos that use the Dyadic Analysis Filter Bank and Dyadic Synthesis Filter Bank blocks, click the Frame-Based Demo button in the demos.

Dyadic Analysis Filter Bank

Open the demos using one of the following methods:

- Click the above links in the MATLAB Help browser (not in a Web browser).
- Type demo blockset dsp at the MATLAB command line, and look in the Wavelets directory.

Dialog Box
The parameters displayed in the block dialog vary depending on the setting of the Filter parameter. Only some of the parameters described below are visible in the dialog box at any one time.

Dyadic Analysis Filter Bank

Filter

The type of filter used to determine the high- and low-pass FIR filters in the dyadic analysis filter bank:

- Select User defined to explicitly specify the filter coefficients in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.
- Select a wavelet such as Biorthogonal or Daubechies to specify a wavelet-based filter. The block uses the Wavelet Toolbox function, wfilters, to construct the filters. Extra parameters such as Wavelet order or Filter order [synthesis / analysis] might become enabled. For a list of the supported wavelets, see the Specifying Filters with the Filter Parameter and Related Parameters table.

Lowpass FIR filter coefficients

A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the lowpass filters in the filter bank. This parameter is enabled when you set Filter to User defined. The lowpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Highpass FIR filter coefficients parameter. The default values of this parameter specify a filter based on Daubechies wavelet with wavelet order 3.

Highpass FIR filter coefficients

A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the highpass filters in the filter bank. This parameter is enabled when you set Filter to User defined. The highpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Lowpass FIR filter coefficients parameter. The default values of this parameter specify a filter based on a Daubechies wavelet with wavelet order 3.

Wavelet order

The order of the wavelet selected in the Filter parameter. This parameter is enabled only when you set Filter to certain types of wavelets, as shown in the Specifying Filters with the Filter Parameter and Related Parameters table.

Dyadic Analysis Filter Bank

Filter order [synthesis / analysis]

The order of the wavelet for the synthesis and analysis filter stages. For example, when you set the Filter parameter to Biorthogonal and set the Filter order [synthesis / analysis] parameter to [2/6], the block calls the wfilters function with input argument 'bior2.6'. This parameter is enabled only when you set Filter to certain types of wavelets, as shown in the Specifying Filters with the Filter Parameter and Related Parameters table.

Number of levels

The number of filter bank levels. An n-level asymmetric structure has $n+1$ outputs, and an n-level symmetric structure has 2^{n} outputs, as shown in the figures n-Level Asymmetric Dyadic Analysis Filter Bank and n-Level Symmetric Dyadic Analysis Filter Bank. The block's icon displays the value of this parameter in the lower left corner.

Tree structure

The structure of the filter bank: Asymmetric, or Symmetric. See the figures entitled n-Level Asymmetric Dyadic Analysis Filter Bank and n-Level Symmetric Dyadic Analysis Filter Bank.

Output

Set to Multiple ports to output each output subband on a separate port (the topmost port outputs the subband with the highest frequency band). Set to Single port to concatenate the subbands into one vector or matrix and output the concatenated subbands on a single port. For more information, see "Output Characteristics" on page 9-342.

References	Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.
	Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press, 1996.
	Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.
Supported Data Types	- Double-precision floating point

Dyadic Analysis Filter Bank

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Dyadic Synthesis Filter Bank	Signal Processing Blockset
Two-Channel Analysis Subband	Signal Processing Blockset	
Filter		

Dyadic Synthesis Filter Bank

Purpose

Library
Description

Reconstruct signals from subbands with smaller bandwidths and slower sample rates

Filtering / Multirate Filters
Note This block always outputs frame-based signals, and its inputs must be of certain sizes. To get sample-based outputs or to use input subbands that do not fit the criteria of this block, use the Two-Channel Synthesis Subband Filter block. (You can connect multiple copies of the Two-Channel Synthesis Subband Filter block to create a multilevel dyadic synthesis filter bank.)

The Dyadic Synthesis Filter Bank block reconstructs a signal decomposed by the Dyadic Analysis Filter Bank block. The block takes in subbands of a signal, and uses them to reconstruct the signal by using a series of highpass and lowpass FIR filters as illustrated in the figure entitled n-Level Asymmetric Dyadic Synthesis Filter Bank. The reconstructed signal has a wider bandwidth and faster sample rate than the input subbands.

You can specify the filter bank's highpass and lowpass filters by providing vectors of filter coefficients. If you install the Wavelet Toolbox, you can also specify wavelet-based filters by selecting a wavelet from the Filter parameter.

Note To use a dyadic synthesis filter bank to perfectly reconstruct the output of a dyadic analysis filter bank, the number of levels and tree structures of both filter banks must be the same. In addition, the filters in the synthesis filter bank must be designed to perfectly reconstruct the outputs of the analysis filter bank. Otherwise, the reconstruction will not be perfect.

This block automatically computes wavelet-based perfect reconstruction filters when the wavelet selection in the Filter parameter of this block is the same as the Filter parameter setting of the corresponding Dyadic Analysis Filter Bank block. The use of wavelets requires the Wavelet Toolbox. To learn how to design your own perfect reconstruction filters, see "References" on page 9-361.

Dyadic Synthesis Filter Bank

Input Requirements

The inputs to this block are usually the outputs of a Dyadic Analysis Filter Bank block. Since the Dyadic Analysis Filter Bank block can output from either a single port or multiple ports, the Dyadic Synthesis Filter Bank block accepts inputs to either a single port or multiple ports.

The Input parameter sets whether the block accepts inputs from a single port or multiple ports, and thus determines the input requirements, as summarized in the following lists and figure.

Note Any output of a Dyadic Analysis Filter Bank block whose parameter settings match the corresponding settings of this block is a valid input to this block. For example, the setting of the Dyadic Analysis Filter Bank block parameter, Output, must be the same as this block's Input parameter (Single port or Multiple ports).

Valid Inputs for Input Set to Single Port

- Inputs must be sample-based vectors or sample-based matrices of concatenated subbands.
- Each input column contains the subbands for an independent signal.
- Upper input rows contain the high-frequency subbands, and the lower rows contain the low-frequency subbands.

Valid Inputs for Input Set to Multiple Ports

- Inputs must be a frame-based vector or frame-based matrix for each subband, each of which is input to a separate input port.
- The columns of each input contains a subband for an independent signal.
- The input to the topmost input port is the subband containing the highest frequencies, and the input to the bottommost port is the subband containing the lowest frequencies.

Dyadic Synthesis Filter Bank

Single Input Port

(Asymmetric tree structure)
Concatenated subband input Input rate = 1 (One input matrix per second)

Other blocks treat this input as a sample-based signal with sample rate 1 .

Ch $1-$ Ch 2
subband $1\left\{\begin{array}{lll}1 & 11 \\ 2 & 12 \\ 3 & 13\end{array}\right] \quad$ 2-channe

Valid Inputs to a 3-Level Asymmetric Dyadic Synthesis Filter Bank

For general information about the filter banks, see "Dyadic Synthesis Filter Banks" on page 3-71.

Dyadic Synthesis Filter Bank

Output Characteristics

The following table summarizes the output characteristics for both frame-based inputs, and concatenated subband inputs. For an illustration of why the output characteristics exist, see the figure called Valid Inputs to a 3-Level Asymmetric Dyadic Synthesis Filter Bank.

Frame-Based Inputs
 (Input = Multiple ports)

Concatenated Subband Inputs (Input = Single port)

Output Frame Status	Outputs are always frame based regardless of the input frame status. Each output column is an independent channel, reconstructed from the corresponding channel in the inputs.	
Output Frame Rate	Same as the input frame rate.	Same as the input rate (the rate of the concatenated subband inputs).
Output Frame Dimensions	- The output has the same number of columns as the inputs. - The number of output rows depends on the tree structure of the filter bank: - Asymmetric - The number of output rows is twice the number of rows in the input to the topmost input port.	The output has the same number of rows and columns as the input.
-Symmetric - The number of output rows is the product of the number of input ports and the number of rows in an input to any input port.		

For general information about the filter banks, see "Dyadic Synthesis Filter Banks" on page 3-71.

Dyadic Synthesis Filter Bank

Filter Bank Filters

You must specify the highpass and lowpass filters in the filter bank by setting the Filter parameter to one of the following options:

- User defined - Allows you to explicitly specify the filters with two vectors of filter coefficients in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters. The block uses the same lowpass and highpass filters throughout the filter bank. The two filters should be halfband filters, where each filter passes the frequency band that the other filter stops. To use this block to perfectly reconstruct a signal decomposed by a Dyadic Analysis Filter Bank block, the filters in this block must be designed to perfectly reconstruct the outputs of the analysis filter bank. To learn how to design your own perfect reconstruction filters, see "References" on page 9-361.
- Wavelet such as Biorthogonal or Daubechies - The block uses the specified wavelet to construct the lowpass and highpass filters using the Wavelet Toolbox function, wfilters. Depending on the wavelet, the block might enable either the Wavelet order or Filter order [synthesis / analysis] parameter. (The latter parameter allows you to specify different wavelet orders for the analysis and synthesis filter stages.) To use this block to reconstruct a signal decomposed by a Dyadic Analysis Filter Bank block, you must set both blocks to use the same wavelets with the same order. You must install the Wavelet Toolbox to use wavelets.

Filters with the Filter Parameter and Related Parameters

Filter	Sample Setting for Related Filter Specification Parameters	Corresponding Wavelet Function Syntax
User-defined	Filters based on Daubechies wavelets with wavelet order 3: - Lowpass FIR filter coefficients = [0.0352-0.0854-0.1350 0.4599 0.80690 .3327$]$ - Highpass FIR filter coefficients = [- $0.33270 .8069-0.4599-0.13500 .08540 .0352]$	None
Haar	None	wfilters('haar')
Daubechies	Wavelet order = 4	wfilters('db4')

Dyadic Synthesis Filter Bank

Filters with the Filter Parameter and Related Parameters (Continued)

Filter	Sample Setting for Related Filter Specification Parameters	Corresponding Wavelet Function Syntax
Symlets	Wavelet order $=3$	wfilters('sym3')
Coiflets	Wavelet order = 1	wfilters('coif1')
Biorthogonal	Filter order [synthesis / analysis] = [3/1]	wfilters('bior3.1')
Reverse Biorthogonal	Filter order [synthesis / analysis] = [3/1]	wfilters('rbio3.1')
Discrete Meyer	None	wfilters('dmey')

Examples

See "Examples" on page 9-347 in the Dyadic Analysis Filter Bank block reference.

Dyadic Synthesis Filter Bank

Dialog Box
The parameters displayed in the block dialog vary depending on the setting of the Filter parameter. Only some of the parameters described below are visible in the dialog box at any one time.

Note To use this block to reconstruct a signal decomposed by a Dyadic Analysis Filter Bank block, all the parameters in this block must be the same as the corresponding parameters in the Dyadic Analysis Filter Bank block (except the Lowpass FIR filter coefficients and Highpass FIR filter coefficients; see the descriptions of these parameters).

Dyadic Synthesis Filter Bank

Filter

The type of filter used to determine the high- and low-pass FIR filters in the dyadic synthesis filter bank:

- Select User defined to explicitly specify the filter coefficients in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.
- Select a wavelet such as Biorthogonal or Daubechies to specify a wavelet-based filter. The block uses the Wavelet Toolbox function, wfilters, to construct the filters. Extra parameters such as Wavelet order or Filter order [synthesis / analysis] might become enabled. For a list of the supported wavelets, see the table called Specifying Filters with the Filter Parameter and Related Parameters.

Lowpass FIR filter coefficients

A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the lowpass filters in the filter bank. This parameter is enabled when you set Filter to User defined. The lowpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Highpass FIR filter coefficients parameter. To perfectly reconstruct a signal decomposed by the Dyadic Analysis Filter Bank, the filters in this block must be designed to perfectly reconstruct the outputs of the analysis filter bank. Otherwise, the reconstruction will not be perfect. The default values of this parameter specify a perfect reconstruction filter for the default settings of the Dyadic Analysis Filter Bank (based on a Daubechies wavelet with wavelet order 3).

Highpass FIR filter coefficients

A vector of filter coefficients (descending powers of z) that specifies coefficients used by all the highpass filters in the filter bank. This parameter is enabled when you set Filter to User defined. The highpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Lowpass FIR filter coefficients parameter. To perfectly reconstruct a signal decomposed by the Dyadic Analysis Filter Bank, the filters in this block must be designed to perfectly reconstruct the outputs of the analysis filter bank. Otherwise, the reconstruction will not be perfect. The default values of this parameter specify a perfect reconstruction filter for the default settings of the Dyadic Analysis Filter Bank (based on a Daubechies wavelet with wavelet order 3).

Dyadic Synthesis Filter Bank

Wavelet order

The order of the wavelet selected in the Filter parameter. This parameter is enabled only when you set Filter to certain types of wavelets, as shown in the table called Specifying Filters with the Filter Parameter and Related Parameters.

Filter order [synthesis / analysis]

The order of the wavelet for the synthesis and analysis filter stages. For example, when you set the Filter parameter to Biorthogonal and set the Filter order [synthesis / analysis] parameter to [2 / 6], the block calls the wfilters function with input argument 'bior2.6'. This parameter is enabled only when you set Filter to certain types of wavelets, as shown in in the table called Specifying Filters with the Filter Parameter and Related Parameters.

Number of levels

The number of filter bank levels. An n-level asymmetric structure has $n+1$ outputs, and an n-level symmetric structure has 2^{n} outputs, as shown in the figures entitled n-Level Asymmetric Dyadic Synthesis Filter Bank and n-Level Symmetric Dyadic Synthesis Filter Bank. The block's icon displays the value of this parameter in the lower-left corner.

Tree structure

The structure of the filter bank: Asymmetric, or Symmetric. See the figures entitled n-Level Asymmetric Dyadic Synthesis Filter Bank and n-Level Symmetric Dyadic Synthesis Filter Bank.

Input

Set to Multiple ports to accept each input subband at a separate port (the topmost port accepts the subband with the highest frequency band). Set to Single port to accept one vector or matrix of concatenated subbands at a single port. For more information, see "Input Requirements" on page 9-353.

Dyadic Synthesis Filter Bank

References	Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.
	Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press, 1996.
	Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.
Supported Data Types	- Double-precision floating point
	- Single-precision floating point To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.
	Dyadic Analysis Filter Bank Two-Channel Synthesis Subband Filter
	See "Multirate Filters" on page 3-67 for related information. Processing Blockset

Edge Detector

Purpose Detect transition from zero to a nonzero value
Library Signal Management / Switches and Counters

Description

Examples

The Edge Detector block generates an impulse (the value 1) in a given output channel when the corresponding channel of the input transitions from zero to a nonzero value. Otherwise, the block generates zeros in each channel.

The output has the same dimension and sample rate as the input. When the input is frame based, the output is frame based; otherwise, the output is sample based. For frame-based input, an edge that is split across two consecutive frames (that is, a zero at the bottom of the first frame, and a nonzero value at the top of the following frame) is counted in the frame that contains the nonzero value.

In the model below, the Edge Detector block locates the edges (zero to nonzero transitions) in a two-channel frame-based input with frame size 3. The two input channels are horizontally concatenated with the two output channels to create the four-channel workspace variable dsp_examples_yout.

Adjust the block parameters as described below. (Use the default settings for the To Workspace block.)

- Set the Signal From Workspace block parameters as follows:
- Signal $=[(-5: 5) ; 0100200030$ 1'
- Sample time = 1
- Samples per frame $=3$
- Set the Matrix Concatenation block parameters as follows:
- Number of inputs = 2
- Concatenation method = Horizontal

As shown below, the block finds edges at sample 7 in channel 1, and at samples 2,5 , and 9 in channel 2 .

Dialog Box

Bigiock Parameters: Edge Detector				? \times
Edge Detector (mask) (link) Output a unity amplitude pulse for one sample period in response to a transition from zero to a nonzero value.				
QK	Cancel	Help	Spply	

Supported
 Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- Custom data types
- Boolean - The block might output Boolean values depending on the input data type, and whether Boolean support is enabled or disabled, as described in "Effects of Enabling and Disabling Boolean Support" on page 7-18. To

Edge Detector

learn how to disable Boolean output support, see "Steps to Disabling Boolean Support" on page 7-19.

- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Counter
Event-Count Comparator

Signal Processing Blockset
Signal Processing Blockset

Event-Count Comparator

Purpose
Library
Description

$\substack{\text { Data } \\ \text { Event-Count } \\ \text { Comparato } \\ \text { Thresh:10 }}$

Detect threshold crossing of accumulated nonzero inputs
Signal Management / Switches and Counters
The Event-Count Comparator block records the number of nonzero inputs to the Data port during the period that the block is enabled by a high signal (the value 1) at the Int port. Both inputs must be scalars; the input to the Int port can be sample based or frame based. When the input to the Data port is frame based, the output is frame based; otherwise, the output is sample based.

When the number of accumulated nonzero inputs first equals the Event threshold setting, the block waits one additional sample interval, and then sets the output high (1). The block holds the output high until recording is restarted by a low-to-high (0-to-1) transition at the Int port.

The Event-Count Comparator block accepts real and complex floating-point and fixed-point inputs. However, because the block has discrete state, it does not support constant or continuous sample times. Therefore, at least one input or output port of the Event-Count Comparator block must be connected to a block whose Sample time parameter is discrete. The Event-Count Comparator block inherits this non-infinite discrete sample time.

Examples

In the model below, the Event-Count Comparator block (Event threshold = 3) detects two threshold crossings in the input to the Data port, one at sample 4 and one at sample 12.

All inputs and outputs are multiplexed into the workspace variable yout, whose contents are shown in the figure below. The two left columns in the illustration show the inputs to the Data and Int ports, the center column shows

Event-Count Comparator

the state of the block's internal counter, and the right column shows the block's output.

Dialog Box

國Block Parameters: Event-Count Comparator			? ${ }^{\text {x }}$
Event-Count Comparator (mask) (link) Output is true if the number of nonzero inputs over time equals or exceeds the Event threshold during the enable interval. A nonzero input on the interval port (Int) enables the block to begin counting and resets the output. Inputs must be discrete-time scalars.			
$\begin{aligned} & \text { Parameters } \\ & \text { Event threshold: } \\ & 10 \end{aligned}$			
QK	Cancel	Help	Apply

Event threshold

Specify the value against which to compare the number of nonzero inputs. Tunable.

Supported Data Types	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.
See Also	Counter Signal Processing Blockset Edge Detector Signal Processing Blockset

Extract Diagonal

Dialog Box

Extract main diagonal of input matrix
Math Functions / Matrices and Linear Algebra / Matrix Operations
The Extract Diagonal block populates the 1-D output vector with the elements on the main diagonal of the M-by-N input matrix A .
$D=$ diag $(A) \quad$ Equivalent MATLAB code
The output vector has length min (M, N), and is always sample based.

Purpose

Library

Description

Examples

Extract lower or upper triangle from input matrices

Math Functions / Matrices and Linear Algebra / Matrix Operations

The Extract Triangular Matrix block creates a triangular matrix output from the upper or lower triangular elements of an M-by-N input matrix. A length-M $1-\mathrm{D}$ vector input is treated as an M-by- 1 matrix.

The Extract parameter selects between the two components of the input:

- Upper - Copies the elements on and above the main diagonal of the input matrix to an output matrix of the same size. The first row of the output matrix is therefore identical to the first row of the input matrix. The elements below the main diagonal of the output matrix are zero.
- Lower - Copies the elements on and below the main diagonal of the input matrix to an output matrix of the same size. The first column of the output matrix is therefore identical to the first column of the input matrix. The elements above the main diagonal of the output matrix are zero.

The output has the same frame status as the input.
The example below shows the extraction of upper and lower triangles from a 5-by-3 input matrix.

Extract Triangular Matrix

Dialog Box

Wiock Parameters: Extract Triangular Matrix ? ${ }^{\text {P }}$? x	
Extract Triangular Matrix (mask) [link) Extract upper or lower triangular part of input matrix.					
Parameters Extract: Lpper					
	QK	Cancel	Help	Apply	

Extract

The component of the matrix to copy to the output, upper triangle or lower triangle. Tunable.

Supported Data Types

Port	Supported Data Types
A	• Double-precision floating point
	• Single-precision floating point
	- Fixed point (signed and unsigned)
	\bullet Custom data types
	• Boolean
	$\bullet 8-, 16-$, and 32-bit signed integers
	$\bullet 8-, 16-$, and 32-bit unsigned integers

Port	Supported Data Types
U	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed and unsigned)
	• Custom data types
	• Boolean
	• 8-, 16-, and 32-bit signed integers
	- 8-, 16-, and 32-bit unsigned integers
	- Double-precision floating point
	- Single-precision floating point
	• Fixed point (signed and unsigned)
	• Custom data types
	• Boolean
	• 8-, 16-, and 32-bit signed integers
	• 8-, 16-, and 32-bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Autocorrelation LPC	Signal Processing Blockset
	Cholesky Factorization	Signal Processing Blockset
	Constant Diagonal Matrix	Signal Processing Blockset
	Extract Diagonal	Signal Processing Blockset
	Forward Substitution	Signal Processing Blockset
	LDL Factorization	Signal Processing Blockset
	LU Factorization	Signal Processing Blockset
	tril	MATLAB
	triu	MATLAB

Fast Block LMS Filter

Purpose

Library
Description

Input	
Desired Fast Block	
Step-size LMS	Eror
Adapt	
Reset	

Compute filtered output, filter error, and filter weights for a given input and desired signal using the Fast Block LMS adaptive filter algorithm

Filtering / Adaptive Filters
The Fast Block LMS Filter block implements an adaptive least mean-square (LMS) filter, where the adaptation of the filter weights occurs once for every block of data samples. The block estimates the filter weights, or coefficients, needed to convert the input signal into the desired signal. Connect the signal you want to filter to the Input port. This input signal can be a sample-based scalar or a single-channel frame-based signal. Connect the signal you want to model to the Desired port. The desired signal must have the same data type, frame status, complexity, and dimensions as the input signal. The Output port outputs the filtered input signal, which can be sample or frame based. The Error port outputs the result of subtracting the output signal from the desired signal.

The block calculates the filter weights using the Block LMS Filter equations. For more information, see "Block LMS Filter" on page 9-45. The Fast Block LMS Filter block implements the convolution operation involved in the calculations of the filtered output, y, and the weight update function in the frequency domain using the FFT algorithm used in the Overlap-Save FFT Filter block. See "Overlap-Save FFT Filter" on page 9-719 for more information.

Use the Filter length parameter to specify the length of the filter weights vector.

The Block size parameter determines how many samples of the input signal are acquired before the filter weights are updated. The input frame length must be a multiple of the Block size parameter.

The Step-size (mu) parameter corresponds to μ in the equations. You can either specify a step-size using the input port, Step-size, or enter a value in the Block Parameters: Block LMS Filter dialog box.

Use the Leakage factor ($\mathbf{0}$ to 1) parameter to specify the leakage factor, $0<1-\mu \alpha \leq 1$, in the leaky LMS algorithm shown below.

$$
\mathbf{w}(k)=(1-\mu \alpha) \mathbf{w}(k-1)-f(\mathbf{u}(n), e(n), \mu)
$$

Enter the initial filter weights, $\hat{\mathbf{w}}(0)$, as a vector or a scalar in the Initial value of filter weights text box. When you enter a scalar, the block uses the scalar value to create a vector of filter weights. This vector has length equal to the filter length and all of its values are equal to the scalar value.

When you select the Adapt port check box, an Adapt port appears on the block. When the input to this port is nonzero, the block continuously updates the filter weights. When the input to this port is zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset input parameter. The block resets the filter weights whenever a reset event is detected at the Reset port. The reset signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To enable the Reset port, select one of the following from the Reset input list:

- Ris ing edge - Triggers a reset operation when the Reset input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Reset input does one of the following:
- Falls from a positive value to a negative value or zero

Fast Block LMS Filter

- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Reset input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Reset input is not zero

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the block outputs the current updated filter weights from this port.

Fast Block LMS Filter

Dialog Box

Filter length

Enter the length of the FIR filter weights vector. The sum of the block size and the filter length must be a power of 2.

Block size

Enter the number of samples to acquire before the filter weights are updated. The input frame length must be an integer multiple of the block size. The sum of the block size and the filter length must be a power of 2 .

Fast Block LMS Filter

Specify step-size via

Select Dialog to enter a value for mu, or select Input port to specify mu using the Step-size input port.

Step-size (mu)

Enter the step-size. Tunable.

Leakage factor (0 to 1)

Enter the leakage factor, $0<1-\mu \alpha \leq 1$. Tunable.

Initial value of filter weights

Specify the initial values of the FIR filter weights.

Adapt port

Select this check box to enable the Adapt input port.

Reset input

Select this check box to enable the Reset input port.

Output filter weights

Select this check box to export the filter weights from the Wts port.

References	Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley \& Sons, 1996.
Supported - Double-precision floating point Data Types - Single-precision floating point	
	To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Kalman Adaptive Filter
LMS Filter
RLS Filter
Fast Block LMS Filter
Overlap-Save FFT Filter

Signal Processing Blockset

See "Adaptive Filters" on page 3-53 for related information.

Purpose Compute fast Fourier transform (FFT) of input

Library
 Transforms

Description

The FFT block computes the fast Fourier transform (FFT) of each channel of an M-by-N or length-M input, u, where M must be a power of two. To work with other input sizes, use the Zero Pad block to pad or truncate the length-M dimension to a power-of-two length.

The output of the FFT block is equivalent to the MATLAB fft function:

$$
y=f f t(u) \quad \% \text { Equivalent MATLAB code }
$$

The k th entry of the l th output channel, $y(k, l)$, is equal to the k th point of the M-point discrete Fourier transform (DFT) of the l th input channel:

$$
y(k, l)=\sum_{m=1}^{M} u(m, l) e^{-j 2 \pi(m-1)(k-1) / M} \quad k=1, \ldots, M
$$

This block supports real and complex floating-point and fixed-point inputs.

Input and Output Characteristics

The following table describes valid inputs to the FFT block, their corresponding outputs, and the dimension along which the block computes the DFT.

Valid Block Inputs - Real- or complex-valued - Must be in linear order - M must be a power of two.	Dimension Along Which Block Computes DFT	Corresponding Block Output Characteristics Output port rate = input port rate
Frame-based M-by-N matrix	Column	- Sample based - Complex valued - M-by-N matrix - Each output column contains the M-point DFT of the corresponding input channel in linear or bit-reversed order.

Selecting the Twiddle Factor Computation Method

The Twiddle factor computation parameter determines how the block computes the necessary sine and cosine terms to calculate the term $e^{-j 2 \pi(m-1)(k-1) / M}$, shown in the first equation of this block reference page. This parameter has two settings, each with its advantages and disadvantages, as described in the following table. Note that only Table lookup mode is supported for fixed-point signals.

Twiddle Factor Computation Parameter Setting	Sine and Cosine Computation Method	Effect on Block Performance
Table lookup	The block computes and stores the trigonometric values before the simulation starts, and retrieves them during the simulation. When you generate code from the block, the processor running the generated code stores the trigonometric values computed by the block, and retrieves the values during code execution.	The block usually runs much more quickly, but requires extra memory for storing the precomputed trigonometric values. You can optimize the table for memory consumption or speed, as described in "Optimizing the Table of Trigonometric Values" on page 9-379.
	The block computes sine and cosine values during the simulation. When you generate code from the block, the processor running the generated code computes the sine and cosine values while the code runs.	The block usually runs more slowly, but does not need extra data memory. For code generation, the block requires a support library to emulate the trigonometric functions, increasing the size of the generated code.
Trigonetric		

Optimizing the Table of Trigonometric Values

When you set the Twiddle factor computation parameter to Table lookup, you need to also set the Optimize table for parameter. This parameter optimizes the table of trigonometric values for speed or memory by varying the number of table entries as summarized in the following table.

Optimize Table for Parameter Setting	Number of Table Entries for \mathbf{N}-Point FFT	Memory Required for Single-Precision 5 12-Point FFT
Speed	$\begin{aligned} & 3 N / 4-\text { floating } \\ & \text { point } \\ & N \text { - fixed point } \end{aligned}$	$\begin{gathered} \left(\frac{3 \times 512}{4} \text { table entries }\right) \times\left(4 \frac{\text { bytes }}{\text { table entry }}\right) \\ =1536 \text { bytes } \end{gathered}$
Memory	N/4—floating point Not supported for fixed point	$\begin{gathered} \left(\frac{512}{4} \text { table entries }\right) \times\left(4 \frac{\text { bytes }}{\text { table entry }}\right) \\ =512 \text { bytes } \end{gathered}$

Ordering Output Column Entries

You can set the Output in bit-reversed order parameter to specify the ordering of the column elements of the output as either linear or bit-reversed order. If you select the Output in bit-reversed order check box, the block's output is in bit-reversed order. If you clear the Output in bit-reversed order check box, the block's output is in linear order.

Note With the FFT block, linearly ordering the output requires a butterfly operation. So, it might be better to output in bit-reversed order in some situations.

For more information ordering of the output, see "Linear and Bit-Reversed Output Order" on page 4-18.

Algorithms Used for FFT Computation

Depending on whether the block's input is floating-point or fixed-point, real- or complex-valued, and whether you want the output in linear or bit-reversed
order, the block uses one or more of the following algorithms as summarized in the following tables:

- Butterfly operation
- Double-signal algorithm
- Half-length algorithm
- Radix-2 decimation-in-time (DIT) algorithm
- Radix-2 decimation-in-frequency (DIF) algorithm

For floating-point signals:

Complexity of Input	Output Ordering	Algorithms Used for FFT Computation
Complex	Linear	Butterfly operation and radix-2 DIT
Complex	Bit-reversed	Radix-2 DIF
Real	Linear	Butterfly operation and radix-2 DIT in conjunction with the half-length and double-signal algorithms
Real	Bit-reversed	Radix-2 DIF in conjunction with the half-length and double-signal algorithms

For fixed-point signals:

Complexity of Input	Output Ordering	Algorithms Used for FFT Computation
Real or complex	Linear	Butterfly operation and radix-2 DIT
Real or complex	Bit-reversed	Radix-2 DIF

For more information on the double-signal and half-length algorithms, see Proakis, John G.and Dimitris G. Manolakis. Digital Signal Processing. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1996. The section entitled "Efficient Computation of the DFT of Two Real Sequences" on page 475 describes the double signal algorithm. The section entitled "Efficient Computation of the DFT of a 2N-Point Real Sequence" on page 476 describes the half-length algorithm.

Fixed-Point Data Types

The diagrams below show the data types used within the FFT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the FFT block dialog as discussed in "Dialog Box" on page 9-384.

Inputs to the FFT block are first cast to the output data type and stored in the output buffer. Each butterfly stage then processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type. A twiddle factor is multiplied in before each butterfly stage in a decimation-in-time FFT, and after each butterfly stage in a decimation-in-frequency FFT.

Decimation-in-Time FFT

+ -twiddle multiplication \mid butterlly stage

Decimation-in-Frequency FFT

\longmapsto butterlly stage — \quad wwiddle multiplication- -

Butterfly Stage Data Types

Twiddle Multiplication Data Types

The output of the multiplier is in the accumulator data type since both of the inputs to the multiplier are complex. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Dialog Box The Main pane of the FFT block dialog appears as follows:

Twiddle factor computation

Specify the computation method of the term $e^{-j 2 \pi(m-1)(k-1) / M}$, shown in the first equation of this block reference page. In Table lookup mode, the block computes and stores the sine and cosine values before the simulation starts. In Trigonometric fon mode, the block computes the sine and cosine values during the simulation. See "Selecting the Twiddle Factor Computation Method" on page 9-379.
This parameter must be set to Table lookup for fixed-point signals.

Optimize table for

Select the optimization of the table of sine and cosine values for Speed or Memory. This parameter is only available when the Twiddle factor computation parameter is set to Table lookup. See "Selecting the Twiddle Factor Computation Method" on page 9-379.

This parameter must be set to Speed for fixed-point signals.

Output in bit-reversed order

Designate the order of the output channel elements relative to the ordering of the input elements. When selected, the output channel elements are in bit-reversed order relative to the input ordering. Otherwise, the output column elements are linearly ordered relative to the input ordering.

Linearly ordering the output requires extra data sorting manipulation, so in some situations it might be better to output in bit-reversed order.

The Fixed-point pane of the FFT block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations. The sine table values do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The sine table values do not obey this parameter; they are always saturated.

Skip divide-by-two on butterfly outputs for fixed-point signals

When you select this parameter, no scaling occurs. When you do not select this parameter, the output of each butterfly of the FFT is divided by two for fixed-point signals.

Sine table

Choose how you will specify the word length of the values of the sine table. The fraction length of the sine table values is always equal to the word length minus one:

- When you select Same word length as input, the word length of the sine table values will match that of the input to the block.
- When you select Specify word length, you are able to enter the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-27 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:

```
product output word length \(=\)
output word length + sine table values word length
product output fraction length \(=\)
output fraction length + sine table values fraction length
```

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types"
on page 9-27 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the accumulator data type in this block:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:
accumulator word length $=$ product output word length +1
accumulator fraction length $=$ product output fraction length
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Inherit via internal rule, the output word length and fraction length are automatically set according to the following equations:
output word length $=$ input word length
+ floor $(\log 2($ FFT length -1$))+1$
output fraction length $=$ input fraction length
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

References

Supported
Data Types page 7-2.

See Also
See Also DCT
IFFT
Pad
Zero Pad
bitrevorder
fft
ifft

Proakis, John G.and Dimitris G. Manolakis. Digital Signal Processing. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 1996.

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- 8 -, 16 -, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox
Signal Processing Toolbox
Signal Processing Toolbox

Filter Realization Wizard

Purpose

Library
Description

Construct filter realizations using the Digital Filter block or the Sum, Gain, and Delay blocks

Filtering / Filter Designs
Note Use this block to implement fixed-point or floating-point digital filters using Sum, Gain, and Delay blocks or the Digital Filter block. You can either design a filter by using the block's filter design and analysis parameters, or import the coefficients of a filter you have designed elsewhere.

The following blocks also implement digital filters, but serve slightly different purposes:

- Digital Filter - Use to implement floating-point or fixed-point filters that you have already designed
- Digital Filter Design - Use to design, analyze, and then implement floating-point filters.

The Filter Realization Wizard is a tool for automatically implementing a digital filter. You must specify a filter, its structure, and the data types for the filter's inputs, outputs, and computations. The filter can support double-precision, single-precision, or fixed-point data types.

The Filter Realization Wizard can implement a digital filter in one of two ways. It can use a Digital Filter block, or it can create a subsystem block that implements the specified filter using Sum, Gain, and Delay blocks. If the Filter Realization Wizard creates a Digital Filter block, double-click the block to open the Block Parameters: Filter dialog box. If it creates a subsystem, double-click the subsystem block to see the filter implementation as shown in the figure below.

The subsystem block applies the specified filter to any sample-based input signal, or any frame-based row vector signal, and outputs the result. For more information about filter implementation, see "Specifying the Filter Implementation" on page 9-394.

The parameters of the Filter Realization Wizard are a part of a larger GUI, the Filter Design and Analysis Tool (FDATool), from the Signal Processing Toolbox. You can use the tools in FDATool to design and analyze your filter, and then use the Filter Realization Wizard parameters to implement the filter in your models.

Sections of This Reference Page

- "Valid Inputs and Corresponding Outputs" on page 9-392
- "Specifying the Filter and Its Data Type Support" on page 9-392
- "Supported Filter Structures" on page 9-393
- "Specifying the Filter Implementation" on page 9-394
- "Corresponding Method for dfilt" on page 9-395
- "Dialog Box" on page 9-396
- "References" on page 9-398
- "Supported Data Types" on page 9-398
- "See Also" on page 9-399

Filter Realization Wizard

Valid Inputs and Corresponding Outputs

When the Filter Realization Wizard implements the specified filter by creating a new subsystem block, the block applies the specified filter to an input signal and outputs the result.

Valid Inputs. The subsystem block accepts inputs that are

- Sample-based vectors and matrices
- Frame-based row vectors (nonrecursive structures only)

Corresponding Outputs. The output of the subsystem block has the same dimensions and frame status as the input.

What Is Considered an Independent Channel. The subsystem block treats each element of a vector or matrix as an independent channel.

Specifying the Filter and Its Data Type Support

To specify a purely double-precision filter, you can either design a filter using the Design Filter panel, or import a filter using the Import Filter panel. (You can import dfilt filter objects as well as vectors of filter coefficients designed using functions in the Signal Processing Toolbox and the Filter Design Toolbox.)

You can also specify a fixed-point filter or a single-precision filter. You can specify such filters by using the Set Quantization Parameters panel, which requires the Filter Design Toolbox.

Note Running a model containing implementations of fixed-point filters requires Simulink Fixed Point, but you can still edit models containing such filter implementations without Simulink Fixed Point. See the Simulink Fixed Point documentation for more information.

See the following topics to learn how to use the panels to specify your filter:

- For more information on the Design Filter panel, see "Filter Design and Analysis Tool (FDATool)" in the Signal Processing Toolbox documentation.
- For more information on the Import Filter panel, see "Importing a Filter Design" in the Signal Processing Toolbox documentation.
- For more information on the Set Quantization Parameters panel, see "Switching FDATool to Quantization Mode" in the Filter Design Toolbox documentation.

To open a panel, click the appropriate button in the lower-left corner of FDATool.

Supported Filter Structures

The Filter Realization Wizard supports the following structures:

- Direct form I
- Direct form II
- Direct form I transposed
- Direct form II transposed
- Second order sections for direct form I and II, and their transposes
- Direct form FIR
- Direct form FIR transposed
- Direct form antisymmetric FIR
- Direct form symmetric FIR
- Lattice ARMA
- Lattice AR
- Lattice MA (same as lattice minimum phase)
- Lattice all-pass
- Lattice maximum phase
- Cascade
- Parallel

Filter Realization Wizard

Specifying the Filter Implementation

You can determine how the Filter Realization Wizard models the specified filter using the Build model using basic elements check box. When you select this check box, the Filter Realization Wizard creates a subsystem block that implements your filter using Sum, Gain, and Delay blocks. When you clear this check box, the Filter Realization Wizard uses a Digital Filter block to implement your filter. The Build model using basic elements check box is only available when your filter can be implemented using a Digital Filter block.

If you have the Signal Processing Blockset, the Signal Processing Toolbox, and the Filter Design Toolbox installed on your system, the Filter Realization Wizard can generate a subsystem that represents either a double-precision or fixed-point filter. You must install Simulink Fixed Point to simulate a fixed-point filter. You can still edit the blocks used to implement the filter without installing Simulink Fixed Point.

Double-precision filter implemented with Sum, Gain, and Delay blocks

Fixed-point filter implemented with Sum, Gain, Delay, and Conversion blocks

Implementations of Double-Precision and Fixed-Point Filters

Corresponding Method for dfilt

The dfilt (digital filter) object in Signal Processing Toolbox has a method, realizemdl, that allows you to access the capabilities of the Filter Realization Wizard from the command line.

For more information about the realizemdl method, see the following:

- The topic on "Methods" in the dfilt reference page in the Signal Processing Toolbox documentation
- The realizemdl reference page in the Filter Design Toolbox documentation

Filter Realization Wizard

Dialog Box

Note The following parameters for the Filter Realization Wizard are in the Realize Model pane of the Filter Design and Analysis Tool (FDATool) GUI. To open different panels of FDATool, click the different buttons at the lower-left corner. For more information about relevant panels, see "Specifying the Filter and Its Data Type Support" on page 9-392.

Destination

Specify where the new filter block should be created. This can be in a new model or in the current (most recently selected) model.

Block Name

Enter the name of the new filter block.

Overwrite generated 'Filter' block

When selected, the block overwrites any filter block in the current model with the name specified in the Block Name parameter. This parameter is enabled when the Destination parameter is set to Current.

Build model using basic elements

Select this check box to implement your filter using Sum, Gain, and Delay blocks. Clear this check box to implement your filter using the Digital Filter block. This parameter is only available when your filter can be modeled using the Digital Filter block.

Note that when your filter is implemented using Sum, Gain, and Delay blocks, inputs to the filter must be sample based.

Optimize for zero gains

When selected, the block removes zero-gain paths from the filter structure. For an example, see "Optimizing the Filter Structure" on page 3-49.

Optimize for unity gains

When selected, the block substitutes gains equal to 1 with a wire (short circuit). For an example, see "Optimizing the Filter Structure" on page 3-49.

Optimize for negative gains

When selected, the block substitutes gains equal to -1 with a wire (short circuit), and changes the corresponding sums to subtractions. For an example, see "Optimizing the Filter Structure" on page 3-49.

Filter Realization Wizard

Optimize delay chains

When selected, the block substitutes any delay chains made up of n unit delays with a single delay by n. For an example, see "Optimizing the Filter Structure" on page 3-49.

Realize Model

Click to create a subsystem block that implements the specified filter using Sum, Gain, and Delay blocks. To see the filter implementation, double-click the subsystem block. The subsystem block applies the specified filter to any sample-based input signal or frame-based row vector signal, and outputs the result.

Note For more information about relevant parameters in other panels of FDATool, see "Specifying the Filter and Its Data Type Support" on page 9-392.

References

Supported

 Data TypesOppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

- Double-precision floating point
- Single-precision floating point - Supported only when you install the Filter Design Toolbox and Simulink Fixed Point
- Fixed point (signed and unsigned) - Supported only when you install the Filter Design Toolbox, Simulink Fixed Point, and the Fixed-Point Toolbox

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Digital Filter
Digital Filter Design
filter
realizemdl
dfilt
filter

Signal Processing Blockset
Signal Processing Blockset Filter Design Toolbox
Filter Design Toolbox
Signal Processing Toolbox
Signal Processing Toolbox

- Chapter 3, "Filters" - Examples of when and how to use Signal Processing Blockset filtering blocks
- "Choosing Between Filter Design Blocks" on page 3-19

FIR Decimation

Purpose Filter and downsample input signals
Library Filtering / Multirate Filters

Description

The FIR Decimation block resamples the discrete-time input at a rate K times slower than the input sample rate, where the integer K is specified by the Decimation factor parameter. This process consists of two steps:

- The block filters the input data using a direct-form FIR filter.
- The block downsamples the filtered data to a lower rate by discarding K-1 consecutive samples following every sample retained.

The FIR Decimation block implements the above FIR filtering and downsampling steps together using a polyphase filter structure, which is more efficient than straightforward filter-then-decimate algorithms. See N.J. Fliege, Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets for more information.

The FIR filter coefficients parameter specifies the numerator coefficients of the FIR filter transfer function $\mathrm{H}(z)$.

$$
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
$$

The length- m coefficient vector, $[b(1) b(2) \ldots b(m)]$, can be generated by one of the filter design functions in the Signal Processing Toolbox, such as the fir 1 function used in the example below. The filter should be lowpass with normalized cutoff frequency no greater than $1 / \mathrm{K}$. All filter states are internally initialized to zero.

The FIR Decimation block supports real and complex floating-point and fixed-point inputs. This block supports triggered subsystems when you select Maintain input frame rate for the Framing parameter.

Sample-Based Operation

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and the block decimates each channel over time. The output sample period is K times longer than the input sample period ($\mathrm{T}_{\mathrm{s} o}=\mathrm{KT}_{\mathrm{si}}$), and the input and output sizes are identical.

Frame-Based Operation

An M_{i}-by- N frame-based matrix input is treated as N independent channels, and the block decimates each channel over time. The Framing parameter determines how the block adjusts the rate at the output to accommodate the reduced number of samples. There are two available options:

- Maintain input frame size

The block generates the output at the decimated rate by using a proportionally longer frame period at the output port than at the input port. For decimation by a factor of K, the output frame period is K times longer than the input frame period $\left(\mathrm{T}_{\mathrm{fo}}=\mathrm{KT}_{\mathrm{fi}}\right)$, but the input and output frame sizes are equal.

The example below shows a single-channel input with a frame period of 1 second (Sample time $=1 / 64$ and Samples per frame $=64$ in the Signal From Workspace block) being decimated by a factor of 4 to a frame period of 4 seconds. The input and output frame sizes are identical.

- Maintain input frame rate

The block generates the output at the decimated rate by using a proportionally smaller frame size than the input. For decimation by a factor of K , the output frame size is K times smaller than the input frame size $\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}} / \mathrm{K}\right)$, but the input and output frame rates are equal. The input frame size, M_{i}, must be a multiple of the decimation factor, K .
The example below shows a single-channel input of frame size 64 being decimated by a factor of 4 to a frame size of 16 . The block's input and output frame rates are identical.

FIR Decimation

Latency

Zero Latency. The FIR Decimation block has zero tasking latency for all single-rate operations. The block is single-rate for the particular combinations of sampling mode and parameter settings shown in the table below.

Sampling Mode	Parameter Settings
Sample based	Decimation factor parameter, K, is 1.
Frame based	Decimation factor parameter, K, is 1, or Framing parameter is Maintain input frame rate.

Note that in sample-based mode, single-rate operation occurs only in the trivial case of factor-of-1 decimation.

The block also has zero latency for sample-based multirate operations in the Simulink single-tasking mode. Zero tasking latency means that the block propagates the first filtered input sample (received at $t=0$) as the first output sample, followed by filtered input samples $K+1,2 K+1$, and so on.

Nonzero Latency. The FIR Decimation block is multirate for all settings other than those in the above table. The amount of latency for multirate operation depends on the Simulink tasking mode and the block's sampling mode, as shown in the table below.

Multirate...	Sample-Based Latency	Frame-Based Latency
Single-tasking	None	One frame $\left(\mathrm{M}_{\mathrm{i}}\right.$ samples $)$
Multitasking	One sample	One frame $\left(\mathrm{M}_{\mathrm{i}}\right.$ samples $)$

In cases of one-sample latency, a zero initial condition appears as the first output sample in each channel. The first filtered input sample appears as the second output sample, followed by filtered input samples $K+1,2 K+1$, and so on.

In cases of one-frame latency, the first M_{i} output rows contain zeros, where M_{i} is the input frame size. The first filtered input sample (first filtered row of the input matrix) appears in the output as sample $\mathrm{M}_{\mathrm{i}}+1$, followed by filtered input samples $K+1,2 K+1$, and so on. See the example below for an illustration of this case.

When the block exhibits latency, enter a value in the Output buffer initial conditions text box to specify the value to output at the output port until the first filtered input sample is available. The default initial condition value is 0 .

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Fixed-Point Data Types

The following diagram shows the data types used within the FIR Decimation block for fixed-point signals.

FIR Decimation

You can set the coefficient, product output, accumulator, and output data types in the block dialog as discussed in "Dialog Box" on page 9-407. The diagram shows that input data is stored in the input buffer in the same data type and scaling as the input. Filtered data is stored in the output buffer in the output data type and scaling that you set in the block dialog. Any initial conditions are also stored in the output buffer in the output data type and scaling you set in the block dialog.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Examples Example 1

Construct the frame-based model shown below.

Adjust the block parameters as follows:

- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 . This represents an output frame period of $1(0.25 * 4)$. The first channel should contain the positive ramp signal $1,2, \ldots, 100$, and the second channel should contain the negative ramp signal $-1,-2, \ldots,-100$.
- Signal $=\left[(1: 100)^{\prime}(-1:-1:-100)^{\prime}\right]$
- Sample time $=0.25$
- Samples per frame $=4$
- Configure the FIR Decimation block to decimate the two-channel input by decreasing the output frame rate by a factor of 2 relative to the input frame rate. Use a third-order filter with normalized cutoff frequency, $f_{\mathrm{n} 0}$, of 0.25 . (Note that $f_{\mathrm{n} 0}$ satisfies $f_{\mathrm{n} 0} \leq 1 / \mathrm{K}$.)
- FIR filter coefficients = fir1 $(3,0.25)$
- Downsample factor = 2
- Framing = Maintain input frame size

The filter coefficient vector generated by $\operatorname{fir} 1(3,0.25)$ is

$$
\left[\begin{array}{llll}
0.0386 & 0.4614 & 0.4614 & 0.0386
\end{array}\right]
$$

or, equivalently,

$$
H(z)=B(z)=0.0386+0.04614 z^{-1}+0.04614 z^{-2}+0.0386 z^{-3}
$$

- Configure the Probe blocks by clearing the Probe width, Probe complex signal, and Probe signal dimensions check boxes (if desired).

FIR Decimation

This model is multirate because there are at least two distinct sample rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, open the Configuration Parameters dialog box. From the list on the left side of the dialog box, click Solver. From the Type list, select Fixed-step, and from the Solver list, select discrete (no continuous states). From the Tasking mode for periodic sample times list, select MultiTasking. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples of each channel are shown below.

yout $=$	
0	0
0	0
0	0
0	0
0.0386	-0.0386
1.5000	-1.5000
3.5000	-3.5000
5.5000	-5.5000
7.5000	-7.5000
9.5000	-9.5000
11.5000	-11.5000

Since this is a frame-based multirate model, the first four $\left(\mathrm{M}_{\mathrm{i}}\right)$ output rows are zero. The first filtered input matrix row appears in the output as sample 5 (that is, sample $\mathrm{M}_{\mathrm{i}}+1$).

Example 2

The Polyphase FIR Decimation demo (polyphaseDec_demo) illustrates the underlying polyphase implementations of the FIR Decimation block. Run the demo and view the results on the scope. The output of the FIR Decimation block is the same as the output of the Polyphase Decimation Filter block.

Example 3

The dspmrf_menu demo illustrates the use of the FIR Decimation block in a number of multistage multirate filters.

Dialog Box

The Main pane of the FIR Decimation block dialog appears as follows:

FIR filter coefficients

Specify the lowpass FIR filter coefficients, in descending powers of z.

Decimation factor

Specify the integer factor, K, by which to decrease the sample rate of the input sequence.

Framing

For frame-based operation, specify the method by which to implement the decimation; reduce the output frame rate, or reduce the output frame size.

FIR Decimation

This parameter can not be set to Maintain input frame rate for sample-based signals.

Output buffer initial conditions

When the block exhibits latency, enter a value in the Output buffer initial conditions text box to specify the value to output at the output port until the first filtered input sample is available. The default initial condition value is zero.

The Fixed-point pane of the FIR Decimation block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

Coefficients

Choose how you will specify the word length and the fraction length of the filter coefficients:

- When you select Same word length as input, the word length of the filter coefficients will match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you are able to enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the coefficients, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-403 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:
ideal product output word length $=$ input word length + FIR coefficients word length

FIR Decimation

> ideal product output fraction length $=$ input fraction length + FIR coefficients fraction length

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information.

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:
ideal accumulator word length = ideal product output word length
+ floor $(\log 2($ number of accumulations $))+1$
ideal accumulator fraction length = ideal product output fraction length
where the number of accumulations is given by
((number of coefficients / decimation factor) - 1)
if either the coefficients or inputs are real
number of coefficients / decimation factor
if both the coefficients and inputs are complex

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

FIR Decimation

- When you select Same as accumulator, these characteristics will match those of the accumulator.
A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are complex. In that case, the output word length will be one less than the accumulator word length.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

References

Supported Data Types

Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- 8 -, 16 -, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also Downsample FIR Interpolation FIR Rate Conversion
decimate
fir1
fir2
firls

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox
Signal Processing Toolbox
Signal Processing Toolbox
Signal Processing Toolbox

FIR Interpolation

Purpose Upsample and filter input signals
Library Filtering / Multirate Filters

Description

The FIR Interpolation block resamples the discrete-time input at a rate L times faster than the input sample rate, where the integer L is specified by the Interpolation factor parameter. This process consists of two steps:

- The block upsamples the input to a higher rate by inserting L-1 zeros between samples.
- The block filters the upsampled data with a direct-form FIR filter.

The FIR Interpolation block implements the above upsampling and FIR filtering steps together using a polyphase filter structure, which is more efficient than straightforward upsample-then-filter algorithms. See N.J. Fliege, Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets for more information.

The FIR filter coefficients parameter specifies the numerator coefficients of the FIR filter transfer function $\mathrm{H}(z)$.

$$
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
$$

The coefficient vector, $[b(1) b(2) \ldots b(m)]$, can be generated by one of the filter design functions in the Signal Processing Toolbox (such as fir1), and should have a length greater than the interpolation factor ($m>\mathrm{L}$). The filter should be lowpass with normalized cutoff frequency no greater than $1 / \mathrm{L}$. All filter states are internally initialized to zero.
The FIR Interpolation block supports real and complex floating-point and fixed-point inputs. This block supports triggered subsystems when you select Maintain input frame rate for the Framing parameter.

Sample-Based Operation

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and the block interpolates each channel over time. The output sample period is L times shorter than the input sample period $\left(T_{\mathrm{so}}=T_{\mathrm{si}} / \mathrm{L}\right)$, and the input and output sizes are identical.

Frame-Based Operation

An M_{i}-by- N frame-based matrix input is treated as N independent channels, and the block decimates each channel over time. The Framing parameter determines how the block adjusts the rate at the output to accommodate the added samples. There are two available options:

- Maintain input frame size

The block generates the output at the interpolated rate by using a proportionally shorter frame period at the output port than at the input port. For interpolation by a factor of L, the output frame period is L times shorter than the input frame period $\left(\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{fi}} / \mathrm{L}\right)$, but the input and output frame sizes are equal.

The example below shows a single-channel input with a frame period of 1 second (Sample time $=1 / 64$ and Samples per frame $=64$ in the Signal From Workspace block) being interpolated by a factor of 4 to a frame period of 0.25 second. The input and output frame sizes are identical.

- Maintain input frame rate

The block generates the output at the interpolated rate by using a proportionally larger frame size than the input. For interpolation by a factor of L, the output frame size is L times larger than the input frame size $\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}} * \mathrm{~L}\right)$, but the input and output frame rates are equal.
The example below shows a single-channel input of frame size 16 being interpolated by a factor of 4 to a frame size of 64 . The block's input and output frame rates are identical.

FIR Interpolation

Latency

Zero Latency. The FIR Interpolation block has zero tasking latency for all single-rate operations. The block is single rate for the particular combinations of sampling mode and parameter settings shown in the table below.

Sampling Mode	Parameter Settings
Sample based	Interpolation factor parameter, L, is 1.
Frame based	Interpolation factor parameter, L, is 1, or Framing parameter is Maintain input frame rate.

Note that in sample-based mode, single-rate operation occurs only in the trivial case of factor-of-1 interpolation.

The block also has zero latency for sample-based multirate operations in the Simulink single-tasking mode. Zero tasking latency means that the block propagates the first filtered input (received at $t=0$) as the first input sample, followed by L-1 interpolated values, the second filtered input sample, and so on.

Nonzero Latency. The FIR Interpolation block is multirate for all settings other than those in the above table. The amount of latency for multirate operation depends on the Simulink tasking mode and the block's sampling mode, as shown in the table below.

Multirate...	Sample-Based Latency	Frame-Based Latency
Single-tasking	None	None
Multitasking	L samples	L frames (M M_{i} samples per frame $)$

When the block exhibits latency, the default initial condition is zero. Alternatively, you can enter a value in the Output buffer initial conditions text box. This value is divided by the Interpolation factor and output at the output port until the first filtered input sample is available.

In sample-based cases, the scaled initial conditions appear at the start of each channel, followed immediately by the first filtered input sample, L-1 interpolated values, and so on.

In frame-based cases, with the default initial condition, the first $\mathrm{M}_{\mathrm{i}} \mathrm{L}$ output rows contain zeros, where M_{i} is the input frame size. The first filtered input sample (first filtered row of the input matrix) appears in the output as sample $\mathrm{M}_{\mathrm{i}} \mathrm{L}+1$, followed by L-1 interpolated values, the second filtered input sample, and so on. See the example below for an illustration of this case.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Fixed-Point Data Types

The following diagram shows the data types used within the FIR Interpolation block for fixed-point signals.

FIR Interpolation

You can set the coefficient, product output, accumulator, and output data types in the block dialog as discussed in "Dialog Box" on page 9-421. The diagram shows that input data is stored in the input buffer in the same data type and scaling as the input. Filtered data is stored in the output buffer in the output data type and scaling that you set in the block dialog. Any initial conditions are also stored in the output buffer in the output data type and scaling you set in the block dialog.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Examples Example 1

Construct the frame-based model shown below.

Adjust the block parameters as follows:

- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 . This represents an output frame period of $1(0.25 * 4)$. The first channel should contain the positive ramp signal $1,2, \ldots, 100$, and the second channel should contain the negative ramp signal $-1,-2, \ldots,-100$.
- Signal $=\left[(1: 100)^{\prime}(-1:-1:-100)^{\prime}\right]$
- Sample time $=0.25$
- Samples per frame $=4$
- Configure the FIR Interpolation block to interpolate the two-channel input by increasing the output frame rate by a factor of 2 relative to the input frame rate. Use a third-order filter $(m=3)$ with normalized cutoff frequency, $f_{\mathrm{n} 0}$, of 0.25 . (Note that $f_{\mathrm{n} 0}$ and m satisfy $f_{\mathrm{n} 0} \leq 1 / \mathrm{L}$ and $m>\mathrm{L}$.)
- FIR filter coefficients $=$ fir1 $(3,0.25)$
- Interpolation factor $=2$
- Framing = Maintain input frame size

The filter coefficient vector generated by fir $1(3,0.25)$ is

$$
\left[\begin{array}{llll}
0.0386 & 0.4614 & 0.4614 & 0.0386
\end{array}\right]
$$

or, equivalently,

$$
H(z)=B(z)=0.0386+0.04614 z^{-1}+0.04614 z^{-2}+0.0386 z^{-3}
$$

- Configure the Probe blocks by clearing the Probe width, Probe complex signal, and Probe signal dimensions check boxes (if desired).

FIR Interpolation

This model is multirate because there are at least two distinct sample rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, open the Configuration Parameters dialog box. In the Select pane, click Solver. From the Type list, select Fixed-step, and from the Solver list, select discrete (no continuous states). From the Tasking mode for periodic sample times list, select MultiTasking. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples of each channel are shown below.

dsp_examples_yout $=$	
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0.0386	-0.0386
0.4614	-0.4614
0.5386	-0.5386
0.9614	-0.9614
1.0386	-1.0386

Since we ran this frame-based multirate model in multitasking mode, the first eight $\left(\mathrm{M}_{\mathrm{i}} \mathrm{L}\right)$ output rows are zero. The first filtered input matrix row appears in the output as sample 9 (that is, sample $\mathrm{M}_{\mathrm{i}} \mathrm{L}+1$). Every other row is an interpolated value.

Example 2

The Polyphase FIR Interpolation demo (polyphaseInterp_demo) illustrates the underlying polyphase implementations of the FIR Interpolation block. Run the demo and view the results on the scope. The output of the FIR Interpolation block is the same as the output of the Polyphase Interpolation Filter block.

Example 3

The dspintrp demo provides another simple example, and the dspmrf_menu demo illustrates the use of the FIR Interpolation block in a number of multistage multirate filters.

Dialog Box

The Main pane of the FIR Interpolation block dialog appears as follows:

FIR filter coefficients

Specify the FIR filter coefficients, in descending powers of z.

FIR Interpolation

Interpolation factor

Specify the integer factor, L, by which to increase the sample rate of the input sequence.

Framing

For frame-based operation, specify the method by which to implement the interpolation: increase the output frame rate, or increase the output frame size. This parameter can not be set to Maintain input frame rate for sample-based signals.

Output buffer initial conditions

When the block exhibits latency, enter a value in the Output buffer initial conditions text box to specify the value to output at the output port until the first filtered input sample is available. The default initial condition value is 0 .

Output buffer initial conditions are stored in the output data type and scaling.

The Fixed-point pane of the FIR Interpolation block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

Coefficients

Choose how you will specify the word length and fraction length of the filter coefficients:

FIR Interpolation

- When you select Same word length as input, the word length of the filter coefficients will match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you are able to enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the coefficients, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-417 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:
ideal product output word length $=$ input word length + FIR coefficients word length
ideal product output fraction length $=$ input fraction length + FIR coefficients fraction length

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on
the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:

[^1]
FIR Interpolation

> ideal accumulator fraction length $=$ ideal product output fraction length
> where the number of accumulations is given by $\quad(($ number of coefficients/(interpolation factor $))-1)$
> if either the coefficients or inputs are real number of coefficients/(interpolation factor $)$
> if both the coefficients and inputs are complex

Abstract

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are complex. In that case, the output word length will be one less than the accumulator word length.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

References

Supported Data Types

Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- 8 -, 16 -, and 32 -bit signed integers
- 8-, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
FIR Decimation
FIR Rate Conversion
Upsample
fir1
fir2
firls
interp

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox
Signal Processing Toolbox
Signal Processing Toolbox
Signal Processing Toolbox

FIR Rate Conversion

Purpose	Upsample, filter, and downsample input signals
Library	Filtering / Multirate Filters
Description	The FIR Rate Conversion block resamples the discrete-time input to a period K / L times the input sample period, where the integer K is specified by the
$\times[2 / 3 / 3]$	Decimation factor parameter and the integer L is specified by the
(Fmm)	Interpolation factor parameter. The resampling process consists of the following steps:

1 The block upsamples the input to a higher rate by inserting L-1 zeros between input samples.
2 The upsampled data is passed through a direct-form II transpose FIR filter.
3 The block downsamples the filtered data to a lower rate by discarding K-1 consecutive samples following each sample retained.

K and L must be relatively prime integers; that is, the ratio K / L cannot be reducible to a ratio of smaller integers. The FIR Rate Conversion block implements the above three steps together using a polyphase filter structure, which is more efficient than straightforward upsample-filter-decimate algorithms. See N.J. Fliege [1] for more information.

The FIR filter coefficients parameter specifies the numerator coefficients of the FIR filter transfer function $\mathrm{H}(z)$.

$$
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
$$

The coefficient vector, $[b(1) b(2) \ldots b(m)]$, can be generated by one of the filter design functions in the Signal Processing Toolbox (such as fir1), and should have a length greater than the interpolation factor ($m>\mathrm{L}$). The filter should be lowpass with normalized cutoff frequency no greater than $\min (1 / L, 1 / K)$. All filter states are internally initialized to zero.

Frame-Based Operation

This block accepts only frame-based inputs. An M_{i}-by-N frame-based matrix input is treated as N independent channels, and the block resamples each channel independently over time.

The Interpolation factor, L , and Decimation factor, K, must satisfy the relation

$$
\frac{K}{L}=\frac{M_{i}}{M_{o}}
$$

for an integer output frame size M_{0}. The simplest way to satisfy this requirement is to let the Decimation factor equal the input frame size, M_{i}. The output frame size, M_{0}, is then equal to the Interpolation factor. This change in the frame size, from M_{i} to M_{0}, produces the desired rate conversion while leaving the output frame period the same as the input ($\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{fi}}$).

Latency

The FIR Rate Conversion block has no tasking latency. The block propagates the first filtered input (received at $t=0$) as the first output sample.

Fixed-Point Data Types

The following diagram shows the data types used within the FIR Rate Conversion block for fixed-point signals.

FIR Rate Conversion

You can set the coefficient, product output, accumulator, and output data types in the block dialog as discussed in "Dialog Box" on page 9-431. The diagram shows that input data is stored in the input buffer in the same data type and scaling as the input. Filtered data is stored in the output buffer in the output data type and scaling that you set in the block dialog. Any initial conditions are also stored in the output buffer in the output data type and scaling you set in the block dialog.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Examples

Diagnostics

Example 1

The Rate Converter demo (polyphaseUpFirDn_demo) illustrates the underlying polyphase implementations of the FIR Rate Conversion block. Run the demo and view the results on the scope. The output of the FIR Rate Conversion block is the same as the output of the system comprised of the FIR Decimation block and FIR Interpolation block. The output of the FIR Rate Conversion block is also the same as the output of the Polyphase Filter block.

An error is generated when the relation between K and L shown above is not satisfied.

[^2]A warning is generated when L and K are not relatively prime; that is, when the ratio L / K can be reduced to a ratio of smaller integers.

$$
\begin{aligned}
& \text { Warning: Integer conversion factors are not relatively prime in } \\
& \text { block 'modelname/FIR Rate Conversion (Frame)'. Converting ratio } \\
& L / M \text { to } I / m \text {. }
\end{aligned}
$$

The block scales the ratio to be relatively prime and continues the simulation.

Dialog Box

The Main pane of the FIR Rate Conversion block dialog appears as follows:

FIR Rate Conversion

Interpolation factor

Specify the integer factor, L, by which to upsample the signal before filtering.

FIR filter coefficients

Specify the FIR filter coefficients in descending powers of z.

Decimation factor

Specify the integer factor, K, by which to downsample the signal after filtering.

The Fixed-point pane of the FIR Rate Conversion block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

Coefficients

Choose how you will specify the word length and fraction length of the filter coefficients.

- When you select Same word length as input, the word length of the filter coefficients will match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you are able to enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the coefficients, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.

The coefficients do not obey the Round integer calculations toward and the Saturate on integer overflow parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-403 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block.

FIR Rate Conversion

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:

```
ideal product output word length =
input word length + FIR coefficients word length
ideal product output fraction length \(=\)
input fraction length + FIR coefficients fraction length
```

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as
each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.
You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information.

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:

```
    ideal accumulator word length = ideal product output word length
    + floor \((\log 2(\) number of accumulations \())+1\)
    ideal accumulator fraction length \(=\)
    ideal product output fraction length
```

where the number of accumulations is given by
((number of coefficients/(interpolation factor $)$) - 1)
if either the coefficients or inputs are real number of coefficients / (interpolation factor)
if both the coefficients and inputs are complex

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

FIR Rate Conversion

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are complex. In that case, the output word length will be one less than the accumulator word length.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

References

Supported Data Types
[1] Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- 8 -, 16-, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

FIR Rate Conversion

See Also Downsample
FIR Decimation
FIR Interpolation
Upsample
fir1
fir2
firls
upfirdn

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox
Signal Processing Toolbox
Signal Processing Toolbox
Signal Processing Toolbox

See the following sections for related information:

- "Converting Sample and Frame Rates" on page 2-12
- "Multirate Filters" on page 3-67

Purpose
 Flip the input vertically or horizontally

Library
Description

Dialog Box

Signal Management / Indexing

The Flip block vertically or horizontally reverses the M-by-N input matrix, u. The output always has the same dimension and frame status as the input.

When you select Columns from the Flip along menu, the block vertically flips the input so that the first row of the input is the last row of the output.

```
y = flipud(u) % Equivalent MATLAB code
```

For convenience, length-M 1-D vector inputs are treated as M-by-1 column vectors for vertical flipping.

When you select Rows from the Flip along menu, the block horizontally flips the input so that the first column of the input is the last column of the output.

```
y = fliplr(u) % Equivalent MATLAB code
```

For convenience, length-N 1-D vector inputs are treated as 1-by-N row vectors for horizontal flipping. The output always has the same dimension and frame status as the input.

Flip along

The dimension along which to flip the input. Columns specifies vertical flipping, while Rows specifies horizontal flipping.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Selector
Transpose
Variable Selector
flipud
fliplr

Simulink
Signal Processing Blockset
Signal Processing Blockset
MATLAB
MATLAB

Forward Substitution

Purpose
Solve $\mathrm{L} X=\mathrm{B}$ for X when L is lower triangular matrix
Library
Description

Dialog Box

Supported
Data Types

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Forward Substitution

See Also
Autocorrelation LPC
Signal Processing Blockset
Cholesky Solver
Signal Processing Blockset
LDL Solver
Levinson-Durbin
LU Solver
QR Solver Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
See "Solving Linear Systems" on page 6-6 for related information.

Frame Conversion

Purpose
 Specify frame status of output signal

Library

Description

Signal Management / Signal Attributes
The Frame Conversion block specifies the frame status of the output signal. Use the Output signal parameter to specify the frame status of the output signal. Your choices are Frame based or Sample based. The block does not rebuffer or resize two-dimensional inputs. When the input is a length-M 1-D vector and the Output signal parameter is set to Frame based, the output is a frame-based M-by-1 matrix.

Dialog Box

Output signal

Specify the frame status of the output signal.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Buffer
Check Signal Attributes
Convert 1-D to 2-D
Convert 2-D to 1-D
Inherit Complexity
Unbuffer
Probe
Reshape
Signal Specification

[^3]
Frame Status Conversion

Note The Frame Status Conversion block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Frame Conversion block.

Purpose

Library

Description

Specify the frame status of the output as sample based or frame based
dspobslib
The Frame Status Conversion block passes the input through to the output, and sets the output frame status to the Output signal parameter, which can be either Frame-based or Sample-based. The output frame status can also be inherited from the signal at the Ref (reference) input port, which is made visible by selecting the Inherit output frame status from Ref input port check box.

When the Output signal parameter setting or the inherited signal's frame status differs from the input frame status, the block changes the input frame status accordingly, but does not otherwise alter the signal. In particular, the block does not rebuffer or resize 2-D inputs. Because 1-D vectors cannot be frame based, when the input is a length-M 1-D vector, and the Output signal parameter is set to Frame-based, the output is a frame-based M-by-1 matrix (that is, a single channel).

When the Output signal parameter or the inherited signal's frame status matches the input frame status, the block passes the input through to the output unaltered.

Dialog Box

Inherit output frame status from Ref input port

When selected, enables the Ref input port from which the block inherits the output frame status.

Output signal

The output frame status, Frame-based or Sample-based.

Frame Status Conversion

Supported
 Data Types

Port	Supported Data Types
In	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Ref	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Frame Status Conversion

See Also
Check Signal Attributes
Convert 1-D to 2-D
Convert 2-D to 1-D
Inherit Complexity
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

From Multimedia File

Purpose
Library
Description

Read video frames and/or audio samples from compressed multimedia file
Platform-specific I/O / Windows (WIN32)
The From Multimedia File block reads video frames and/or audio samples from a multimedia file and imports them into a Simulink model. Video processing requires the Video and Image Processing Blockset.

You can view the video frames using a To Video Display block and listen to the audio using a To Wave Device block.

Note This block supports code generation and is only supported on 32-bit Windows platforms. This block performs best on platforms with DirectX Version 9.0 or later and Windows Media Version 9.0 or later.

The output ports of the From Multimedia File block change according the content of the multimedia file. If the file contains color video frames, the R, G, and B ports appear on the block. If the file contains intensity video frames, the I port appears on the block. If the file contains audio samples, the Audio port appears on the block.

Port	Output	Supported Data Types	Supports Complex Values?
R, G, B	Matrix that represents one plane of the RGB video stream. Outputs from the R, G, or B port must have same dimensions.	• Double-precision floating point	No

$\left.\begin{array}{l|l|l|l}\hline \text { Port } & \text { Output } & \text { Supported Data Types } & \begin{array}{l}\text { Supports } \\ \text { Complex } \\ \text { Values? }\end{array} \\ \hline \text { I } & \begin{array}{l}\text { Matrix that represents the } \\ \text { intensity video stream }\end{array} & \text { - Double-precision floating point } & \text { No } \\ & & \text { - Single-precision floating point } \\ & & \bullet 8-, 16-, \text { and 32-bit signed integers } \\ & & \bullet 8-, 16-\text {, and 32-bit unsigned integers }\end{array}\right]$

For sink blocks to display video data properly, double- and single-precision floating-point pixel values must be between 0 and 1 . For other data types, the pixel values must be between the minimum and maximum values supported by their data type.

Use the Input file name parameter to specify the name of the multimedia file from which to read. If the location of this file is on your MATLAB path, enter the filename. If the location of this file is not on your MATLAB path, use the Browse button to specify the full path to the file as well as the filename. This parameter also supports URLs.

Select the Loop check box if you want to play the file more than once. Then, use the Number of times to play file parameter to enter the number of times to play the file. The number you enter must be a positive integer or inf.

Use the Output parameter to specify whether you want the block to output video frames and/or audio samples. The parameter choices depend on the multimedia file and can include Video only, Audio only, or Video and audio.

Use the Video output data type parameter to set the data type of the video frames output at the R, G, and B ports. You can choose double, single, int8, uint8, int16, uint16, int32, uint32, or Inherit from file.

Use the Audio output data type parameter to set the data type of the audio samples output at the Audio port. You can choose double, single, int16, or uint8.

From Multimedia File

Select the Inherit sample time from file check box if you want the sample time of the block to be the same as the sample time of the multimedia file. If you clear this check box, use the Desired sample time parameter to specify the block's sample time.

Dialog Box

Input file name

Specify the name of the multimedia file from which to read.

Loop

Select this check box if you want to play the file more than once.

Number of times to play file

Enter a positive integer or inf to represent the number of times to play the file.

Output

Specify the block output. The choices depend on the multimedia file and can include Video only, Audio only, or Video and audio.

Video output data type

Set the data type of the video data output from the block.

Audio output data type

Set the data type of the audio samples output at the Audio port. Your choices are double, single, int16, or uint8.

Inherit sample time from file

Select this check box if you want the sample time of the block to be the same as the sample time of the multimedia file.

Desired sample time

Specify the block's sample time. This parameter is available if you clear the Inherit sample time from file check box.

Supported File Formats

Format	Filename Extensions
Microsoft Windows Media formats	.avi, .asf, .asx, .rmi, .wav, .wma, .wax, .wmv
Moving Picture Experts Group (MPEG)	.mpg, .mpeg, .mlv, .mp2, .mp3, .mpa, .mpe
Apple QuickTime, Macintosh AIFF Resource	$. q t, . a i f,$. aifc, .aiff, .mov
UNIX formats	.au, .snd

This block supports any multimedia file format supported by Microsoft Windows Media Player. Additionally, this block supports specialized file formats that are associated with any codec supported by Microsoft Windows Media Player.

From Multimedia File

See Also

To Multimedia File From Wave File
Image From Workspace
ToVideo Display
Video From Workspace
Video Viewer

Signal Processing Blockset Signal Processing Blockset
Video and Image Processing Blockset
Video and Image Processing Blockset Video and Image Processing Blockset Video and Image Processing Blockset

Purpose

Library
Description

Read audio data from standard audio device in real-time (32-bit Windows operating systems only)

Platform-specific I/O / Windows (WIN32)
The From Wave Device block reads audio data from a standard Windows audio device in real-time. It is compatible with most popular Windows hardware, including Sound Blaster cards. (Models that contain both this block and the To Wave Device block require a duplex-capable sound card.)

The Use default audio device parameter allows the block to detect and use the system's default audio hardware. This option should be selected on systems that have a single sound device installed, or when the default sound device on a multiple-device system is the desired source. In cases when the default sound device is not the desired input source, clear Use default audio device, and select the desired device in the Audio device menu parameter.

When the audio source contains two channels (stereo), the Stereo check box should be selected. When the audio source contains a single channel (mono), the Stereo check box should be cleared. For stereo input, the block's output is an M-by-2 matrix containing one frame (M consecutive samples) of audio data from each of the two channels. For mono input, the block's output is an M-by-1 matrix containing one frame (M consecutive samples) of audio data from the mono input. The frame size, M, is specified by the Samples per frame parameter. For $\mathrm{M}=1$, the output is sample based; otherwise, the output is frame based.

The audio data is processed in uncompressed pulse code modulation (PCM) format, and should typically be sampled at one of the standard Windows audio device rates: $8000,11025,22050$, or 44100 Hz . You can select one of these rates from the Sample rate parameter. To specify a different rate, select the User-defined option and enter a value in the User-defined sample rate parameter.

The Sample Width (bits) parameter specifies the number of bits used to represent the signal samples read by the audio device. The following settings are available:

- 8 - allocates 8 bits to each sample, allowing a resolution of 256 levels
- 16 - allocates 16 bits to each sample, allowing a resolution of 65536 levels

From Wave Device

- 24 - allocates 24 bits to each sample, allowing a resolution of 16777216 levels (only for use with 24-bit audio devices)

Higher sample width settings require more memory but yield better fidelity. The output from the block is independent of the Sample width (bits) setting. The output data type is determined by the Data type parameter setting.

Buffering

Since the audio device accepts real-time audio input, Simulink must read a continuous stream of data from the device throughout the simulation. Delays in reading data from the audio hardware can result in hardware errors or distortion of the signal. This means that the From Wave Device block must read data from the audio hardware as quickly as the hardware itself acquires the signal. However, the block often cannot match the throughput rate of the audio hardware, especially when the simulation is running from within Simulink rather than as generated code. (Simulink operations are generally slower than comparable hardware operations, and execution speed routinely varies during the simulation as the host operating system services other processes.) The block must therefore rely on a buffering strategy to ensure that signal data can be read on schedule without losing samples.

At the start of the simulation, the audio device begins writing the input data to a (hardware) buffer with a capacity of T_{b} seconds. The From Wave Device block immediately begins pulling the earliest samples off the buffer (first in, first out) and collecting them in length-M frames for output. As the audio device continues to append inputs to the bottom of the buffer, the From Wave Device block continues to pull inputs off the top of the buffer at the best possible rate.

The following figure shows an audio signal being acquired and output with a frame size of 8 samples. The buffer of the sound board is approaching its five-frame capacity at the instant shown, which means that the hardware is adding samples to the buffer more rapidly than the block is pulling them off. (If the signal sample rate was 8 kHz , this small buffer could hold approximately 0.005 second of data.

Hardware execution rate is constant.
Simulink execution rate varies.

When the simulation throughput rate is higher than the hardware throughput rate, the buffer remains empty throughout the simulation. If necessary, the From Wave Device block simply waits for new samples to become available on the buffer (the block does not interpolate between samples). More typically, the simulation throughput rate is lower than the hardware throughput rate, and the buffer tends to fill over the duration of the simulation.

Troubleshooting

When the buffer size is too small in relation to the simulation throughput rate, the buffer might fill before the entire length of signal is processed. This usually results in a device error or undesired device output. When this problem occurs, you can choose to either increase the buffer size or the simulation throughput rate:

- Increase the buffer size

The Queue duration parameter specifies the duration of signal, T_{b} (in real-time seconds), that can be buffered in hardware during the simulation. Equivalently, this is the maximum length of time that the block's data acquisition can lag the hardware's data acquisition. The number of frames buffered is approximately

$$
\frac{T_{b} F_{s}}{M}
$$

where F_{s} is the sample rate of the signal and M is the number of samples per frame. The required buffer size for a given signal depends on the signal

From Wave Device

length, the frame size, and the speed of the simulation. Note that increasing the buffer size might increase model latency.

- Increase the simulation throughput rate

Two useful methods for improving simulation throughput rates are increasing the signal frame size and compiling the simulation into native code:

- Increase frame sizes (and convert sample-based signals to frame-based signals) throughout the model to reduce the amount of block-to-block communication overhead. This can drastically increase throughput rates in many cases. However, larger frame sizes generally result in greater model latency due to initial buffering operations.
- Generate executable code with Real Time Workshop. Native code runs much faster than Simulink, and should provide rates adequate for real-time audio processing.
More general ways to improve throughput rates include simplifying the model, and running the simulation on a faster PC processor. See "Delay and Latency" on page 2-49, and "Improving Simulation Performance and Accuracy" in the Simulink documentation, for other ideas on improving simulation performance.

Dialog Box

Sample rate (Hz)

The sample rate of the audio data to be acquired. Select one of the standard Windows rates or the User-defined option.

User-defined sample rate (Hz)

The (nonstandard) sample rate of the audio data to be acquired.

Sample width (bits)

The number of bits used to represent each signal sample.

Stereo

Specifies stereo (two-channel) inputs when selected, mono (one-channel) inputs when cleared. Stereo output is M-by-2; mono output is M-by-1.

From Wave Device

Samples per frame

The number of audio samples in each successive output frame, M.

Queue duration (seconds)

The length of signal (in seconds) to buffer to the hardware at the start of the simulation.

Use default audio device

Reads audio input from the system's default audio device when selected. Clear to enable the Audio device ID parameter and select a device.

Audio device

The name of the audio device from which to read the audio output (lists the names of the installed audio device drivers). Select Use default audio device when the system has only a single audio card installed.

Data type

The data type of the output: double-precision, single-precision, signed 16 -bit integer, or unsigned 8-bit integer.

Supported Data Types

See Also

- Double-precision floating point
- Single-precision floating point
- 16-bit signed integer
- 8-bit unsigned integer

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

From Wave File
To Wave Device audiorecorder

Signal Processing Blockset
Signal Processing Blockset
MATLAB

Purpose

Library
Description

Read audio data from Microsoft Wave (.wav) file (32-bit Windows operating systems only)

Platform-specific I/O / Windows (WIN32)
The From Wave File block reads audio data from a Microsoft Wave (. wav) file and generates a signal with one of the data types and amplitude ranges in the following table.

Output Data Type	Output Amplitude Range
double	± 1
single	± 1
int16	-32768 to $32767\left(-2^{15}\right.$ to $\left.2^{15}-1\right)$
uint8	0 to 255

The audio data must be in uncompressed pulse code modulation (PCM) format.

```
y = wavread('filename') % Equivalent MATLAB code
```

The block supports 8 -, 16 -, 24-, and 32 -bit Microsoft Wave (.wav) files.
The File name parameter can specify an absolute or relative path to the file. When the file is on the MATLAB path or in the current directory (the directory returned by typing pwd at the MATLAB command line), you need only specify the file's name. You do not need to specify the wav extension.

When the audio file contains two channels (stereo), the block's output is an M-by-2 matrix containing one frame (M consecutive samples) of audio data from each of the two channels. When the audio file contains a single channel (mono), the block's output is an M-by- 1 matrix containing one frame (M consecutive samples) of mono audio data. The frame size, M, is specified by the Samples per output frame parameter. For $\mathrm{M}=1$, the output is sample based; otherwise, the output is frame based.

From Wave File

The output frame period, T_{fo}, is

$$
T_{f o}=\frac{M}{F_{s}}
$$

where F_{s} is the data sample rate in Hz .
To reduce the required number of file accesses, the block acquires L consecutive samples from the file during each access, where L is specified by the Minimum number of samples for each read from file parameter ($L \geq M$). For $L<M$, the block instead acquires M consecutive samples during each access. Larger values of L result in fewer file accesses, which reduces run-time overhead.

Select the Loop check box if you want to play the file more than once. Then, enter the number of times to play the file. The number you enter must be a positive integer or inf.

The Samples restart parameter determines whether the samples from the audio file repeat immediately or repeat at the beginning of the next frame output from the output port. When you select immediately after last sample, the samples repeat immediately. When you select at beginning of next frame, the frame containing the last sample value from the audio file is zero padded until the frame is filled. The block then places the first sample of the audio file in the first position of the next output frame.

Use the Output first sample read parameter to determine when the first sample of the audio file is contained within an output frame. When you select this check box, a Boolean output port labeled First appears on the From Wave File block. The output from the First port is 1 when the frame output from the output port contains the first sample of the audio file. Otherwise, the output from the First port is 0 .

Use the Output last sample read parameter to determine when the last sample of the audio file is contained within an output frame. When you select this check box, a Boolean output port labeled Last appears on the From Wave File block. The output from the Last port is 1 when the frame output from the output port contains the last sample of the audio file. Otherwise, the output from the Last port is 0 .

The block icon shows the name, sample rate (in Hz), number of channels (1 or 2), and sample width (in bits) of the data in the specified audio file. All
sample rates are supported; the sample width must be either $8,16,24$, or 32 bits.

Dialog Box

File name

Enter the path and name of the file to read. Paths can be relative or absolute.

Samples per output frame

Enter the number of samples in each output frame, M.

Minimum number of samples for each read from file

Enter the number of consecutive samples to acquire from the file with each file access, L.

From Wave File

Data type

Select the output data type: double, single, uint8, or int16. The data type setting determines the output's amplitude range, as shown in the table above.

Loop

Select this check box if you want to play the file more than once.

Number of times to play file

Enter the number of times you want to play the file.

Samples restart

Select immediately after last sample to repeat the audio file immediately. Select at beginning of next frame to place the first sample of the audio file in the first position of the next output frame.

Output first sample read

Use this check box to determine whether the frame output from the output port contains the first sample of the audio file.

Output last sample read

Use this check box to determine whether the frame output from the output port contains the last sample of the audio file.

Supported Data Types

See Also

- Double-precision floating point
- Single-precision floating point
- 16-bit signed integer
- 8-bit unsigned integer

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

From Wave Device
Signal From Workspace
To Wave File
wavread

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset MATLAB

Purpose

Library

Description

Encode linear, pulse code modulation (PCM) narrowband speech signals using A-law or mu-law encoders. Decode index values into quantized output values using A-law or mu-law decoders. Convert between A-law and mu-law index values.

Quantizers
The G711 Codec block is a logarithmic scalar quantizer designed for narrowband speech. Narrowband speech is defined as a voice signal with an analog bandwidth of 4 kHz and a Nyquist sampling frequency of 8 kHz . The block quantizes a narrowband speech input signal so that it can be transmitted using only 8-bits. The G711 Codec block has three modes of operation: encoding, decoding, and conversion. You can choose the block's mode of operation by setting the Mode parameter.

If, for the Mode parameter, you choose Encode PCM to A-law, the block assumes that the linear PCM input signal has a dynamic range of 13 bits. Because the block always operates in saturation mode, it assigns any input value above $2^{12}-1$ to $2^{12}-1$ and any input value below -2^{12} to -2^{12}. The block implements an A-law quantizer on the input signal and outputs A-law index values. When you choose Encode PCM to mu-law, the block assumes that the linear PCM input signal has a dynamic range of 14 bits. Because the block always operates in saturation mode, it assigns any input value above $2^{13}-1$ to $2^{13}-1$ and any input value below -2^{13} to -2^{13}. The block implements a mu-law quantizer on the input signal and outputs mu-law index values.

If, for the Mode parameter, you choose Decode A- law to PCM, the block decodes the input A-law index values into quantized output values using an A-law lookup table. When you choose Decode mu-law to PCM, the block decodes the input mu-law index values into quantized output values using a mu-law lookup table.

If, for the Mode parameter, you choose Convert A-law to mu-law, the block converts the input A-law index values to mu-law index values. When you choose Convert mu-law to A-law, the block converts the input mu-law index values to A-law index values.

Note Set the Mode parameter to Convert A-law to mu-law or Convert mu-law to A-law only when the input to the block is A-law or mu-law index values.

If, for the Mode parameter, you choose Encode PCM to A-law or Encode PCM to mu-law, the Overflow diagnostic parameter appears on the block parameters dialog box. Use this parameter to determine the behavior of the block when overflow occurs. The following options are available:

- Ignore - Proceed with the computation and do not issue a warning message.
- Warning - Display a warning message in the MATLAB Command Window, and continue the simulation.
- Error - Display an error dialog box and terminate the simulation.

Note Like all diagnostic parameters on the Configuration Parameters dialog box, Overflow diagnostic parameter is set to Ignore in the Real-Time Workshop code generated for this block.

Dialog Box

Mode

When you choose Encode PCM to A-law, the block implements an A-law encoder. When you choose Encode PCM to mu-law, the block implements a mu-law encoder. When you choose Decode A-law to PCM, the block decodes the input index values into quantized output values using an A-law lookup table. When you choose Decode mu-law to PCM, the block decodes the input index values into quantized output values using a mu-law lookup table. When you choose Convert A-law to mu-law, the block converts the input A-law index values to mu-law index values. When you choose Convert mu-law to A-law, the block converts the input mu-law index values to A-law index values.

Overflow diagnostic

Use this parameter to determine the behavior of the block when overflow occurs. Select Ignore to proceed with the computation without a warning message. Select Warning to display a warning message in the MATLAB Command Window and continue the simulation. Select Error to display an error dialog box and terminate the simulation.

This parameter is only visible if, for the Mode parameter, you select Encode PCM to A-law or Encode PCM to mu-law.

References

ITU-T Recommendation G.711, "Pulse Code Modulation (PCM) of Voice Frequencies," General Aspects of Digital Transmission Systems; Terminal Equipments, International Telecommunication Union (ITU), 1993.

Supported

Data Types

See Also
Quantizer
Scalar Quantizer Decoder
Scalar Quantizer Design
Uniform Decoder
Uniform Encoder
Vector Quantizer Decoder
Vector Quantizer Design
Vector Quantizer Encoder

Simulink
Signal Processing Blockset

Purpose Generate histogram of input or sequence of inputs

Library Statistics

Description

The Histogram block computes the frequency distribution of the elements in each column of the input, or tracks the frequency distribution in a sequence of inputs over a period of time. The Running histogram parameter selects between basic operation and running operation, described below. The Histogram block accepts real and complex fixed-point and floating-point inputs.

The block sorts the elements of each column into the number of discrete bins specified by the Number of bins parameter, n.

```
y = hist(u,n) % Equivalent MATLAB code
```

Complex inputs are sorted by magnitude squared.
The histogram value for a given bin represents the frequency of occurrence of the input values bracketed by that bin. You specify the upper-boundary of the highest-valued bin in the Maximum value of input parameter, B_{M}, and the lower-boundary of the lowest-valued bin in the Minimum value of input parameter, B_{m}. The bins have equal width of

$$
\Delta=\frac{B_{M}-B_{m}}{n}
$$

and centers located at

$$
B_{m}+\left(k+\frac{1}{2}\right) \Delta \quad k=0,1,2, \ldots, n-1
$$

Input values that fall on the border between two bins are sorted into the lower-valued bin; that is, each bin includes its upper boundary. For example, a bin of width 4 centered on the value 5 contains the input value 7 , but not the input value 3. Input values greater than the Maximum value of input parameter or less than Minimum value of input parameter are sorted into the highest-valued or lowest-valued bin, respectively. The values you enter for the Maximum value of input and Minimum value of input parameters must be real-valued scalars.

Basic Operation

When you do not select the Running histogram check box, the block computes the frequency distribution of each column in the M-by-N input u independently at each sample time.

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by- 1 column vectors.

The output, y , is a sample-based n-by- N matrix whose j th column is the histogram for the data in the j th column of u. When you select the Normalized check box, the block scales each column of the output so that sum $(y(:, j))$ is 1 .

Running Operation

When you select the Running histogram check box, the block computes the frequency distributions in a time-sequence of M-by-N inputs by creating N persistent histograms to which successive inputs are continuously added. For frame-based inputs, this is equivalent to a persistent histogram for each independent channel.

As in basic operation, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

The output is a sample-based n-by-N matrix whose j th column reflects the current state of the j th histogram. The block resets the running histogram (by emptying all bins of all histograms) when it detects a reset event at the optional Rst port, as described next.

Resetting the Running Histogram. The block resets the running histogram whenever a reset event is detected at the optional Rst port. The reset signal and the input data signal must be the same rate.

To enable the Rst port, select the Reset port parameter. You specify the reset event in the Trigger type parameter, and can be one of the following:

- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see

Histogram

"Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Examples

The model below illustrates the Histogram block's basic operation for a single-channel input, u, where

$$
u=\left[\begin{array}{llllllllllllll}
0 & -2 & 6 & -12 & 2 & 5 & 4 & 3 & 0 & 4 & 3 & -2 & -3 & -2
\end{array}\right)
$$

The parameter settings for the Histogram block are

- Minimum value of input $=-10$
- Maximum value of input $=10$
- Number of bins = 5
- Normalized = Clear this check box
- Running histogram = Clear this check box

The resulting bin width is 4 , as shown below.

Dialog Box

The Main pane of the Histogram block dialog box appears as follows:

Minimum value of input

Enter a real-valued scalar for the lower boundary, B_{m}, of the lowest-valued bin. Tunable.

Maximum value of input

Enter a real-valued scalar for the upper boundary, B_{M}, of the highest-valued bin. Tunable.

Number of bins

The number of bins, n, in the histogram.

Normalized

Normalizes the output vector (1-norm) when selected. Enables running operation when selected. Tunable.
Use of this parameter is not supported for fixed-point signals.

Running histogram

Set to enable the running histogram operation, and clear to enable basic histogram operation. For more information, see "Basic Operation" on page 9-468 and "Running Operation" on page 9-468.

Reset port

Enables the Rst input port when selected. The reset signal and the input data signal must be the same rate. This parameter is enabled only when you set the Running histogram parameter. For more information, see "Running Operation" on page 9-468.

Trigger type

The type of event that resets the running histogram. For more information, see "Resetting the Running Histogram" on page 9-468. This parameter is enabled only when you set the Reset port parameter.

The Fixed-point pane of the Histogram block dialog box appears as follows:

Note The fixed-point parameters listed below are only used for fixed-point complex inputs, which are sorted by squared magnitude.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block:

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Supported Data Types

Port	Supported Data Types
In	• Double-precision floating point
	• Single-precision floating point
	\bullet Fixed point (signed and unsigned)
	$\bullet 8-, 16-$, and 32-bit signed integers
	$\bullet 8-, 16-$, and 32-bit unsigned integers
Output	• Double-precision floating point
	• Single-precision floating point
	$\bullet 32$-bit unsigned integers
Rst	\bullet Boolean

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also Sort hist

Signal Processing Blockset MATLAB

Purpose Compute inverse discrete cosine transform (IDCT) of input

Library
 Transforms

Description
The IDCT block computes the inverse discrete cosine transform (IDCT) of each channel in the M-by-N input matrix, u.

```
y = idct(u) % Equivalent MATLAB code
```

For both sample-based and frame-based inputs, the block assumes that each input column is a frame containing M consecutive samples from an independent channel. The frame size, M, must be a power of two. To work with other frame sizes, use the Zero Pad block to pad or truncate the frame size to a power of two length.
The output is an M-by-N matrix whose l th column contains the length-M IDCT of the corresponding input column.

$$
y(m, l)=\sum_{k=1}^{M} w(k) u(k, l) \cos \frac{\pi(2 m-1)(k-1)}{2 M}, \quad m=1, \ldots, M
$$

where

$$
w(k)=\left\{\begin{array}{lc}
\frac{1}{\sqrt{M}}, & k=1 \\
\sqrt{\frac{2}{M}}, & 2 \leq k \leq M
\end{array}\right.
$$

The output is always frame based, and the output sample rate and data type (real/complex) are the same as those of the input.

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are processed as single channels (that is, as M-by- 1 column vectors), and the output has the same dimension as the input.

The Sine and cosine computation parameter determines how the block computes the necessary sine and cosine values. This parameter has two settings, each with its advantages and disadvantages, as described in the following table.

Sine and Cosine Computation Parameter Setting

Trigonometric fen

Sine and Cosine Computation Method
 Effect on Block Performance

The block computes and stores the trigonometric values before the simulation starts, and retrieves them during the simulation. When you generate code from the block, the processor running the generated code stores the trigonometric values computed by the block in a speed-optimized table, and retrieves the values during code execution.

The block computes sine and cosine values during the simulation. When you generate code from the block, the processor running the generated code computes the sine and cosine values while the code runs.

The block usually runs much more quickly, but requires extra memory for storing the precomputed trigonometric values.

The block usually runs more slowly, but does not need extra data memory. For code generation, the block requires a support library to emulate the trigonometric functions, increasing the size of the generated code.

Fixed-Point Data Types

The diagrams below show the data types used within the IDCT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the IDCT block dialog as discussed in "Dialog Box" on page 9-479.

Inputs to the IDCT block are first cast to the output data type and stored in the output buffer. Each butterfly stage processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type.

\longmapsto butterlly stage -_

Butterfly Stage Data Types

Twiddle Multiplication Data Types

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Dialog Box

The Main pane of the IDCT block dialog appears as follows:

Sine and cosine computation
Sets the block to compute sines and cosines by either looking up sine and cosine values in a speed-optimized table (Table lookup), or by making sine and cosine function calls (Trigonometric fon). See the table above.

The Fixed-point pane of the IDCT block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations. The sine table values do not obey this parameters; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The sine table values do not obey this parameters; they always round to Nearest.

Sine table

Choose how you will specify the word length of the values of the sine table. The fraction length of the sine table values is always equal to the word length minus one:

- When you select Same word length as input, the word length of the sine table values will match that of the input to the block.
- When you select Specify word length, you are able to enter the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-477 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:

> product output word length $=$ output word length + sine table values word length product output fraction length $=$ output fraction length + sine table values fraction length

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-477 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the accumulator data type in this block:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:
accumulator word length $=$ product output word length +1

accumulator fraction length $=$ product output fraction length

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Inherit via internal rule, the output word length and fraction length are automatically set according to the following equations:
output word length $=$ input word length
+ floor $(\log 2(D C T$ length -1$))+1$
output fraction length $=$ input fraction length
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- 8 -, 16 -, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	DCT
	IFFT
idct	

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

Identity Matrix

Purpose
Generate matrix with ones on the main diagonal and zeros elsewhere

Library

Description

Examples

Dialog Box
Math Functions / Matrices and Linear Algebra / Matrix Operations
The Identity Matrix block generates a rectangular matrix with ones on the main diagonal and zeros elsewhere.

When you select the Inherit output port attributes from input port check box, the input port is enabled, and an M-by-N matrix input generates a sample-based M-by-N matrix output with the same sample period. The values in the input matrix are ignored.

```
y = eye([M N]) % Equivalent MATLAB code
```

When you do not select the Inherit output port attributes from input port check box, the input port is disabled, and the dimensions of the output matrix are determined by the Matrix size parameter. A scalar value, M, specifies an M-by-M identity matrix, while a two-element vector, [M N], specifies an M-by-N unit-diagonal matrix. The output is sample based, and has the sample period specified by the Sample time parameter.

Set Matrix size to [3 6] to generate the 3-by-6 unit-diagonal matrix below.

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

The Main pane of the Identity Matrix block dialog appears as follows:

Inherit output port attributes from input port

Enables the input port when selected. The output inherits its dimensions and sample period from the input.

Matrix size

The number of rows and columns in the output matrix: a scalar M for a square M-by-M output, or a vector [M N] for an M-by-N output. This parameter is disabled when you select Inherit input port attributes from input port.

Sample time

The discrete sample period of the output. This parameter is disabled when you select Inherit input port attributes from input port.

The Data Types pane of the Identity Matrix block dialog appears as follows:

Identity Matrix

Output data type

Specify the output data type in one of the following ways:

- Choose one of the built-in data types from the list.
- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit via back propagation to set the output data type and scaling to match the following block

Signed

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned. This parameter is only visible when you select Fixed-point for the Output data type parameter.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed - point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from Simulink Fixed Point. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed-point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Identity Matrix

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Constant Diagonal Matrix DSP Constant eye	Signal Processing Blockset
	Signal Processing Blockset	
	MATLAB	

Purpose	Compute inverse discrete wavelet transform (IDWT) of input Library
Description	Transforms Note The IDWT block is the same as the Dyadic Synthesis Filter Bank block in the Multirate Filters library, but with different default settings. See the "Dyadic Synthesis Filter Bank" on page 9-352 for more information on how to use the block.
	The IDWT block computes the inverse discrete wavelet transform (IDWT) of the input subbands. By default, the block accepts a single sample-based vector or matrix of concatenated subbands. The output is frame based, and has the same dimensions as the input. Each column of the output is the IDWT of the corresponding input column.
You must install the Wavelet Toolbox for the block to automatically design wavelet-based filters to compute the IDWT. Otherwise, you must specify your own lowpass and highpass FIR filters by setting the Filter parameter to User defined.	
Examples	For detailed information about how to use this block, see "Dyadic Synthesis Filter Bank" on page 9-352.
See the examples in the Dyadic Synthesis Filter Bank block reference.	

Purpose Compute inverse fast Fourier transform (IFFT) of input

Library Transforms

Description The IFFT block computes the inverse fast Fourier transform (IFFT) of each
 channel of an M-by-N or length-M input, u, where M must be a power of two. To work with other input sizes, use the Zero Pad block to pad or truncate the length-M dimension to a power-of-two length.

The output of the IFFT block is equivalent to the MATLAB ifft function.

```
y = ifft(u) % Equivalent MATLAB code
```

The k th entry of the l th output channel, $y(k, l)$, is equal to the k th point of the M-point inverse discrete Fourier transform (IDFT) of the l th input channel.

$$
y(k, l)=\frac{1}{M} \sum_{m=1}^{M} u(m, l) e^{j 2 \pi(m-1)(k-1) / M} \quad k=1, \ldots, M
$$

This block supports real and complex floating-point and fixed-point inputs.

Input and Output Characteristics

The following table describes valid inputs to the IFFT block, their corresponding outputs, and the dimension along which the block computes the IDFT.

Valid Block Inputs

- Real- or complex-valued
- M must be a power of two
- In linear or bit-reversed order

Frame-based M-by-N matrix	Column
Sample-based M-by-N matrix	Column
Sample-based 1-by-M row vector	Row
1-D length-M vector	Vector

Corresponding Block Output Characteristics
 Output port rate $=$ input port rate

The following output characteristics apply to all valid block inputs:

- Frame based
- Complex valued. If your input is conjugate symmetric and you select the Input is conjugate symmetric check box, then the output is real valued. This check box cannot be used for fixed-point signals.
- Same dimension as input (for 1-D inputs, output is a length-M column)
- Each output column (each row for sample-based row inputs) contains the M-point IDFT of the corresponding input channel in linear order. If you select the Skip normalization by transform length, \mathbf{N} check box, the block computes a scaled version of the IDFT that does not include the multiplication factor of $1 / \mathrm{M}$.

Selecting the Twiddle Factor Computation Method

The Twiddle factor computation parameter determines how the block computes the necessary sine and cosine terms to calculate the term $e^{j 2 \pi(m-1)(k-1) / M}$, shown in the first equation of this block reference page. This parameter has two settings, each with its advantages and disadvantages, as described in the following table. Note that only Table lookup mode is supported for fixed-point signals.
$\left.\begin{array}{lll}\hline \begin{array}{l}\text { Twiddle Factor Computation } \\ \text { Parameter Setting }\end{array} & \begin{array}{l}\text { Sine and Cosine Computation } \\ \text { Method }\end{array} & \text { Effect on Block Performance } \\ \hline \text { Table lookup } & \begin{array}{l}\text { The block computes and stores } \\ \text { the trigonometric values before } \\ \text { the simulation starts, and } \\ \text { retrieves them during the } \\ \text { simulation. When you generate } \\ \text { code from the block, the } \\ \text { processor running the generated } \\ \text { code stores the trigonometric } \\ \text { values computed by the block, } \\ \text { and retrieves the values during } \\ \text { code execution. }\end{array} & \begin{array}{l}\text { The block usually runs much } \\ \text { more quickly, but requires } \\ \text { extra memory for storing the } \\ \text { precomputed trigonometric } \\ \text { values. You can optimize the } \\ \text { table for memory } \\ \text { consumption or speed, as } \\ \text { described in "Optimizing the } \\ \text { Table of Trigonometric } \\ \text { Values" below. }\end{array} \\ & \begin{array}{l}\text { The block computes sine and } \\ \text { cosine values during the } \\ \text { simulation. When you generate }\end{array} & \begin{array}{l}\text { The block usually runs more } \\ \text { slowly, but does not need } \\ \text { extra data memory. For code } \\ \text { generation, the block }\end{array} \\ \text { code from the block, the } \\ \text { processor running the generated } \\ \text { requires a support library to } \\ \text { emulate the trigonometric }\end{array}\right]$

Optimizing the Table of Trigonometric Values

When you set the Twiddle factor computation parameter to Table lookup, you need to also set the Optimize table for parameter. This parameter optimizes the table of trigonometric values for speed or memory by varying the number of table entries as summarized in the following table.

Optimize Table for Parameter Setting	Number of Table Entries for N-Point IFFT	Memory Required for Single-Precision 5 12-Point IFrT
Speed	$3 N / 4-$ floating point $N-$ fixed point	$\left(\frac{3 \times 512}{4}\right.$ table entries $) \times\left(4 \frac{\text { bytes }}{\text { table entry }}\right)$
$=1536$ bytes		

Input Order

You must select the Input is in bit-reversed order check box to designate whether the ordering of the column elements of the input is linear or bit-reversed order. If you select the Input is in bit-reversed order check box, the block assumes the input is in bit-reversed order. If you clear the Input is in bit-reversed order check box, block assumes the input is in linear order. For more information ordering of the output, see "Linear and Bit-Reversed Output Order" on page 4-18.

Conjugate Symmetric Input

The FFT block yields conjugate symmetric output when its input is real valued. Taking the IFFT of a conjugate symmetric input matrix produces real-valued output. Therefore, if the input to the block is both floating point and conjugate symmetric and you select the Input is conjugate symmetric check box, the block produces real-valued outputs. Selecting this check box optimizes the block's computation method.

If the IFFT block input is conjugate symmetric and you do not select the Input is conjugate symmetric check box, the IFFT block outputs a complex-valued
signal with small imaginary parts. The block output is invalid if you select this check box and the input is not conjugate symmetric.

Note that the Input is conjugate symmetric parameter cannot be used for fixed-point signals.

Scaled Output

If you select the Skip scaling check box, the block's output is not scaled. If you clear the Skip scaling check box and your signal is a floating point signal, the block computes a scaled version of the IDFT, $M \cdot y(k, l)$, which is defined by the following equation.

$$
M \cdot y(k, l)=\sum_{m=1}^{M} u(m, l) e^{j 2 \pi(m-1)(k-1) / M} \quad k=1, \ldots, M
$$

If you clear the Skip scaling check box and your signal is a fixed-point signal, the output of each butterfly of the IFFT is divided by two.

Algorithms Used for IFFT Computation

Depending on whether the block input is floating point or fixed point, real or complex valued, and conjugate symmetric, the block uses one or more of the following algorithms as summarized in the following tables:

- Butterfly operation
- Double-signal algorithm
- Half-length algorithm
- Radix-2 decimation-in-time (DIT) algorithm

For floating-point signals:

Input Complexity	Other Parameter Settings	Algorithms Used for IFFT Computation
Real or complex	Γ Input is in bit-reversed order Γ Input is coniugate symmetric	Butterfly operation and radix-2 DIT
Real or complex	V Input is in bit-reversed order Γ Input is coniugate symmetric	Radix-2 DIF
Real or complex	「 Input is in bit-reversed order \checkmark Input is coniugate symmetric	Butterfly operation and radix-2 DIT in conjunction with the half-length and double-signal algorithms
Real or complex	V Input is in bit-reversed order $\sqrt{ }$ Input is coniugate symmetric	Radix-2 DIF in conjunction with the half-length and double-signal algorithms
For fixed-point signals:		
Input Complexity	Other Parameter Settings	Algorithms Used for IFFT Computation
Real or complex	Γ Input is in bit-reversed order Γ Input is coniugate symmetric	Butterfly operation and radix-2 DIT
Real or complex	V Input is in bit-reversed order \lceil Input is coniugate symmetric	Radix-2 DIF

Note that the Input is conjugate symmetric parameter cannot be used for fixed-point signals.

Fixed-Point Data Types

The diagrams below show the data types used within the IFFT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the IFFT block dialog as discussed in "Dialog Box" on page 9-498.

Inputs to the IFFT block are first cast to the output data type and stored in the output buffer. Each butterfly stage then processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type. A twiddle factor is multiplied in before each butterfly stage in a decimation-in-time IFFT, and after each butterfly stage in a decimation-in-frequency IFFT.

Decimation-in-time IFTT

+ -twiddle multiplication \mid butterlly stage

Decimation-in-frequency IFFT

\longmapsto butterfly stage \quad twiddle multiplication-

Butterfly stage data types

Twiddle multiplication data types

The output of the multiplier is in the accumulator data type since both of the inputs to the multiplier are complex. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Dialog Box
The Main pane of the IFFT block dialog appears as follows:

Twiddle factor computation

Specify the computation method of the term $e^{j 2 \pi(m-1)(k-1) / M}$ shown in the first equation of this block reference page. In Table lookup mode, the block computes and stores the sine and cosine values before the simulation starts. In Trigonometric fon mode, the block computes the sine and cosine values during the simulation. See "Selecting the Twiddle Factor Computation Method" on page 9-492.
This parameter must be set to Table lookup for fixed-point signals.

Optimize table for

Select the optimization of the table of sine and cosine values for Speed or Memory. This parameter is only available when the Twiddle factor
computation parameter is set to Table lookup. See "Optimizing the Table of Trigonometric Values" on page 9-492.

This parameter must be set to Speed for fixed-point signals.

Input is in bit-reversed order

Designate the order of the input channel elements. Select when the input is in bit-reversed order, and clear when the input is in linear order. The block yields invalid outputs when you do not set this parameter correctly. See "Input Order" on page 9-493.

Input is conjugate symmetric

Select when the input to the block is both floating point and conjugate symmetric, and you want real-valued outputs. The block output is invalid when you set this parameter when the input is not conjugate symmetric. This parameter cannot be used for fixed-point signals.

Skip scaling

When you select this check box, no scaling occurs. When this parameter is unselected, scaling does occur:

- For floating-point signals, rather than computing the IDFT, the block computes a scaled version of the IDFT. This scaled version of the IDFT does not include the multiplication factor of $1 / \mathrm{M}$.
- For fixed-point signals, the output of each butterfly of the IFFT is divided by two.

The Fixed-point pane of the IFFT block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations. The sine table values do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The sine table values do not obey this parameter; they are always saturated.

Sine table

Choose how you will specify the word length of the values of the sine table. The fraction length of the sine table values is always equal to the word length minus one:

- When you select Same word length as input, the word length of the sine table values will match that of the input to the block.
- When you select Specify word length, you are able to enter the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-496 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:

```
product output word length =
output word length + sine table values word length
product output fraction length =
output fraction length + sine table values fraction length
```

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-496 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the accumulator data type in this block:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:
accumulator word length $=$ product output word length +1
accumulator fraction length $=$ product output fraction length
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Inherit via internal rule, the output word length and fraction length are automatically set according to the following equations:
output word length =
input word length + floor $(\log 2($ FFT length -1$))+1$
output fraction length $=$ input fraction length
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types

- Single-precision floating point
- Fixed point (signed only)
- 8 -, 16 -, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

FFT
IDCT
Pad
Zero Pad
bitrevorder
fft
ifft

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox
Signal Processing Toolbox
Signal Processing Toolbox

Inherit Complexity

Purpose

Library

Description

Change complexity of input to match a reference signal

Signal Management / Signal Attributes

The Inherit Complexity block alters the input data at the Data port to match the complexity of the reference input at the Ref port. When the Data input is real, and the Ref input is complex, the block appends a zero-valued imaginary component, $0 i$, to each element of the Data input.

When the Data input is complex, and the Ref input is real, the block outputs the real component of the Data input.

When both the Data input and Ref input are real, or when both the Data input and Ref input are complex, the block propagates the Data input with no change.

Dialog Box

Supported Data Types

Port	Supported Data Types
Data	• Double-precision floating point
	- Single-precision floating point
	\bullet Fixed point (signed and unsigned)
	\bullet Custom data types
	\bullet Boolean
	$\bullet 8-16-$, and 32-bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers

Inherit Complexity

Port	Supported Data Types
Ref	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Check Signal Attributes
Complex to Magnitude-Angle
Complex to Real-Imag
Magnitude-Angle to Complex
Real-Imag to Complex

Signal Processing Blockset
Simulink
Simulink
Simulink
Simulink

Note The Integer Delay block is still supported but is likely to be obsoleted in a future release. We recommend replacing this block with the Delay block.

Purpose	Delay an input by an integer number of sample periods
Library	dspobslib
Description	The Integer Delay block delays a discrete-time input by the number of sample intervals specified in the Delay parameter. Noninteger delay values are rounded to the nearest integer, and negative delays are clipped at 0.
z^{-1}	

Sample-Based Operation

When the input is a sample-based M-by-N matrix, the block treats each of the $\mathrm{M} * \mathrm{~N}$ matrix elements as an independent channel. The Delay parameter, v, can be an M-by-N matrix of positive integers that specifies the number of sample intervals to delay each channel of the input, or a scalar integer by which to equally delay all channels.

For example, when the input is M-by- 1 and v is the matrix $[v(1) \vee(2) \ldots v(M)]^{\prime}$, the first channel is delayed by $v(1)$ sample intervals, the second channel is delayed by $v(2)$ sample intervals, and so on. Note that when a channel is delayed for Δ sample-time units, the output sample at time t is the input sample at time $t-\Delta$. When $t-\Delta$ is negative, then the output is the corresponding value specified by the Initial conditions parameter.

A 1-D vector of length M is treated as an M-by-1 matrix, and the output is 1-D.
The Initial conditions parameter specifies the output of the block during the initial delay in each channel. The initial delay for a particular channel is the time elapsed from the start of the simulation until the first input in that channel is propagated to the output. Both fixed and time-varying initial conditions can be specified in a variety of ways to suit the dimensions of the input.

Fixed Initial Conditions. A fixed initial condition in sample-based mode can be specified as one of the following:

Integer Delay

- Scalar value to be repeated at each sample time of the initial delay (for every channel). For a 2 -by- 2 input with the parameter settings below,

the block generates the following sequence of matrices at the start of the simulation,

$$
\left[\begin{array}{cc}
-1 & -1 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
u_{11}^{1} & -1 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
u_{11}^{2} & u_{12}^{1} \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
u_{11}^{3} & u_{12}^{2} \\
u_{21}^{1} & -1
\end{array}\right],\left[\begin{array}{cc}
u_{11}^{4} & u_{12}^{3} \\
u_{21}^{2} & u_{22}^{1}
\end{array}\right], \ldots
$$

where $u_{i j}^{k}$ is the i, j th element of the k th matrix in the input sequence.

- Array of size M-by-N-by-d. In this case, you can set different fixed initial conditions for each element of a sample-based input. This setting is explained further in the Array bullet in "Time-Varying Initial Conditions" below.

Initial conditions cannot be specified by full matrices.
Time-Varying Initial Conditions. A time-varying initial condition in sample-based mode can be specified in one of the following ways:

- Vector of length d, where d is the maximum value specified for any channel in the Delay parameter. The vector can be a L-by-d, 1-by-d, or 1-by-1-by-d. The d elements of the vector are output in sequence, one at each sample time of the initial delay.
For a scalar input and the parameters shown below,

the block outputs the sequence $-1,-1,-1,0,1, \ldots$ at the start of the simulation.
- Array of dimension M-by-N-by-d, where d is the value specified for the Delay parameter (the maximum value when the Delay is a vector) and M and N are the number of rows and columns, respectively, in the input matrix. The d pages of the array are output in sequence, one at each sample time of the initial delay. For a 2 -by- 3 input, and the parameters below,
Delay [samples):

3
Iritial condtion:
cal(3, [1 23:456],[246;135][369;048]]

the block outputs the matrix sequence

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right],\left[\begin{array}{lll}
2 & 4 & 6 \\
1 & 3 & 5
\end{array}\right],\left[\begin{array}{lll}
3 & 6 & 9 \\
0 & 4 & 8
\end{array}\right]
$$

at the start of the simulation. Note that setting Initial conditions to an array with the same matrix for each entry implements constant initial conditions; a different constant initial condition for each input matrix element (channel).

Initial conditions cannot be specified by full matrices.

Frame-Based Operation

When the input is a frame-based M-by-N matrix, the block treats each of the N columns as an independent channel, and delays each channel as specified by the Delay parameter.

For frame-based inputs, the Delay parameter can be a scalar integer by which to equally delay all channels. It can also be a 1-by-N row vector, each element of which serves as the delay for the corresponding channel of the N-channel input. Likewise, it can also be an M-by-1 column vector, each element of which serves as the delay for one of the corresponding M samples for each channel. The Delay parameter can be an M-by-N matrix of positive integers as well; in this case, each element of each channel is delayed by the corresponding element in the delay matrix. For instance, if the fifth element of the third column of the delay matrix was 3 , then the fifth element of the third channel of the input matrix is always delayed by three sample-time units.

Integer Delay

When a channel is delayed for Δ sample-time units, the output sample at time t is the input sample at time $t-\Delta$. When $t-\Delta$ is negative, then the output is the corresponding value specified in the Initial conditions parameter.

The Initial conditions parameter specifies the output during the initial delay. Both fixed and time-varying initial conditions can be specified. The initial delay for a particular channel is the time elapsed from the start of the simulation until the first input in that channel is propagated to the output.

Fixed Initial Conditions. The settings shown below specify fixed initial conditions. The value entered in the Initial conditions parameter is repeated at the output for each sample time of the initial delay. A fixed initial condition in frame-based mode can be one of the following:

- Scalar value to be repeated for all channels of the output at each sample time of the initial delay. For a general M-by-N input with the parameter settings below,

the first five samples in each of the N channels are zero. Note that when the frame size is larger than the delay, all of these zeros are all included in the first output from the block.
- Array of size 1-by-N-by-D. In this case, you can also specify different fixed initial conditions for each channel. See the Array bullet in "Time-Varying Initial Conditions" below for details.
Initial conditions cannot be specified by full matrices.
Time-Varying Initial Conditions. The following settings specify time-varying initial conditions. For time-varying initial conditions, the values specified in the Initial conditions parameter are output in sequence during the initial delay. A time-varying initial condition in frame-based mode can be specified in the following ways:
- Vector of length D, where each of the N channels have the same initial conditions sequence specified in the vector. D is defined as follows:
- When an element of the delay entry is less than the frame size, $D=d+1$
where d is the maximum delay.
- When the all elements of the delay entry are greater than the input frame size,

```
D = d + input frame size - 1
```

Only the first d entries of the initial condition vector will be used; the rest of the values are ignored, but you must include them nonetheless. For a two-channel ramp input [1:100; 1:100]' with a frame size of 4 and the parameter settings below,

the block outputs the following sequence of frames at the start of the simulation.

$$
\left[\begin{array}{cc}
-4 & -1 \\
-5 & -2 \\
1 & -3 \\
2 & -4
\end{array}\right],\left[\begin{array}{cc}
3 & -5 \\
4 & 1 \\
5 & 2 \\
6 & 3
\end{array}\right],\left[\begin{array}{cc}
7 & 4 \\
8 & 5 \\
9 & 6 \\
10 & 7
\end{array}\right], \ldots
$$

Note that since one of the delays, 2 , is less than the frame size of the input, 4 , the length of the Initial conditions vector is the sum of the maximum delay and $1(5+1)$, which is 6 . The first five entries of the initial conditions vector are used by the channel with the maximum delay, and the rest of the entries are ignored. Since the first channel is delayed for less than the maximum delay (2 sample time units), it only makes use of two of the initial condition entries.

- Array of size 1-by-N-by-D, where D is defined in the Vector bullet above in "Time-Varying Initial Conditions" on page 9-510. In this case, the k th entry of each 1-by-N entry in the array corresponds to an initial condition for the k th channel of the input matrix. Thus, a 1-by-N-by-D initial conditions input allows you to specify different initial conditions for each channel. For

Integer Delay

instance, for a two-channel ramp input [1:100; 1:100]' with a frame size of 4 and the parameter settings below,

the block outputs the following sequence of frames at the start of the simulation.

$$
\left[\begin{array}{ll}
-1 & -2 \\
-3 & -4 \\
-5 & -6 \\
-7 & -8
\end{array}\right],\left[\begin{array}{cc}
-9 & -10 \\
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7
\end{array}\right], \ldots
$$

Note that the channels have distinct time varying initial conditions; the initial conditions for channel 1 correspond to the first entry of each length-2 row vector in the initial conditions array, and the initial conditions for channel 2 correspond to the second entry of each row vector in the initial conditions array. Only the first five entries in the initial conditions array are used; the rest are ignored.
The 1-by-N-by-D array entry can also specify different fixed initial conditions for every channel; in this case, every 1-by-N entry in the array would be identical, so that the initial conditions for each column are fixed over time.
Initial conditions cannot be specified by full matrices.

Resetting the Delay

The block resets the delay whenever it detects a reset event at the optional Rst port. The reset signal rate must be a positive integer multiple of the rate of the data signal input.

You specify the reset event in the Reset port parameter:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the

Integer Delay

reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Examples

Dialog Box

The dspafxr demo illustrates an audio reverberation system built around the Integer Delay block.

Delay

The number of sample periods to delay the input signal.

Initial conditions

The value of the block's output during the initial delay.

Reset port

Determines the reset event that causes the block to reset the delay. For more information, see "Resetting the Delay" on page 9-512.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- Custom data types
- Boolean - The block accepts Boolean inputs to the Rst port, which is enabled by the Reset port parameter.
- 8 -, 16-, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Unit Delay
Variable Fractional Delay
Variable Integer Delay

Simulink
Signal Processing Blockset
Signal Processing Blockset

Interpolation

Purpose Interpolate values of real input samples
Library Signal Operations

Description

The Interpolation block interpolates each channel of discrete, real, inputs using linear or FIR interpolation. The input can be a sample or frame based vector or matrix. The output is a vector or matrix of the interpolated values, and has the same frame status and frame rate as the input.

You must specify the interpolation points (times at which to interpolate values) in an interpolation vector, I_{n}. An entry of 1 in I_{n} refers to the first sample of the input, an entry of 2.5 refers to the sample half-way between the second and third input sample, and so on. I_{n} must have the same frame status and frame rate as the input, and can be a length- P row or column vector, where P is usually any positive integer.

Usually, the block applies the vector I_{n} to each column of an input matrix, or to each input vector. You can set the block to either apply the same interpolation vector for all input vectors or matrices (static interpolation points), or use a different interpolation vector for each input vector or matrix (time-varying interpolation points).

For more information, see other sections of this reference page.

Sections of This Reference Page

- "Specifying Static Interpolation Points" on page 9-516
- "Specifying Time-Varying Interpolation Points" on page 9-517
- "How the Block Applies Interpolation Vectors to Inputs" on page 9-517
- "Handling Out-of-Range Interpolation Points" on page 9-519
- "Linear Interpolation Mode" on page 9-520
- "FIR Interpolation Mode" on page 9-521
- "Dialog Box" on page 9-522
- "Supported Data Types" on page 9-524

Specifying Static Interpolation Points

To supply the block with a static interpolation vector (an interpolation vector applied to every input vector or matrix), do the following:

- Set the Source of interpolation points parameter to Specify via dialog.
- Enter the interpolation vector in the Interpolation points parameter. To learn about interpolation vectors, see "How the Block Applies Interpolation Vectors to Inputs" on page 9-517.

Specifying Time-Varying Interpolation Points

To supply the block with time-varying interpolation vectors (where the block uses a different interpolation vector for each input vector or matrix), do the following:

1 Set the Source of interpolation points parameter to Input port, the Pts port appears on the block.
2 Generate a signal of interpolation vectors with the same frame status and same frame rate as the input signal, and supply it to the Pts port. The block uses the input to this port as the interpolation points. To learn about interpolation vectors, see "How the Block Applies Interpolation Vectors to Inputs" on page 9-517.

How the Block Applies Interpolation Vectors to Inputs

The interpolation vector I_{n} represents the points in time at which to interpolate values of the input signal. An entry of 1 in I_{n} refers to the first sample of the input, an entry of 2.5 refers to the sample half-way between the second and third input sample, and so on. In most cases, the vector I_{n} can be of any length.

Depending on the dimension and frame status of the input and the dimension of I_{n}, the block usually applies I_{n} to the input in one of the following ways:

- Applies the vector I_{n} to each channel of a matrix input, resulting in a matrix output.
- Applies the vector I_{n} to each input vector (as if the input vector were a single channel), resulting in a vector output with the same orientation as the input (row or column).

The following tables summarize how the block applies the vector I_{n} to all the possible types of sample- and frame-based inputs, and show the resulting output dimensions. (The block applies both static and time-varying interpolation vectors to the input signal in the same way).

Interpolation

How Block Applies Interpolation Vectors to Frame-Based Inputs

Frame-Based Input Dimensions	Dimensions of Interpolation Vector I_{n} (P is a positive integer)	How Block Applies I_{n} to Input	Frame-Based Output Dimensions
M-by-N matrix	P-by-1 column	Applies I_{n} to each input column	P-by-N matrix
	1-by-N row	Applies each column of I_{n} (each element of I_{n}) to the corresponding columns of the input	1-by-N row
M-by-1 column	P-by-1 column	Applies I_{n} to the input column	P-by-1 column
	1-by-P row (block treats as a column)	Applies I_{n} to the input column	P-by-1 column
1-by-N row (not recommended)	P-by-1 column	not applicable	P-by-N matrix where each row is a copy of the input vector
	1-by-P row	not applicable	1-by-N row, a copy of the input vector

How Block Applies Interpolation Vectors to Sample-Based Inputs

Sample-Based Input Dimensions	Dimensions of Interpolation Vector I_{n} (P is any positive integer)	How Block Applies I_{n} to Input	Sample-Based Output Dimensions
M-by-N matrix	P-by-1 column	Applies I_{n} to each input column	P-by-N matrix
M-by-1 column	P-by-1 column	Applies I_{n} to each input (block treats as a column) column	P-by-N matrix
	Applies I_{n} to the input column	P-by-1 column	
1-by-P row			
(block treats as a column)	Applies I_{n} to the input column	P-by-1 column	
	P-by-1 column (block treats as a row)	Applies I_{n} to the input row	1-by-P row
	1-by-P row	Applies I_{n} to the input row	1-by-P row

Handling Out-of-Range Interpolation Points

The valid range of the values in the interpolation vector I_{n} is from 1 to the number of samples in each channel of the input. For instance, given a length- 5 input vector D, all entries of I_{n} must range from 1 to $5 . I_{n}$ cannot contain entries such as 7 or -9 , since there is no 7 th or -9 th entry in D.

The Out of range interpolation points parameter sets how the block handles interpolation points that are not within the valid range, and has the following settings:

- Clip - The block replaces any out-of-range values in I_{n} with the closest value in the valid range (from 1 to the number of input samples), and then proceeds with computations using the clipped version of I_{n}.
- Clip and warn - In addition to Clip, the block issues a warning at the MATLAB command line every time clipping occurs.

Interpolation

- Error - When the block encounters an out-of-range value in I_{n}, the simulation stops and the block issues an error at the MATLAB command line.

Example of Clipping. Suppose the block is set to clip out-of-range interpolation points, and gets the following input vector and interpolation points:

- $D=[11,22,33,44] '$
- $\mathrm{I}_{\mathrm{n}}=[10,2.6,-3]^{\prime}$

Since D has four samples, valid interpolation points range from 1 to 4 . The block clips the interpolation point 10 to 4 and the point -3 to 1 , resulting in the clipped interpolation vector $\mathrm{I}_{\text {nclipped }}=[4,2.6,1]$.

Linear Interpolation Mode

When Interpolation Mode is set to Linear, the block interpolates data values by assuming that the data varies linearly between samples taken at adjacent sample times.

For instance, if the input signal $\mathrm{D}=[1,2,1.5,3,0.25]$ ', the following left-hand plot shows the samples in D, and the right-hand plot shows the linearly interpolated values between the samples in D.

As illustrated below, if the block is in linear interpolation mode and is set to clip out-of-range interpolation points, where

```
- D = [1, 2, 1.5, 3, 0.25]
- In = [-4, 2.7, 4.3, 10]'
```


Interpolation

then the block clips the invalid interpolation points, and outputs the linearly interpolated values in a vector, $[1,1.65,2.175,0.25]^{\prime}$.

$$
D=[1,2,1.5,3,0.25]^{\prime}
$$

$$
\mathrm{I}_{\mathrm{n}}=[-4,2.7,4.3,10]^{\prime}
$$

The valid time range is from 1 to 5 sample periods, so -4 is clipped to 1 , and 10 is clipped to 5 .

Clipped $\mathrm{I}_{\mathrm{n}}=[1,2.7,4.3,5]^{\prime}$

FIR Interpolation Mode

When Interpolation Mode is set to FIR, the block interpolates data values using an FIR interpolation filter, specified by various block parameters. See "FIR Interpolation Mode" on page 9-1028 in the Variable Fractional Delay block reference for more information.

Interpolation

Dialog Box

Source of interpolation points

Choose how you want to specify the interpolation points. If you select Specify via dialog, the Interpolation points parameter become available. Use this option for static interpolation points. If you select Input port, the Pts port appears on the block. The block uses the input to this port as the interpolation points. Use this option for time-varying interpolation points. For more information, see "Specifying Static Interpolation Points" on page 9-516 and "Specifying Time-Varying Interpolation Points" on page 9-517. Nontunable.

Interpolation points

The vector I_{n} of points in time at which to interpolate the input signal. An entry of 1 in I_{n} refers to the first sample of the input, an entry of 2.5 refers to the sample half-way between the second and third input sample, and so on. See "How the Block Applies Interpolation Vectors to Inputs" on page 9-517. Tunable.

Interpolation mode

Sets the block to interpolate by either linear or FIR interpolation. For more information, see "Linear Interpolation Mode" on page 9-520 and "FIR Interpolation Mode" on page 9-521. Nontunable.

Interpolator filter half-length

Half the length of the FIR interpolation filter. For more information, see "FIR Interpolation Mode" on page 9-521. Nontunable.

Interpolation points per input sample

The number Q , where the FIR interpolation filter uses the nearest $2^{*} \mathrm{Q}$ points in the signal to interpolate the value at an interpolation point. When there are less than $2^{*} \mathrm{Q}$ neighboring points, the block uses linear interpolation in place of FIR interpolation. For more information, see "FIR Interpolation Mode" on page 9-521. and "Linear Interpolation Mode" on page 9-520. Nontunable.

Normalized input bandwidth (0 to 1)

The bandwidth of the input divided by Fs/2 (half the input sample frequency). For more information, see "FIR Interpolation Mode" on page 9-521. Nontunable.

Out of range interpolation points

When an interpolation point is out of range, this parameter sets the block to either clip the interpolation point, clip the value and issue a warning at the MATLAB command line, or stop the simulation and issue an error at the MATLAB command line. For more information, see "Handling Out-of-Range Interpolation Points" on page 9-519. Nontunable.

Interpolation

Supported
 Data Types

Port	Supported Data Types
In	• Double-precision floating point
	- Single-precision floating point
Pts	- Double-precision floating point Out
- Dingle-precision floating point - Single-precision floating point floating point	

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Inverse Short-Time FFT

Purpose

Library
Description

Inverse Short-Time FFT

Example

Recover time-domain signals by performing an inverse short-time, fast Fourier transform (FFT)

Transforms

The Inverse Short-Time FFT block reconstructs the time-domain signal from the frequency-domain output of the Short-Time FFT block using a two-step process. First, the block performs the overlap add algorithm shown below.

$$
x[n]=\frac{L}{W(0)} \sum_{p=-\infty}^{\infty}\left[\frac{1}{N} \sum_{k=0}^{N-1} X[p L, k] e^{j 2 \pi k n / N}\right]
$$

Then, the block rebuffers the signal in order to reconstruct the frame-based time-domain signal. Depending on the analysis window used by the Short-Time FFT block, the Inverse Short-Time FFT block might or might not achieve perfect reconstruction of the time domain signal.

Connect your complex-valued, sample-based, single-channel or multichannel input signal to the $\mathrm{X}(\mathrm{n}, \mathrm{k})$ port. The block uses the Overlap between consecutive STFFT frames (in samples) and Samples per output frame parameters as well as the Input is conjugate symmetric check box to reconstruct the original time-domain signal. The real or complex-valued, frame-based, single-channel or multichannel inverse short-time FFT is output at port $x(n)$.

Connect your complex-valued, sample-based or frame-based, single-channel analysis window to the $\mathrm{w}(\mathrm{n})$ port. When you select the Assert if analysis window does not support perfect signal reconstruction check box, the block displays an error when the input signal cannot be perfectly reconstructed. The block uses the values you enter for the Analysis window length (W) and Reconstruction error tolerance, or maximum amount of allowable error in the reconstruction process, to determine if the signal can be perfectly reconstructed.

The dspstsa demo illustrates how to use the Short-Time FFT and Inverse Short-Time FFT blocks to remove the background noise from a speech signal.

Inverse Short-Time FFT

Dialog Box

Overlap between consecutive STFFT frames (in samples)

Enter the number of samples of overlap for each frame of the Short-Time FFT block's input signal. This value should be the same as the Overlap between consecutive windows (in samples) parameter in the Short-Time FFT block parameters dialog box.

Samples per output frame

Enter the desired frame length of the frame-based output signal.

Input is conjugate symmetric

Select this check box when the input to the block is both floating point and conjugate symmetric, and you want real-valued outputs. When you select this check box when the input is not conjugate symmetric, the output of the block is invalid. This parameter cannot be used for fixed-point signals.

Inverse Short-Time FFT

Assert if analysis window does not support perfect signal reconstruction

Select this check box to display an error when the analysis window used by the Short-Time FFT block does not support perfect signal reconstruction.

Analysis window length

Enter the length of the analysis window. This parameter is visible when you select the Assert if analysis window does not support perfect signal reconstruction check box.

Reconstruction error tolerance

Enter the amount of acceptable error in the reconstruction of the original signal. This parameter is visible when you select the Assert if analysis window does not support perfect signal reconstruction check box.

References

Quatieri, Thomas E. Discrete-Time Speech Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 2001.

Supported Data Types

Port	Supported Data Types
$\mathrm{X}(\mathrm{n}, \mathrm{k})$	- Double-precision floating point
	- Single-precision floating point
$\mathrm{w}(\mathrm{n})$	- Double-precision floating point
	- Single-precision floating point
$\mathrm{x}(\mathrm{n})$	- Double-precision floating point
	- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Inverse Short-Time FFT

See Also
Burg Method
Magnitude FFT
Periodogram
Short-Time FFT
Spectrum Scope
Window Function
Yule-Walker Method
pwelch

Signal Processing Blockset
Signal Processing Toolbox

Purpose
Compute filter estimates for inputs using Kalman adaptive filter algorithm

Library

Description

Filtering / Adaptive Filters

The Kalman Adaptive Filter block computes the optimal linear minimum
mean-square estimate (MMSE) of the FIR filter coefficients using a one-step predictor algorithm. This Kalman filter algorithm is based on the following physical realization of a dynamic system.

The Kalman filter assumes that there are no deterministic changes to the filter taps over time (that is, the transition matrix is identity), and that the only observable output from the system is the filter output with additive noise. The corresponding Kalman filter is expressed in matrix form as

$$
\begin{aligned}
g(n) & =\frac{K(n-1) u(n)}{u^{H}(n) K(n-1) u(n)+Q_{M}} \\
y(n) & =u^{H}(n) \hat{w}(n) \\
e(n) & =d(n)-y(n) \\
\hat{w}(n+1) & =\hat{w}(n)+e(n) g(n) \\
K(n) & =K(n-1)-g(n) u^{H}(n) K(n-1)+Q_{P}
\end{aligned}
$$

Kalman Adaptive Filter

The variables are as follows.

Variable	Description
n	The current algorithm iteration
$u(n)$	The buffered input samples at step n
$K(n)$	The correlation matrix of the state estimation error
$g(n)$	The vector of Kalman gains at step n
$\hat{w}(n)$	The vector of filter-tap estimates at step n
$y(n)$	The filtered output at step n
$e(n)$	The estimation error at step n
$d(n)$	The desired response at step n
Q_{M}	The correlation matrix of the measurement noise
Q_{P}	The correlation matrix of the process noise

The correlation matrices, Q_{M} and Q_{P}, are specified in the parameter dialog box by scalar variance terms to be placed along the matrix diagonals, thus ensuring that these matrices are symmetric. The filter algorithm based on this constraint is also known as the random-walk Kalman filter.

The implementation of the algorithm in the block is optimized by exploiting the symmetry of the input covariance matrix $K(n)$. This decreases the total number of computations by a factor of two.

The block icon has port labels corresponding to the inputs and outputs of the Kalman algorithm. Note that inputs to the In and Err ports must be sample-based scalars with the same complexity. The signal at the Out port is a scalar, while the signal at the Taps port is a sample-based vector.

Block Ports	Corresponding Variables
In	u, the scalar input, which is internally buffered into the vector $u(n)$
Out	$y(n)$, the filtered scalar output
Err	$e(n)$, the scalar estimation error Taps

An optional Adapt input port is added when you select the Adapt port check box in the dialog box. When this port is enabled, the block continuously adapts the filter coefficients while the Adapt input is nonzero. A zero-valued input to the Adapt port causes the block to stop adapting, and to hold the filter coefficients at their current values until the next nonzero Adapt input.

The FIR filter length parameter specifies the length of the filter that the Kalman algorithm estimates. The Measurement noise variance and the Process noise variance parameters specify the correlation matrices of the measurement and process noise, respectively. The Measurement noise variance must be a scalar, while the Process noise variance can be a vector of values to be placed along the diagonal, or a scalar to be repeated for the diagonal elements.

The Initial value of filter taps specifies the initial value $w(0)$ as a vector, or as a scalar to be repeated for all vector elements. The Initial error correlation matrix specifies the initial value $K(0)$, and can be a diagonal matrix, a vector of values to be placed along the diagonal, or a scalar to be repeated for the diagonal elements.

Kalman Adaptive Filter

Dialog Box

困Block Parameters: Kalman Adaptive Filter
Kalman Adaptive Filter (mask) (link)
One-step Kalman predictor algorithm for adaptive FIR filtering of input signal.
Select the Adapt port check box to create an Adapt port on the block. When the input
to this port is nonzero, the block enables filter adaptation. When the input to this port is
zero, filter adaptation is disabled.
If the Reset port is enabled and a reset event occurs, the block resets the filter weights
to their initial values.
Parameters
FIR filter length:
64
Measurement noise variance:
0.3
Process noise variance:
0.1
Initial value of filter taps:
0
Initial error correlation matrix:
0.5
Adapt port
Reset port: None

FIR filter length

The length of the FIR filter.

Measurement noise variance

The value to appear along the diagonal of the measurement noise correlation matrix. Tunable.

Process noise variance

The value to appear along the diagonal of the process noise correlation matrix. Tunable.

Initial value of filter taps

The initial FIR filter coefficients.

Initial error correlation matrix

The initial value of the error correlation matrix.

Adapt port

Enables the Adapt port.

References

Supported
Data Types

See Also

Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

LMS Adaptive Filter RLS Adaptive Filter
Signal Processing Blockset
Signal Processing Blockset

See "Adaptive Filters" on page 3-53 for related information.

LDL Factorization

Purpose

Library
Description

Factor square Hermitian positive definite matrices into lower, upper, and diagonal components

Math Functions / Matrices and Linear Algebra / Matrix Factorizations
The LDL Factorization block uniquely factors the square Hermitian positive definite input matrix S as

$$
S=L D L^{*}
$$

where L is a lower triangular square matrix with unity diagonal elements, D is a diagonal matrix, and L^{*} is the Hermitian (complex conjugate) transpose of L. Only the diagonal and lower triangle of the input matrix are used, and any imaginary component of the diagonal entries is disregarded.

The block's output is a composite matrix with lower triangle elements $l_{i j}$ from L, diagonal elements $d_{i j}$ from D, and upper triangle elements $u_{i j}$ from L^{*}. It is always sample based. The output format is shown below for a 5 -by- 5 matrix.

d_{11}	u_{12}	u_{13}	u_{14}	u_{15}
l_{21}	d_{22}	u_{23}	u_{24}	u_{25}
l_{31}	l_{32}	d_{33}	u_{34}	u_{35}
l_{41}	l_{42}	l_{43}	d_{44}	u_{45}
l_{51}	l_{52}	l_{53}	l_{54}	d_{55}

$$
u_{i j}=l_{j i}^{*}
$$

LDL factorization requires half the computation of Gaussian elimination (LU decomposition), and is always stable. It is more efficient that Cholesky factorization because it avoids computing the square roots of the diagonal elements.

The algorithm requires that the input be square and Hermitian positive definite. When the input is not positive definite, the block reacts with the behavior specified by the Non-positive definite input parameter.

The following options are available:

- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid factorization. A partial factorization will be present in the upper left corner of the output.
- Warning - Display a warning message in the MATLAB Command Window, and continue the simulation. The output is not a valid factorization. A partial factorization will be present in the upper left corner of the output.
- Error - Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog box, it is set to Ignore in the Real-Time Workshop code generated for this block.

Examples

LDL decomposition of a 3-by-3 Hermitian positive definite matrix:

$\mathrm{L}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -0.11 & 1 & 0 \\ 0.22 & -0.61 & 1\end{array}\right] \quad \mathrm{D}=\left[\begin{array}{ccc}9.00 & 0 & 0 \\ 0 & 7.89 & 0 \\ 0 & 0 & 3.66\end{array}\right] \quad \mathrm{L}^{\prime}=\left[\begin{array}{ccc}1 & -0.11 & 0.22 \\ 0 & 1 & -0.61 \\ 0 & 0 & 1\end{array}\right]$

Dialog Box

Non-positive definite input

Response to nonpositive definite matrix inputs.
\(\left.$$
\begin{array}{ll}\text { References } & \begin{array}{l}\text { Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. } \\
\text { Baltimore, MD: Johns Hopkins University Press, 1996. }\end{array} \\
\begin{array}{l}\text { Supported } \\
\text { Data Types }\end{array} & \begin{array}{l}\text { - Double-precision floating point }\end{array}
$$

\& - Single-precision floating point

\& To learn how to convert your data types to the above data types in MATLAB

and Simulink, see "Supported Data Types and How to Convert to Them" on\end{array}\right]\)| page 7-2. |
| :--- |

Compute inverse of Hermitian positive definite matrix using LDL factorization
Math Functions / Matrices and Linear Algebra / Matrix Inverses
The LDL Inverse block computes the inverse of the Hermitian positive definite
input matrix S by performing an LDL factorization.

$$
S^{-1}=\left(L D L^{*}\right)^{-1}
$$

L is a lower triangular square matrix with unity diagonal elements, D is a diagonal matrix, and L^{*} is the Hermitian (complex conjugate) transpose of L. Only the diagonal and lower triangle of the input matrix are used, and any imaginary component of the diagonal entries is disregarded. The output is always sample based.

LDL factorization requires half the computation of Gaussian elimination (LU decomposition), and is always stable. It is more efficient than Cholesky factorization because it avoids computing the square roots of the diagonal elements.

The algorithm requires that the input be Hermitian positive definite. When the input is not positive definite, the block reacts with the behavior specified by the Non-positive definite input parameter. The following options are available:

- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid inverse.
- Warning - Display a warning message in the MATLAB command window, and continue the simulation. The output is not a valid inverse.
- Error - Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog box, it is set to Ignore in the Real-Time Workshop code generated for this block.

LDL Inverse

Dialog Box

References

Supported Data Types

See Also

Non-positive definite input

Response to nonpositive definite matrix inputs.
Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Cholesky Inverse	Signal Processing Blockset
LDL Factorization	Signal Processing Blockset
LDL Solver	Signal Processing Blockset
LU Inverse	Signal Processing Blockset
Pseudoinverse	Signal Processing Blockset
inv	MATLAB

See "Inverting Matrices" on page 6-9 for related information.

Algorithm

Purpose
Library

Description

Solve $\mathrm{S} X=\mathrm{B}$ for X when S is square Hermitian positive definite matrix
Math Functions / Matrices and Linear Algebra / Linear System Solvers
The LDL Solver block solves the linear system $\mathrm{S} X=\mathrm{B}$ by applying LDL factorization to the matrix at the S port, which must be square ($\mathrm{M}-\mathrm{by}-\mathrm{M}$) and Hermitian positive definite. Only the diagonal and lower triangle of the matrix are used, and any imaginary component of the diagonal entries is disregarded. The input to the B port is the right side M-by-N matrix, B . The output is the unique solution of the equations, M-by-N matrix X, and is always sample based.

A length-M 1-D vector input for right side B is treated as an M-by-1 matrix.
When the input is not positive definite, the block reacts with the behavior specified by the Non-positive definite input parameter. The following options are available:

- Ignore - Proceed with the computation and do not issue an alert. The output is not a valid solution.
- Warning - Proceed with the computation and display a warning message in the MATLAB Command Window. The output is not a valid solution.
- Error - Display an error dialog box and terminate the simulation.

Note The Non-positive definite input parameter is a diagnostic parameter. Like all diagnostic parameters on the Configuration Parameters dialog box, it is set to Ignore in the Real-Time Workshop code generated for this block.

The LDL algorithm uniquely factors the Hermitian positive definite input matrix S as

$$
S=L D L^{*}
$$

where L is a lower triangular square matrix with unity diagonal elements, D is a diagonal matrix, and L^{*} is the Hermitian (complex conjugate) transpose of L.

The equation
$L D L^{*} X=B$
is solved for X by the following steps:
1 Substitute

$$
Y=D L^{*} X
$$

2 Substitute

$$
Z=L^{*} X
$$

3 Solve one diagonal and two triangular systems.

$$
\begin{aligned}
& L Y=B \\
& D Z=Y \\
& L^{*} X=Z
\end{aligned}
$$

Dialog Box

Non-positive definite input

Response to nonpositive definite matrix inputs.

Supported Data Types

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Autocorrelation LPC
Cholesky Solver
LDL Factorization
LDL Inverse
Levinson-Durbin
LU Solver
QR Solver

Signal Processing Blockset

See "Solving Linear Systems" on page 6-6 for related information.

Least Squares FIR Filter Design

Note The Least Squares FIR Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

Purpose	Design and implement a least-squares FIR filter.
Library	dspobslib
Description	The Least Squares FIR Filter Design block designs an FIR filter and applies it to a discrete-time input using the Direct Form II Transpose Filter block. The filter design uses the firls function in the Signal Processing Toolbox to minimize the integral of the squared error between the desired frequency response and the actual frequency response.

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The Filter type parameter allows you to specify one of the following filters:

- Multiband

The Multiband filter designs a linear-phase filter with an arbitrary magnitude response.

- Differentiator

The Differentiator filter approximates the ideal differentiator. Differentiators are antisymmetric FIR filters with approximately linear magnitude responses. To obtain the correct derivative, scale the Gains at these frequencies vector by $\pi \mathrm{F}_{\mathrm{s}} \mathrm{rad} / \mathrm{s}$, where F_{s} is the sample frequency in Hertz.

- Hilbert Transformer

The Hilbert Transformer filter approximates the ideal Hilbert transformer. Hilbert transformers are antisymmetric FIR filters with approximately constant magnitude.

Least Squares FIR Filter Design

The Band-edge frequency vector parameter is a vector of frequency points in the range 0 to 1 , where 1 corresponds to half the sample frequency. This vector must have even length, and intermediate points must appear in ascending order. The Gains at these frequencies parameter is a vector containing the desired magnitude response at the corresponding points in the Band-edge frequency vector.

Each odd-indexed frequency-amplitude pair defines the left endpoint of a line segment representing the desired magnitude response in that frequency band. The corresponding even-indexed frequency-amplitude pair defines the right endpoint. Between the frequency bands specified by these end-points, there may be undefined sections of the specified frequency response. These are called "don't care" or "transition" regions, and the magnitude response in these areas is a result of the optimization in the other (specified) frequency ranges.

The Weights parameter is a vector that specifies the emphasis to be placed on minimizing the error in certain frequency bands relative to others. This vector specifies one weight per band, so it is half the length of the Band-edge frequency vector and Gains at these frequencies vectors.

In most cases, differentiators and Hilbert transformers have only a single band, so the weight is a scalar value that does not affect the final filter.

Least Squares FIR Filter Design

However, the Weights parameter is useful when using the block to design an antisymmetric multiband filter, such as a Hilbert transformer with stopbands.

For more information on the Band-edge frequency vector, Gains at these frequencies, and Weights parameters, see see the "Filter Designs" section of the Signal Processing Toolbox documentation. For more on the FIR filter algorithm, see the description of the firls function in the Signal Processing Toolbox documentation.

Examples Example 1: Multiband

Consider a lowpass filter with a transition band in the normalized frequency range 0.4 to 0.5 , and 10 times more error minimization in the stopband than the passband. In this case,

- Filter type = Multiband
- Band-edge frequency vector $=\left[\begin{array}{llll}0 & 0.4 & 0.5 & 1\end{array}\right]$
- Gains at these frequencies $=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]$
- Weights = [$\left.1 \begin{array}{ll}1 & 10\end{array}\right]$

Example 2: Differentiator

Assume the specifications for a differentiator filter require it to have order 21. The "ramp" response extends over the entire frequency range. In this case, specify:

- Filter type = Differentiator

- Filter order = 21
- Band-edge frequency vector $=\left[\begin{array}{ll}0 & 1\end{array}\right]$
- Gains at these frequencies $=[0 \mathrm{pi} * \mathrm{Fs}]$

For a type III (even order) filter, the differentiation band should stop short of half the sample frequency. For example, if the filter order is 20 , you could specify the block parameters as follows:

- Filter type = Differentiator
- Filter order $=20$
- Band-edge frequency vector $=\left[\begin{array}{ll}0 & 0.9\end{array}\right]$
- Gains at these frequencies $=\left[\begin{array}{ll}0 & 0.9 * \mathrm{pi} * \mathrm{Fs}\end{array}\right]$

Least Squares FIR Filter Design

Example 3: Hilbert Transformer

Assume the specifications for a Hilbert transformer filter require it to have order 21. The passband extends over approximately the entire frequency range. In this case, specify:

- Filter type = Hilbert Transform
- Filter order = 21
- Band-edge frequency vector $=\left[\begin{array}{ll}0.1 & 1\end{array}\right]$
- Gains at these frequencies $=\left[\begin{array}{ll}1 & 1\end{array}\right]$

Dialog Box

Filter type

The filter type. Tunable.

Filter order

The filter order.

Band-edge frequency vector

A vector of frequency points, in ascending order, in the range 0 to 1 . The value 1 corresponds to half the sample frequency. This vector must have even length. Tunable.

Least Squares FIR Filter Design

Gains at these frequencies

A vector of frequency-response amplitudes corresponding to the points in the Band-edge frequency vector. This vector must be the same length as the Band-edge frequency vector. Tunable.

Weights

A vector containing one weight for each frequency band. This vector must be half the length of the Band-edge frequency vector and Gains at these frequencies vectors. Tunable.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.
Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Least Squares Polynomial Fit

Purpose
Library
Description

Polyfit

Compute polynomial coefficients that best fit input data in least squares sense

Math Functions / Polynomial Functions

The Least Squares Polynomial Fit block computes the coefficients of the nth order polynomial that best fits the input data in the least squares sense, where you specify n in the Polynomial order parameter. A distinct set of $n+1$ coefficients is computed for each column of the M-by-N input, u.

For a given input column, the block computes the set of coefficients, $c_{1}, c_{2}, \ldots, c_{n+1}$, that minimizes the quantity

$$
\sum_{i=1}^{M}\left(u_{i}-\hat{u}_{i}\right)^{2}
$$

where u_{i} is the i th element in the input column, and

$$
\hat{u}_{i}=f\left(x_{i}\right)=c_{1} x_{i}^{n}+c_{2} x_{i}^{n-1}+\cdots+c_{n+1}
$$

The values of the independent variable, $x_{1}, x_{2}, \ldots, x_{\mathrm{M}}$, are specified as a length-M vector by the Control points parameter. The same M control points are used for all N polynomial fits, and can be equally or unequally spaced. The equivalent MATLAB code is shown below.

$$
c=\text { polyfit }(x, u, n) \quad \text { \% Equivalent MATLAB code }
$$

Inputs can be frame based or sample based. For convenience, a length-M 1-D vector input is treated as an M-by- 1 matrix.

Each column of the $(n+1)$-by- N output matrix, c, represents a set of $n+1$ coefficients describing the best-fit polynomial for the corresponding column of the input. The coefficients in each column are arranged in order of descending exponents, $c_{1}, c_{2}, \ldots, c_{n+1}$. The output is always sample based.

In the model below, the Polynomial Evaluation block uses the second-order polynomial

$$
y=-2 u^{2}+3
$$

Least Squares Polynomial Fit

to generate four values of dependent variable y from four values of independent variable u, received at the top port. The polynomial coefficients are supplied in the vector [-2 0 3] at the bottom port. Note that the coefficient of the first-order term is zero.

The Control points parameter of the Least Squares Polynomial Fit block is configured with the same four values of independent variable u that are used as input to the Polynomial Evaluation block, $\left[\begin{array}{lll}1 & 2 & 3\end{array} 4\right.$ 4]. The Least Squares Polynomial Fit block uses these values together with the input values of dependent variable y to reconstruct the original polynomial coefficients.

Dialog Box

Control points

The values of the independent variable to which the data in each input column correspond. For an M-by-N input, this parameter must be a length-M vector. Tunable.

Polynomial order

The order, n, of the polynomial to be used in constructing the best fit. The number of coefficients is $n+1$. Nontunable.

Least Squares Polynomial Fit

Supported	- Double-precision floating point
Data Types	- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Detrend
Polynomial Evaluation
Polynomial Stability Test polyfit

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
MATLAB

Levinson-Durbin

Purpose
Library
Description

Solve linear system of equations using Levinson-Durbin recursion
Math Functions / Matrices and Linear Algebra / Linear System Solvers
The Levinson-Durbin block solves the n th-order system of linear equations

$$
R a=b
$$

for the particular case where R is a Hermitian, positive-definite, Toeplitz matrix and b is identical to the first column of R shifted by one element and with the opposite sign.

$$
\left[\begin{array}{cccc}
r(1) & r^{*}(2) & \cdots & r^{*}(n) \\
r(2) & r(1) & \cdots & r^{*}(n-1) \\
\vdots & \vdots & \ddots & \vdots \\
r(n) & r(n-1) & \cdots & r(1)
\end{array}\right]\left[\begin{array}{c}
\mathrm{a}(2) \\
\mathrm{a}(3) \\
\vdots \\
\mathrm{a}(n+1)
\end{array}\right]=\left[\begin{array}{c}
-r(2) \\
-r(3) \\
\vdots \\
-r(n+1)
\end{array}\right]
$$

The input to the block, $r=[r(1) r(2) \ldots r(n+1)]$, can be a 1-D or 2-D vector (row or column). It contains lags 0 through n of an autocorrelation sequence, which appear in the matrix R.

The block can output the polynomial coefficients, A, the reflection coefficients, K, and the prediction error power, P, in various combinations. The Output(s) parameter allows you to enable the A and K outputs by selecting one of the following settings:

- A — Port A outputs $A=\left[\begin{array}{ccc}1 & a(2) & a(3) \ldots a(n+1)\end{array}\right]$, the solution to the Levinson-Durbin equation. A has the same dimension as the input. The elements of the output can also be viewed as the coefficients of an n th-order autoregressive (AR) process (see below).
- K — Port K outputs $K=[k(1) k(2) \ldots k(n)]$, which contains n reflection coefficients, and has the same dimension as the input, less one element. (A scalar input causes an error when you select K.) Reflection coefficients are useful for realizing a lattice representation of the AR process described below.
- A and K - The block outputs both representations at their respective ports. (A scalar input causes an error when you select A and K.)

Both A and K are always 1-D vectors.

Levinson-Durbin

The prediction error power, P, (a scalar), is output when you select the Output prediction error power (\mathbf{P}) check box. P represents the power of the output of an FIR filter with taps A and input autocorrelation described by r, where A represents a prediction error filter and r is the input to the block. (In this case, A is a whitening filter).

When you select the If the value of lag $\mathbf{0}$ is zero, $\mathbf{A}=[1$ zeros], $K=[z e r o s], P=0$ check box (default), an input whose $r(1)$ element is zero generates a zero-valued output. When you do not select this check box, an input with $r(1)=0$ generates NaNs in the output. In general, an input with $r(1)=0$ is invalid because it does not construct a positive-definite matrix R; however, it is common for blocks to receive zero-valued inputs at the start of a simulation. The check box allows you to avoid propagating NaNs during this period.

Applications

One application of the Levinson-Durbin formulation above is in the Yule-Walker AR problem, which concerns modeling an unknown system as an autoregressive process. Such a process would be modeled as the output of an all-pole IIR filter with white Gaussian noise input. In the Yule-Walker problem, the use of the signal's autocorrelation sequence to obtain an optimal estimate leads to an $R a=b$ equation of the type shown above, which is most efficiently solved by Levinson-Durbin recursion. In this case, the input to the block represents the autocorrelation sequence, with r (1) being the zero-lag value. The output at the block's A port then contains the coefficients of the autoregressive process that optimally models the system. The coefficients are ordered in descending powers of z, and the AR process is minimum phase. The prediction error, G, defines the gain for the unknown system, where $G=\sqrt{P}$.

$$
H(z)=\frac{G}{A(z)}=\frac{G}{1+a(2) z^{-1}+\ldots+a(n+1) z^{-n}}
$$

The output at the block's K port contains the corresponding reflection coefficients, [$k(1) k(2) \ldots k(\mathrm{n})$], for the lattice realization of this IIR filter. The Yule-Walker AR Estimator block implements this autocorrelation-based method for AR model estimation, while the Yule-Walker Method block extends the method to spectral estimation.

Another common application of the Levinson-Durbin algorithm is in linear predictive coding, which is concerned with finding the coefficients of a moving

Levinson-Durbin

average (MA) process (or FIR filter) that predicts the next value of a signal from the current signal sample and a finite number of past samples. In this case, the input to the block represents the signal's autocorrelation sequence, with r (1) being the zero-lag value, and the output at the block's A port contains the coefficients of the predictive MA process (in descending powers of z).

$$
H(z)=A(z)=1+a(2) z^{-1}+\ldots+a(n+1) z^{-n}
$$

These coefficients solve the optimization problem below.

$$
\min _{\left\{a_{i}\right\}} \quad E\left[\left|x_{n}-\sum_{i=1}^{N} a_{i} x_{n-i}\right|^{2}\right]
$$

Again, the output at the block's K port contains the corresponding reflection coefficients, $[k(1) k(2) \ldots k(n)]$, for the lattice realization of this FIR filter. The Autocorrelation LPC block in the Linear Prediction library implements this autocorrelation-based prediction method.

Fixed-Point Data Types

The diagrams in this section show the data types used within the Levinson-Durbin block for fixed-point signals.

After initialization, n updates are performed. At the ($j+1$) update,

$$
\text { value in accumulator }=r(j+1)+\sum a_{j}(i) \times r(j-i+1)
$$

Levinson-Durbin

The diagram below displays the fixed-point data types used in this calculation:

The reflection coefficients K are then updated according to

$$
K_{j+1}=\text { value in accumulator } / P_{j}
$$

The prediction error power P is then updated according to

$$
P_{j+1}=P_{j}-P_{j} \times K_{j+1} \times \operatorname{conj}\left(K_{j+1}\right)
$$

The diagram below displays the fixed-point data types used in this calculation:

The polynomial coefficients A are then updated according to

$$
a_{j+1}(i)=a_{j}(i)+K_{j+1} \times \operatorname{conj}\left(a_{j}(j-1+i)\right)
$$

Levinson-Durbin

The diagram below displays the fixed-point data types used in this calculation:

Algorithm The algorithm requires $O\left(n^{2}\right)$ operations, and is thus much more efficient for

 large n than standard Gaussian elimination, which requires $O\left(n^{3}\right)$ operations.Dialog Box The Main pane of the Levinson-Durbin block dialog appears as follows:

Levinson-Durbin

Output(s)

Specify the solution representation of $\mathrm{R} a=\mathrm{b}$ to output: model coefficients (A), reflection coefficients (K), or both (A and K). For scalar inputs, this parameter must be set to A.

Output prediction error power (\mathbf{P})

Select to output the prediction error at port P.

If the value of lag 0 is zero, $A=[1$ zeros], $K=[z e r o s], P=0$

Set to output a zero-vector for inputs having $r(1)=0$. Otherwise, the block outputs NaNs for these inputs.

The Fixed-point pane of the Levinson-Durbin block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Levinson-Durbin

A
Use this parameter to designate how you would like to specify the word and fraction lengths of the polynomial coefficients (A). Refer to "Fixed-Point Data Types" on page 9-552 for illustrations depicting the use of the polynomial coefficients data type in this block.

- When you select Binary point scaling, you are able to enter the word length and fraction length of A, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of A. This block requires power-of-two slope and a bias of zero.

K

Use this parameter to designate how you would like to specify the word and fraction lengths of the reflection coefficients (K). Refer to "Fixed-Point Data Types" on page 9-552 for illustrations depicting the use of the reflection coefficients data type in this block.

- When you select Binary point scaling, you are able to enter the word length and fraction length of K, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of K. This block requires power-of-two slope and a bias of zero.

P
Use this parameter to designate how you would like to specify the word and fraction lengths of the prediction error power (P). Refer to "Fixed-Point Data Types" on page 9-552 for illustrations depicting the use of the prediction error power data type in this block.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and fraction length of P, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of P. This block requires power-of-two slope and a bias of zero.

Product output

Use this parameter to designate how you would like to specify the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-552 for illustrations depicting the use of the product output data type in this block.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to designate how you would like to specify the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-552 for illustrations depicting the use of the accumulator data type in this block.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

References
Golub, G. H., and C. F. Van Loan. Sect. 4.7 in Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

Ljung, L. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice Hall, 1987. Pgs. 278-280.

Kay, Steven M., Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice Hall, 1988.

Levinson-Durbin

Note The LMS Adaptive Filter block is still supported but is likely to be obsoleted in a future release. We recommend replacing this block with the LMS Filter block.

Purpose

Library

Description

Compute filter estimates for an input using the LMS adaptive filter algorithm
Filtering / Adaptive Filters
The LMS Adaptive Filter block implements an adaptive FIR filter using the stochastic gradient algorithm known as the normalized least mean-square (LMS) algorithm.

$$
\begin{aligned}
& y(n)=\hat{w}^{H}(n-1) u(n) \\
& e(n)=d(n)-y(n) \\
& \hat{w}(n)=\hat{w}(n-1)+\frac{u(n)}{a+u^{H}(n) u(n)} \mu e^{*}(n)
\end{aligned}
$$

The variables are as follows.

Variable	Description
n	The current algorithm iteration
$u(n)$	The buffered input samples at step n
$\hat{w}(n)$	The vector of filter-tap estimates at step n
$y(n)$	The filtered output at step n
$e(n)$	The estimation error at step n
$d(n)$	The desired response at step n
μ	The adaptation step size

To overcome potential numerical instability in the tap-weight update, a small positive constant ($a=1 \mathrm{e}-10$) has been added in the denominator.

To turn off normalization, clear the Use normalization check box in the parameter dialog box. The block then computes the filter-tap estimate as

$$
w(n)=w(n-1)+u(n) \mu e^{*}(n)
$$

The block icon has port labels corresponding to the inputs and outputs of the LMS algorithm. Note that inputs to the In and Err ports must be sample-based scalars. The signal at the Out port is a scalar, while the signal at the Taps port is a sample-based vector.

Block Ports	Corresponding Variables
In	u, the scalar input, which is internally buffered into the vector $u(n)$
Out	$y(n)$, the filtered scalar output
Err	$e(n)$, the scalar estimation error
Taps	$\hat{w}(n)$, the vector of filter-tap estimates

An optional Adapt input port is added when you select the Adapt input check box in the dialog box. When this port is enabled, the block continuously adapts the filter coefficients while the Adapt input is nonzero. A zero-valued input to the Adapt port causes the block to stop adapting, and to hold the filter coefficients at their current values until the next nonzero Adapt input.

The FIR filter length parameter specifies the length of the filter that the LMS algorithm estimates. The Step size parameter corresponds to μ in the equations. Typically, for convergence in the mean square, μ must be greater than 0 and less than 2. The Initial value of filter taps specifies the initial value $w(0)$ as a vector, or as a scalar to be repeated for all vector elements. The Leakage factor specifies the value of the leakage factor, $1-\mu \alpha$, in the leaky LMS algorithm below. This parameter must be between 0 and 1.

$$
\hat{\omega}(n+1)=(1-\mu \alpha) \hat{\omega}(n)+\frac{u(n)}{u^{H}(n) u(n)} \mu e^{*}(n)
$$

Examples

The imsdemo demo illustrates a noise cancellation system built around the LMS Adaptive Filter block.

Dialog Box

FIR filter length

The length of the FIR filter.

Step-size

The step-size, usually in the range $(0,2)$. Tunable.

Initial value of filter taps

The initial FIR filter coefficients.

Leakage factor

The leakage factor, in the range [0, 1]. Tunable.

Use normalization

Select this check box to compute the filter-tap estimate using the normalized equations.

Adapt input

Enables the Adapt port when selected.

Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

Supported Data Types	- Double-precision floating point - Single-precision floating point
	To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.
	Kalman Adaptive Filter Signal Processing Blockset RLS Adaptive Filter See "Adaptive Filters" on page 3-53 for related information.

Purpose

Library

Description

Compute filtered output, filter error, and filter weights for a given input and desired signal using LMS adaptive filter algorithm

Filtering / Adaptive Filters

The LMS Filter block can implement an adaptive FIR filter using five different algorithms. The block estimates the filter weights, or coefficients, needed to minimize the error, $e(n)$, between the output signal, $y(n)$, and the desired signal, $d(n)$. Connect the signal you want to filter to the Input port. This input signal can be a sample-based scalar or a single-channel frame-based signal. Connect the desired signal to the Desired port. The desired signal must have the same data type, frame status, complexity, and dimensions as the input signal. The Output port outputs the filtered input signal, which is the estimate of the desired signal. The output of the Output port has the same frame status as the input signal. The Error port outputs the result of subtracting the output signal from the desired signal.
When you select LMS for the Algorithm parameter, the block calculates the filter weights using the least mean-square (LMS) algorithm. This algorithm is defined by the following equations.

$$
\begin{aligned}
y(n) & =\mathbf{w}^{T}(n-1) \mathbf{u}(n) \\
e(n) & =d(n)-y(n) \\
\mathbf{w}(n) & =\mathbf{w}(n-1)+f(\mathbf{u}(n), e(n), \mu)
\end{aligned}
$$

The weight update function, for the LMS adaptive filter algorithm, is defined as

$$
f(\mathbf{u}(n), e(n), \mu)=\mu e(n) \mathbf{u}^{*}(n)
$$

The variables are as follows.

Variable	Description
n	The current time index
$\mathbf{u}(n)$	The vector of buffered input samples at step n

Variable	Description
$\mathbf{u *}(n)$	The complex conjugate of the vector of buffered input samples at step n
$\mathbf{w}(n)$	The vector of filter weight estimates at step n
$y(n)$	The filtered output at step n
$e(n)$	The estimation error at step n
$d(n)$	The desired response at step n
μ	The adaptation step size

When you select Normalized LMS for the Algorithm parameter, the block calculates the filter weights using the normalized LMS algorithm. The weight update function, for the normalized LMS algorithm, is defined as

$$
f(\mathbf{u}(n), e(n), \mu)=\mu e(n) \frac{\mathbf{u}^{*}(n)}{a+\mathbf{u}^{H}(n) \mathbf{u}(n)}
$$

To overcome potential numerical instability in the update of the weights, a small positive constant, epsilon, has been added in the denominator. For double-precision floating point input, epsilon is $2.2204460492503131 \mathrm{e}-016$. For single-precision floating point input, epsilon is 1.192092896e-07.

When you select Sign-Error LMS for the Algorithm parameter, the block calculates the filter weights using the LMS algorithm equations. However, each time the block updates the weights, it replaces the error term, $e(n)$, with +1 when the error term is positive or -1 when the error term is negative.

When you select Sign-Data LMS for the Algorithm parameter, the block calculates the filter weights using the LMS algorithm equations. However, each time the block updates the weights, it replaces each sample of the input vector, $\mathbf{u}(n)$, with +1 when the input sample is positive or -1 is the input sample is negative.

When you select Sign-Sign LMS for the Algorithm parameter, the block calculates the filter weights using the LMS algorithm equations. However, each time the block updates the weights, it replaces the error term, $e(n)$, with +1 when the error term is positive or -1 is the error term is negative. It also
replaces each sample of the input vector, $\mathbf{u}(n)$, with +1 when the input sample is positive or -1 is the input sample is negative.

Use the Filter length parameter to specify the length of the filter weights vector.

The Step size (mu) parameter corresponds to μ in the equations. For convergence of the normalized LMS equations, $0<\mu<2$. You can either specify a step size using the input port, Step-size, or by entering a value in the Block Parameters: LMS Filter dialog box.

Use the Leakage factor ($\mathbf{0}$ to 1) parameter to specify the leakage factor, $1-\mu \alpha$, where $0<1-\mu \alpha \leq 1$, in the leaky LMS algorithm shown below.

$$
\mathbf{w}(n)=(1-\mu \alpha) \mathbf{w}(n-1)+f(\mathbf{u}(n), e(n), \mu)
$$

When you select LMS from the Algorithm list, the weight update function in the above equation is the LMS weight update function. When you select Normalized LMS from the Algorithm list, the weight update function in the above equation is the normalized LMS weight update function.

Enter the initial filter weights, w(0), as a vector or a scalar in the Initial value of filter weights text box. When you enter a scalar, the block uses the scalar value to create a vector of filter weights. This vector has length equal to the filter length and all of its values are equal to the scalar value.
When you select the Adapt port check box, an Adapt port appears on the block. When the input to this port is greater than zero, the block continuously updates the filter weights. When the input to this port is less than or equal to zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset port parameter. The block resets the filter weights whenever a reset event is detected at the Reset port. The reset signal rate must be the same rate as the data signal input.

From the Reset port list, select None to disable the Reset port. To enable the Reset port, select one of the following from the Reset port list:

- Rising edge - Triggers a reset operation when the Reset input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (See the following figure.)

- Falling edge - Triggers a reset operation when the Reset input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Reset input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Reset input is not zero

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame
delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the block outputs the current updated filter weights from this port.

Fixed-Point Data Types

The following diagrams show the data types used within the LMS Filter block for fixed-point signals; the table summarizes the definitions of variables used in the diagrams:

Variable	Definition
\mathbf{X} (u in the LMS Filter equations)	Input vector
\mathbf{W}	Vector of filter weights
mu	Step size
e	Error $\quad Q=\frac{m u^{*} e}{X^{\prime} X}$
Q	Quotient,
Product $\mathbf{X} \mathbf{X}$	Product data type in Energy calculation diagram
Accumulator $\mathbf{X} \mathbf{X}$	Accumulator data type in Energy calculation diagram
Product $\mathbf{W}^{\prime} \mathbf{X}$	Product data type in Convolution diagram
Accumulator $\mathbf{W}^{\prime} \mathbf{X}$	Accumulator data type in Convolution diagram

Variable	Definition
Product $\mathrm{mu}^{*} \mathrm{e}$	Product data type in Product of step size and error diagram
Product $\mathrm{Q}^{*} \mathbf{X}$	Product and accumulator data type in Weight update diagram
a. The accumulator data type for this quantity is automatically set to be the same as the product data type. The minimum, maximum, and overflow information for this accumulator is logged as part of the product information. Autoscaling treats this product and accumulator as one data type.	

Energy calculation (for normalized LMS algorithm only)

Convolution

0

Quotient (for normalized LMS only)

Weight update

You can set the data type of the parameters, weights, products, quotient, and accumulators in the block mask.

Fixed-point inputs, outputs, and mask parameters of this block must have the following characteristics:

- The input signal and the desired signal must have the same word length, but their fraction lengths can differ.
- The step size and leakage factor must have the same word length, but their fraction lengths can differ.
- The output signal and the error signal have the same word length and the same fraction length as the desired signal.
- The quotient and the product output of the $\mathbf{X} \mathbf{X}, \mathbf{W}^{\prime} \mathbf{X}, \mathrm{mu}^{*} \mathrm{e}$, and $\mathrm{Q}^{*} \mathbf{X}$ operations must have the same word length, but their fraction lengths can differ.
- The accumulator data type of the $\mathbf{X}^{\prime} \mathbf{X}$ and $\mathbf{W} \mathbf{X}$ operations must have the same word length, but their fraction lengths can differ.

The output of the multiplier is in the product output data type if at least one of the inputs to the multiplier is real. If both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

Dialog Box

Algorithm

Choose the algorithm used to calculate the filter weights.

Filter length

Enter the length of the FIR filter weights vector.

Specify step size via

Select Dialog to enter a value for step size in the Block parameters: LMS Filter dialog box. Select Input port to specify step size using the Step-size input port.

Step size (mu)

Enter the step size. Tunable.

Leakage factor (0 to 1)

Enter the leakage factor, $0<1-\mu \alpha \leq 1$. Tunable.

Initial value of filter weights

Specify the initial values of the FIR filter weights.

Adapt port

Select this check box to enable the Adapt input port.

Reset port

Select this check box to enable the Reset input port.

Output filter weights

Select this check box to export the filter weights from the Wts port.
The Fixed-point pane of the LMS Filter block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Parameters

This parameter is visible if, for the Specify step size via parameter, you choose Dialog. Choose how you will specify the word length and the fraction length of the leakage factor and step size:

- When you select Same word length as first input, the word length of the leakage factor and step size will match that of the first input to the block. In this mode, the fraction length of the leakage factor and step size is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you are able to enter the word length of the leakage factor and step size, in bits. In this mode, the fraction length of the leakage factor and step size is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the leakage factor and step size, in bits. The leakage factor and the step size must have the same word length, but the fraction lengths can differ.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the leakage factor and step size. The leakage factor and the step size must have the same word length, but the slopes can differ. This block requires a power-of-two slope and a bias of zero.

If, for the Specify step size via parameter, you choose Input port, the word length of the leakage factor is the same as the word length of the step size input at the Step size port. The fraction length of the leakage factor is automatically set to the best precision possible based on the word length of the leakage factor.

Weights

Choose how you will specify the word length and fraction length of the filter weights of the block:

- When you select Same as first input, the word length and fraction length of the filter weights will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the filter weights, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the filter weights. This block requires a power-of-two slope and a bias of zero.

Products \& quotient

Choose how you will specify the word length and fraction length of $\mathbf{X}^{\prime} \mathbf{X}$, $\mathbf{W}^{\prime} \mathbf{X}, \mathrm{mu}^{*} \mathrm{e}, \mathrm{Q}^{*} \mathbf{X}$, and the quotient, Q . Here, \mathbf{X} is the input vector, which is \mathbf{u} in the LMS filter equations. \mathbf{W} is the vector of filter weights, mu is the step size, e is the error, and Q is the quotient, which is defined as

$$
Q=\frac{m u^{*} e}{X^{\prime} X}
$$

- When you select Same as first input, the word length and fraction length of these quantities will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of these quantities, in bits. The word length of the quantities must be the same, but the fraction lengths can differ.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of these quantities. The word length of the quantities must be the same, but the slopes can differ. This block requires a power-of-two slope and a bias of zero.

Accumulators

Use this parameter to specify how you would like to designate the word and fraction lengths of the accumulators for the $\mathbf{X}^{\prime} \mathbf{X}$ and $\mathbf{W}^{\prime} \mathbf{X}$ operations.

Abstract

Note This parameter is not used to designate the word and fraction lengths of the accumulator for the $Q^{*} \mathbf{X}$ operation. The accumulator data type for this quantity is automatically set to be the same as the product data type. The minimum, maximum, and overflow information for this accumulator is logged as part of the product information. Autoscaling treats this product and accumulator as one data type.

Refer to "Fixed-Point Data Types" on page 9-567 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the accumulator data type in this block:

- When you select Same as first input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulators, in bits. The word length of both the accumulators must be the same, but the fraction lengths can differ.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulators. The word length of both the accumulators must be the same, but the slopes can differ. This block requires a power-of-two slope and a bias of zero.

References

Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley \& Sons, 1996.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point
	- Fixed point

Port	Supported Data Types
Adapt	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Reset	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point
Error	- Double-precision floating point - Single-precision floating point - Fixed point
Wts	- Double-precision floating point - Single-precision floating point - Fixed point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Kalman Adaptive Filter	Signal Processing Blockset
	RLS Filter	Signal Processing Blockset
	Block LMS Filter	Signal Processing Blockset
	Fast Block LMS Filter	Signal Processing Blockset

See "Adaptive Filters" on page 3-53 for related information.

LPC to LSF/LSP Conversion

Purpose

Library
Description

Convert linear prediction coefficients (LPCs) to line spectral pairs (LSPs) or line spectral frequencies (LSFs)

Estimation / Linear Prediction
The LPC to LSF/LSP Conversion block takes a vector of linear prediction coefficients (LPCs) and converts it to a vector of line spectral pairs (LSPs) or line spectral frequencies (LSFs). When converting LPCs to LSFs, the block outputs match those of the poly2lsf function.

The input LPCs, $1, a_{1}, a_{2}, \ldots, a_{m}$, must be the denominator of the transfer function of a stable all-pole filter with the form given in the first equation of "Requirements for Valid Outputs" on page 9-578. A length-M+1 input yields a length-M output. Inputs can be sample- or frame-based vectors, but outputs are always sample-based vectors.

See other sections of this reference page to learn about how to ensure that you get valid outputs, how to detect invalid outputs, how the block computes the LSF/LSP values, and more.

Requirements for Valid Outputs

To get valid outputs, your inputs and the Root finding coarse grid points parameter value must meet these requirements:

- The input LPCs, $1, a_{1}, a_{2}, \ldots, a_{m}$, must come from the denominator of the following transfer function, $H(z)$, of a stable all-pole filter (all roots of $H(z)$ must be inside the unit circle). Note that the first term in $H(z)$'s denominator must be 1 . When the input LPCs do not come from a transfer function of the following form, the block outputs are invalid.

$$
H(z)=\frac{1}{1+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{m} z^{-m}}
$$

- The Root finding coarse grid points parameter value must be large enough so that the block can find all the LSP or LSF values. (The output LSFs and LSPs are roots of polynomials related to the input LPC polynomial; the block looks for these roots to produce the output. For details, see "LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding" on page 9-586.) When you do not set Root finding coarse grid points to a high

LPC to LSF/LSP Conversion

enough value relative to the number of LPCs, the block might not find all the LSPs or LSFs and yield invalid outputs as described in "Root Finding Method Limitations: Failure to Find Roots" on page 9-590.

To learn about recognizing invalid inputs and outputs and parameters for dealing with them, see "Handling and Recognizing Invalid Inputs and Outputs" on page 9-582.

Setting Outputs to LSFs or LSPs

Set the Output parameter to one of the following settings to determine whether the block outputs LSFs or LSPs:

- LSF in radians (0 pi) - Block outputs the LSF values between 0 and π radians in increasing order. The block does not output the guaranteed LSF values, 0 and π.
- LSF normalized in range (0 0.5) - Block outputs normalized LSF values in increasing order, computed by dividing the LSF values between 0 and π radians by 2π. The block does not output the guaranteed normalized LSF values, 0 and 0.5 .
- LSP in range (-1 1) - Block outputs LSP values in decreasing order, equal to the cosine of the LSF values between 0 and π radians. The block does not output the guaranteed LSP values, -1 and 1 .

Adjusting Output Computation Time and Accuracy with Root Finding Parameters

The values n and k determine the block's output computation time and accuracy, where

- n is the value of the Root finding coarse grid points parameter (choose this value with care; see the note below)
- k is the value of the Root finding bisection refinement parameter.
- Decreasing the values of n and k decreases the output computation time, but also decreases output accuracy:
- The upper bound of block's computation time is proportional to $k \cdot(n-1)$.
- Each LSP output is within $1 /\left(n \cdot 2^{k}\right)$ of the actual LSP value.
- Each LSF output is within $\Delta L S F$ of the actual LSF value, $L S F_{a c t}$, where $\Delta L S F=\left|\operatorname{acos}\left(L S F_{a c t}\right)-\operatorname{acos}\left(L S F_{a c t}+1 /\left(n \cdot 2^{k}\right)\right)\right|$

LPC to LSF/LSP Conversion

Note When the value of the Root finding coarse grid points parameter is too small relative to the number of LPCs, the block might output invalid data as described in "Requirements for Valid Outputs" on page 9-578. Also see "Handling and Recognizing Invalid Inputs and Outputs" on page 9-582.

Valid Inputs and Corresponding Outputs

The following list and table summarize characteristics of valid inputs and the corresponding outputs.

Notable Input and Output Properties.

- To get valid outputs, your input LPCs and the value of the Root finding coarse grid points parameter must meet the requirements described in "Requirements for Valid Outputs" on page 9-578.
- Block treats each column of an input matrix as a set of LPCs
- Length-L+1 input yields length-L output
- Output is always sample based
- Output parameter determines the output type (see "Setting Outputs to LSFs or LSPs" on page 9-579):
- LSFs - frequencies, w_{k}, where $0<w_{k}<\pi$ and $w_{k}<w_{k+1}$
- Normalized LSFs - $w_{k} / 2 \pi$
- LSPs $-\cos \left(w_{k}\right)$

Input and Output Dimensions, Sizes, and Frame Statuses

Valid LPC Input

LSF and LSP Outputs

(Always Sample-Based)

Sample-based length- $M+1$ row vector, $M>0$

$$
\left[\begin{array}{lllll}
1 & a_{1} & a_{2} & \ldots & a_{m}
\end{array}\right]
$$

Frame-based row vectors are not valid inputs.

Sample- or frame-based length-M+1 column vector, $\mathrm{M}>0$

$$
\left[\begin{array}{c}
1 \\
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right]
$$

1-D length-M+1 unoriented vector, $\mathrm{M}>0$ $\left(1, a_{1}, a_{2}, \ldots, a_{m}\right)$

Sample-based length-M row vector LSF in radians: LSF normalized:
$\left[w_{1} w_{2} \ldots w_{m}\right] \quad \frac{1}{2 \pi} \cdot\left[w_{1} w_{2} \ldots w_{m}\right]$
LSP:
$\left[\cos \left(w_{1}\right) \cos \left(w_{2}\right) \ldots \cos \left(w_{m}\right)\right]$
Sample-based length-M column vector LSF in radians: LSF normalized: LSP:

$$
\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right] \quad \frac{1}{2 \pi} \cdot\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right] \quad\left[\begin{array}{c}
\cos \left(w_{1}\right) \\
\cos \left(w_{2}\right) \\
\vdots \\
\cos \left(w_{m}\right)
\end{array}\right]
$$

1-D length-M unoriented vector
LSF in radians: LSF normalized:
$\left(w_{1}, w_{2}, \ldots, w_{m}\right) \quad \frac{1}{2 \pi} \cdot\left(w_{1}, w_{2}, \ldots, w_{m}\right)$
LSP:
$\left(\cos \left(w_{1}\right), \cos \left(w_{2}\right), \ldots, \cos \left(w_{m}\right)\right)$

LPC to LSF/LSP Conversion

Handling and Recognizing Invalid Inputs and Outputs

The block outputs invalid data when your input LPCs and the value of the Root finding coarse grid points parameter do not meet the requirements described in "Requirements for Valid Outputs" on page 9-578. The following topics describe what invalid outputs look like, and how to set the block parameters provided for handling invalid inputs and outputs:

- "What Invalid Outputs Look Like" on page 9-582
- "Parameters for Handling Invalid Inputs and Outputs" on page 9-583

What Invalid Outputs Look Like. Invalid outputs have the same dimensions, sizes, and frame statuses as valid outputs, which you can look up in Table, Input and Output Dimensions, Sizes, and Frame Statuses, on page 9-581. However, invalid outputs do not contain all the LSP or LSF values. Instead, invalid outputs contain none or some of the LSP and LSF values and the rest of the output vector or matrix is filled with place holder values ($-1,0.5$, or π depending on the Output parameter setting).
In short, all invalid outputs end in one of the place holder values ($-1,0.5$, or π) as illustrated in the following table. To learn how to use the block's parameters for handling invalid inputs and outputs, see the next section.

Output Parameter Setting	Place Holder	Sample Invalid Outputs
LSF in radians (0 pi)	π	$\left[\begin{array}{l}w_{1} w_{2} w_{3} \pi \pi \pi \pi \pi\end{array}\right]$
LSF normalized in range $\left(\begin{array}{ll}0 & 0.5) \\ \hline \text { LSP in range }\left(\begin{array}{ll}-1 & 1\end{array}\right) & 0.5 \\ \left.\hline \begin{array}{l}w_{1} \\ w_{2} \\ 0.5\end{array}\right] \\ \hline\end{array}\right.$	-1	$\left[\begin{array}{c}\cos \left(w_{13}\right) \\ \cos \left(w_{23}\right) \\ -1 \\ -1 \\ -1\end{array}\right]$

LPC to LSF/LSP Conversion

Parameters for Handling Invalid Inputs and Outputs. You must set how the block handles invalid inputs and outputs by setting these parameters:

- Show output validity status (1=valid, $\mathbf{0}=\mathbf{i n v a l i d) ~ - ~ S e t t i n g ~ t h i s ~}$ parameter activates a second block output port that outputs a 1 when the output is valid, and a 0 when they are invalid. The LSF and LSP outputs are invalid when the block fails to find all the LSF or LSP values or when the input LPCs are unstable (for details, see "Requirements for Valid Outputs" on page 9-578). See the previous section to learn how to recognize invalid outputs.
- If current output is invalid, overwrite with previous output - Selecting this check box causes the block to overwrite invalid outputs with the previous output. When you set this parameter you also need to consider these parameters:
a When first output is invalid, overwrite with user-defined values When the first input is unstable, you can choose to either overwrite the invalid first output with the default values (by clearing this parameter) or with values you specify (by selecting this check box and specifying the values in the parameter described next). The default initial overwrite values are the LSF or LSP representations of an all-pass filter.
b User-defined LSP/LSF values for overwriting invalid first output In this parameter you specify the values for overwriting an invalid first output if you selected the When first output is invalid, overwrite with user-defined values. The vector of LSP/LSF values you specify should have the same dimension, size, and frame status as the other outputs, which you can look up in Table, Input and Output Dimensions, Sizes, and Frame Statuses, on page 9-581.
- If first input value is not $\mathbf{1}$ - The block output is invalid when the first coefficient in an LPC vector is not 1 ; this parameter determines what the block does when given such inputs:
- Ignore - Proceed with computations as if the first coefficient is 1.
- Normalize - Divide the input LPCs by the value of the first coefficient before computing the output.
- Normalize and warn - In addition to Normalize, display a warning message at the MATLAB command line.
- Error - Stop the simulation and display an error message at the MATLAB command line.

LPC to LSF/LSP Conversion

Dialog Box

Output

Specifies whether to convert the input linear prediction polynomial coefficients (LPCs) to LSP in range (-1 1), LSF in radians (0 pi), or LSF normalized in range (00.5). See "Setting Outputs to LSFs or LSPs" on page 9-579 for descriptions of the three settings.

Root finding coarse grid points

The value n, where the block divides the interval $(-1,1)$ into n subintervals of equal length, and looks for roots (LSP values) in each subinterval. You must pick n large enough or the block output might be invalid as described in "Requirements for Valid Outputs" on page 9-578. To learn how the block uses this parameter to compute the output, see "LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding" on page 9-586. Also see "Adjusting Output Computation Time and Accuracy with Root Finding Parameters" on page 9-579. Tunable.

LPC to LSF/LSP Conversion

Root finding bisection refinement

The value k, where each LSP output is within $1 /\left(n \cdot 2^{k}\right)$ of the actual LSP value, where n is the value of the Root finding coarse grid points parameter. To learn how the block uses this parameter to compute the output, see "LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding" on page 9-586. Also see "Adjusting Output Computation Time and Accuracy with Root Finding Parameters" on page 9-579. Tunable.

Show output validity status

Selecting this check box activates a second block output port that outputs a 1 when the output is valid, and a 0 when they are invalid. For more information, see "Handling and Recognizing Invalid Inputs and Outputs" on page 9-582.

If current output is invalid, overwrite with previous output

Selecting this check box causes the block to overwrite invalid outputs with the previous output. Setting this parameter activates other parameters for taking care of initial overwrite values (when the very first output of the block is invalid). For more information, see "Parameters for Handling Invalid Inputs and Outputs" on page 9-583.

When first output is invalid, overwrite with user-defined values

When the first input is unstable, you can choose to either overwrite the invalid first output with the default values (by clearing this check box) or with values you specify (by setting this check box). The default initial overwrite values are the LSF or LSP representations of an all-pass filter. For more information, see "Parameters for Handling Invalid Inputs and Outputs" on page 9-583.

User-defined LSP/LSF values for overwriting invalid first output

In this parameter you specify the values for overwriting an invalid first output when you select When first output is invalid, overwrite with user-defined values. The vector or matrix of LSP/LSF values you specify should have the same dimension, size, and frame status as the other outputs, which you can look up in the table called "Input and Output Dimensions, Sizes, and Frame Statuses" on page 9-581.

LPC to LSF/LSP Conversion

If first input value is not 1

Determines what the block does when the first coefficient of an input is not 1. The block can either proceed with computations as when the first coefficient is 1 (Ignore); divide the input LPCs by the value of the first coefficient before computing the output (Normalize); in addition to Normalize, display a warning message at the MATLAB command line (Normalize and warn); stop the simulation and display an error message at the MATLAB command line (Error). For more information, see "Parameters for Handling Invalid Inputs and Outputs" on page 9-583.

Supported
Data Types

Reference

See Also

Theory LSF and LSP Computation Method: Chebyshev Polynomial Method for Root Finding

Note To learn the principles on which the block's LSP and LSF computation method is based, see the reference listed in "Reference" on page 9-586.

LPC to LSF/LSP Conversion

To compute LSP outputs, the block relies on the fact that LSP values are the roots of two particular polynomials related to the input LPC polynomial; the block finds these roots using the Chebyshev polynomial root finding method, described next. To compute LSF outputs, the block computes the arc cosine of the LSPs, outputting values ranging from 0 to π radians.

Root Finding Method. LSPs, which are the roots of two particular polynomials, always lie in the range $(-1,1)$. (The guaranteed roots at 1 and -1 are factored out.) The block finds the LSPs by looking for a sign change of the two polynomials' values between points in the range ($-1,1$). The block searches a maximum of $k(n-1)$ points, where

- n is the value of the Root finding coarse grid points parameter
- k is the value of the Root finding bisection refinement parameter

The block's method for choosing which points to check consists of the following two steps:

1 Coarse Root Finding - The block divides the interval [-1, 1] into n intervals, each of length $2 / n$, and checks the signs of both polynomials' values at the endpoints of the intervals. The block starts checking signs at 1 , and continues checking signs at $1-4 / n, 1-6 / n$, and so on at steps of length $2 / n$, outputting any point if it is a root. The block stops searching in these situations:
a The block finds a sign change of a polynomial's values between two adjacent points. An interval containing a sign change is guaranteed to contain a root, so the block further searches the interval as described in Step 2, Root Finding Refinement.
b The block finds and outputs all M roots (given a length-M+1 LPC input).
c The block fails to find all M roots and yields invalid outputs as described in "Handling and Recognizing Invalid Inputs and Outputs" on page 9-582.
2 Root Finding Refinement - When the block finds a sign change in an interval, $[a, b]$, it searches for the root guaranteed to lie in the interval by following these steps:
a Check if Midpoint Is a Root - The block checks the sign of the midpoint of the interval $[a, b]$. The block outputs the midpoint if it is a root, and continues Step 1, Coarse Root Finding, at the next point, $a-2 / n$.

LPC to LSF/LSP Conversion

Otherwise, the block selects the half-interval with endpoints of opposite sign (either $[a,(a+b) / 2]$ or $[(a+b) / 2, b])$ and executes Step 2 b , Stop or Continue Root Finding Refinement.
b Stop or Continue Root Finding Refinement - When the block has repeated Step 2a k times (k is the value of the Root finding bisection refinement parameter), the block linearly interpolates the root by using the half-interval's endpoints, outputs the result as an LSP value, and returns to Step 1, Coarse Root Finding. Otherwise, the block repeats Step 2a using the half-interval.

Coarse Root Finding: LS are root of t o parti ular polynomial related to the input L he ign of the t o polynomial at e enly pa ed point to find all inter al ontaining a ign hange utput any root (LS) found

Root finding coarse grid points

i ide [] into fi e inter al of e ual length and he ign of the polynomial alue at the endpoint of the inter al

Root Finding Refinement: Whene er oar e oot inding identifie an inter al ontaining a ign hange repeatedly iet the inter al to etter appro imate the root (LS alue)

Bisection 1: he the ign of the polynomial at the midpoint of the inter al and ele t the half inter al ith endpoint of oppo ite ign []

Bisection 2: Similar to ie tion

Root finding bisection refinement

ietall ign hange inter al found in the oar e oot inding up to three time to find the root When the root i not found in the la $\dagger \mathrm{i}$ e tion linearly interpolate the root
\qquad
Bisection 3: he la $\dagger \mathrm{i}$ e tion Sin ethe midpoint of thi inter al i not the root linearly interpolate the root and output the re ulta an LS alue

Coarse Root Finding and Root Finding Refinement

LPC to LSF/LSP Conversion

Root Finding Method Limitations: Failure to Find Roots

The block root finding method described above can fail, causing the block to produce invalid outputs (for details on invalid outputs, see "Handling and Recognizing Invalid Inputs and Outputs" on page 9-582).

In particular, the block can fail to find some roots if the value of the Root finding coarse grid points parameter, n, is too small. If the polynomials oscillate quickly and have roots that are very close together, the root finding might be too coarse to identify roots that are very close to each other, as illustrated in "Fixing a Failed Root Finding" on page 9-591.

For higher-order input LPC polynomials, you should increase the Root finding coarse grid points value to ensure the block finds all the roots and produces valid outputs.

Root Finding Fails: he root ear hdi ide the inter al []into four inter al ut all three root are in a ingle inter al he lo an only find one root per inter al of o of the root are ne er found

Root finding coarse grid points

Fix Root Finding so it Succeeds: n rea ing the alue of the Root finding coarse grid points parameter to en ure that ea h root i in it oninter al oall root are found

Fixing a Failed Root Finding

LSF/LSP to LPC Conversion

Purpose

Library
Description

Convert line spectral frequencies (LSFs) or line spectral pairs (LSPs) to linear prediction coefficients (LPCs)

Estimation / Linear Prediction
The LSF/LSP to LPC Conversion block takes a vector or matrix of line spectral pairs (LSPs) or line spectral frequencies (LSFs) and converts it to a vector or matrix of linear prediction polynomial coefficients (LPCs). When converting LSFs to LPCs, the block outputs match those of the lsf2poly function.

The inputs to the block can be in one of three formats that you must indicate in the Input parameter, which has the following settings:

- LSF in range (0 pi) - Vector of LSF values between 0 and π radians in increasing order. Do not include the guaranteed LSF values, 0 and π.
- LSF normalized in range (00.5) - Vector of normalized LSF values in increasing order, (compute by dividing the LSF values between 0 and π radians by 2π). Do not include the guaranteed normalized LSF values, 0 and 0.5 .
- LSP in range (-1 1) - Vector of LSP values in decreasing order, equal to the cosine of the LSF values between 0 and π radians. Do not include the guaranteed LSP values, -1 and 1 .

Dialog Box

Input

Specifies whether to convert LSP in range (-1 1), LSF in range (0 pi), or LSF normalized in range (00.5) to linear prediction coefficients (LPCs).

Supported • Double-precision floating point Data Types
 - Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Reference Kabal, P. and Ramachandran, R. "The Computation of Line Spectral Frequencies Using Chebyshev Polynomials." IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34 No. 6, December 1986. pp. 1419-1426.

See Also
LPC to LSF/LSP Conversion
LPC to/from RC
LPC/RC to Autocorrelation
lsf2poly
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

LPC to/from Cepstral Coefficients

Purpose

Library
Description

Convert linear prediction coefficients (LPCs) to cepstral coefficients (CCs) or cepstral coefficients to linear prediction coefficients

Estimation / Linear Prediction
The LPC to/from Cepstral Coefficients block either converts linear prediction coefficients (LPCs) to cepstral coefficients (CCs) or cepstral coefficients to linear prediction coefficients. Set the Type of conversion parameter to LPCs to cepstral coefficients or Cepstral coefficients to LPCs to select the domain into which you want to convert your coefficients. The LPC port corresponds to LPCs, and the CC port corresponds to the CCs. For more information, see "Algorithm" on page 9-595.

Consider a signal $x(n)$ as the input to an FIR analysis filter represented by LPCs. The output of this analysis filter, $e(n)$, is known as the prediction error signal. The power of this error signal is denoted by P , the prediction error power.

When you select LPCs to cepstral coefficients from the Type of conversion list, you can specify the prediction error power in two ways. From the Specify P list, choose via input port to input the prediction error power using input port P. Select assume P equals 1 to set the prediction error power equal to 1 .

When you select LPCs to cepstral coefficients from the Type of conversion list, the Output size same as input size check box appears in the Block Parameters: LPC to/from Cepstral coefficients dialog box. When you select this check box, the length of the input vector of LPCs is equal to the output vector of CCs. When you do not select this check box, enter the length of the output vector of CCs in the Length of output cepstral coefficients box. This value must be greater than zero.

When you select LPCs to cepstral coefficients from the Type of conversion list, you can use the If first input value is not 1 parameter to specify the behavior of the block when the first coefficient of the LPC vector is not 1 . The following options are available:

- Replace it with 1-Changes the first value of the coefficient vector to 1 . The other coefficient values are unchanged.

LPC to/from Cepstral Coefficients

- Normalize - Divides the entire vector of coefficients by the first coefficient so that the first coefficient of the LPC vector is 1.
- Normalize and Warn - Divides the entire vector of coefficients by the first coefficient so that the first coefficient of the LPC vector is 1 . The block displays a warning message telling you that your vector of coefficients has been normalized.
- Error - Displays an error telling you that the first coefficient of the LPC vector is not 1 .

When you select Cepstral coefficients to LPCs from the Type of conversion list, the Output P check box appears on the block. Select this check box when you want to output the prediction error power from output port P.

Algorithm

The cepstral coefficients are the coefficients of the Fourier transform representation of the logarithm magnitude spectrum. Consider a sequence, $x(n)$, having a Fourier transform $X(\omega)$. The cepstrum, $c_{x}(n)$, is defined by the inverse Fourier transform of $C_{x}(\omega)$, where $C_{x}(\omega)=\log _{e} X(\omega)$. See the Real Cepstrum block reference page for information on computing cepstrum coefficients from time-domain signals.

LPC to CC

When in this mode, this block uses a recursion technique to convert LPCs to CCs. The LPC vector is defined by $\left[\begin{array}{ccccc}a_{0} & a_{1} & a_{2} & \ldots & a_{p}\end{array}\right]$ and the CC vector is
 equations.

$$
\begin{gathered}
c_{0}=\log _{e} E^{2} \\
m-1 \\
c_{m}=a_{m}+\sum_{k=1} \frac{k}{m} c_{k} a_{m-k}, 1 \leq m \leq p \\
c_{m}=\sum_{k=1}^{m-1} \frac{k}{m} c_{k} a_{m-k}, p<m<n
\end{gathered}
$$

LPC to/from Cepstral Coefficients

CC to LPC

When in this mode, this block uses a recursion technique to convert CCs to
 is defined by $\left[\begin{array}{lllll}a_{0} & a_{1} & a_{2} & \ldots & a_{p}\end{array}\right]$. The recursion is defined by the following equations

$$
\begin{gathered}
a_{m}=c_{m}-\frac{1}{m} \sum_{k=1}^{m-1}(m-k) c_{m-k} a_{k} \\
P=\exp \left(C_{o}\right)
\end{gathered}
$$

where $m=1,2, \ldots, n$.

LPC to/from Cepstral Coefficients

Dialog Box

Type of conversion

Choose LPCs to cepstral coefficients or Cepstral coefficients to LPCs to specify the domain into which you want to convert your coefficients.

Specify P

Choose via input port to input the values of prediction error power using input port P. Select assume P equals 1 to set the prediction error power equal to 1 .

Output size same as input size

When you select this check box, the length of the input vector of LPCs is equal to the output vector of CCs.

Length of output cepstral coefficients

Enter the length of the output vector of CCs.

LPC to/from Cepstral Coefficients

If first input value is not 1

Select what you would like the block to do when the first coefficient of the LPC vector is not 1. You can choose Replace it with 1, Normalize, Normalize and Warn, and Error.

Output P

Select this check box to output the prediction error power from output port P.

References
 Supported
 Data Types

See Also

Rabiner, L and Biing-Hwang Juang, Fundamentals of Speech Recognition. Englewood Cliffs, NJ: Prentice Hall, 1993.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Levinson-Durbin
LPC to LSF/LSP Conversion LSF/LSP to LPC Conversion LPC to/from RC
LPC/RC to Autocorrelation
Real Cepstrum
Complex Cepstrum

Signal Processing Blockset

Purpose

Library
Description

Convert linear prediction coefficients (LPCs) to reflection coefficients (RCs) or reflection coefficients to linear prediction coefficients

Estimation / Linear Prediction

The LPC to/from RC block either converts linear prediction coefficients (LPCs) to reflection coefficients (RCs) or reflection coefficients to linear prediction coefficients. Set the Type of conversion parameter to LPC to RC or RC to LPC to select the domain into which you want to convert your coefficients. The A port corresponds to LPC coefficients, and the K port corresponds to the RC coefficients. For more information, see "Algorithm" on page 9-600.

Consider a signal $x(n)$ as the input to an FIR analysis filter represented by LPC coefficients. The output of the this analysis filter, $e(n)$, is known as the prediction error signal. The power of this error signal is denoted by P. When the zero lag autocorrelation coefficient of $x(n)$ is one, the autocorrelation sequence and prediction error power are said to be normalized.

Select the Output normalized prediction error power check box to enable port P. The normalized prediction error power, a scalar, is output at port P and varies between zero and one.

Select the Output LPC filter stability check box to output the stability of the filter represented by the LPCs or RCs. The synthesis filter represented by the LPCs is stable when the absolute value of each of the roots of the LPC polynomial is less than one. The lattice filter represented by the RCs is stable when the absolute value of each reflection coefficient is less than 1 . When the filter is stable, the block outputs a Boolean value of 1 at the s port. When the filter is unstable, the block outputs a Boolean value of 0 at the S port.

If first input value is not 1 parameter specifies the behavior of the block when the first coefficient of the LPC coefficient vector is not 1 . The following options are available:

- Replace it with 1-Changes the first value of the coefficient vector to 1. The other coefficient values are unchanged.
- Normalize - Divides the entire vector of coefficients by the first coefficient so that the first coefficient of the LPC coefficient vector is 1.
- Normalize and Warn - Divides the entire vector of coefficients by the first coefficient so that the first coefficient of the LPC coefficient vector is 1 . The
block displays a warning message telling you that your vector of coefficients has been normalized.
- Error - Displays an error telling you that the first coefficient of the LPC coefficient vector is not 1 .

Algorithm

LPC to RC

When in this mode, this block uses backward Levinson recursion to convert linear prediction coefficients (LPCs) to reflection coefficients (RCs).For a given Nth order LPC vector $L P C_{N}=\left[\begin{array}{llllll}1 & a_{N 1} & a_{N 2} & \ldots & a_{N N}\end{array}\right]$, the block calculates the Nth reflection coefficient value using the formula $\gamma_{N}=-a_{N N}$. The block then finds the lower order LPC vectors, $L P C_{N-1}, L P C_{N-2}, \ldots, L P C_{1}$, using the following recursion.
for $p=N, N-1, \ldots, 2$,

$$
\begin{aligned}
& \gamma_{P}=a_{P P} \\
& F=1-\gamma_{P}{ }^{2} \\
& a_{p-1, m}=\frac{a_{p, m}}{F}-\frac{\gamma_{p} a_{p, p-m}}{F}, 1 \leq m<p
\end{aligned}
$$

end
Finally, $\gamma_{1}=-a_{11}$. The reflection coefficient vector is $\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right]$.

RC to LPC

When in this mode, this block uses Levinson recursion to convert reflection coefficients (RCs) to linear prediction coefficients (LPCs).In this case, the input to the block is $R C=\left[\begin{array}{llll}\gamma_{1} & \gamma_{2} & \ldots & \gamma_{N}\end{array}\right]$. The zeroth order LPC vector term is 1 . Starting with this term, the block uses recursion to calculate the higher order

LPC vectors, $L P C_{2}, L P C_{3}, \ldots, L P C_{N}$, until it has calculated the entire LPC matrix.

$$
L P C_{\text {matrix }}=\left[\begin{array}{c}
L P C_{0} \\
L P C_{1} \\
L P C_{2} \\
\ldots \\
L P C_{N}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \\
1 & a_{11} & 0 & 0 & \ldots & 0 \\
1 & a_{21} & a_{22} & 0 & \ldots & 0 \\
1 & a_{31} & a_{32} & a_{33} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & a_{N 1} & a_{N 2} & a_{N 3} & \ldots & a_{N N}
\end{array}\right]
$$

This LPC matrix consists of LPC vectors of order 0 through N found by using the Levinson recursion. The following are the formulas for the recursion steps, for $p=0,1, \ldots, N-1$.

$$
a_{p+1, m}=a_{p, m}+\gamma_{p+1} a_{p, p+1-m}, 1 \leq m \leq p
$$

$$
a_{p+1, p+1}=\gamma_{p+1}
$$

Dialog Box

LPC to/from RC

Type of conversion

Select LPC to RC or RC to LPC to select the domain into which you want to convert your coefficients.

Output normalized prediction error power

Select this check box to output the normalized prediction error power at port P.

Output LPC filter stability

Select this check box to output the stability of the filter. When the filter represented by the LPCs or RCs is stable, the block outputs a Boolean value of 1 at the s port. When the filter represented by the LPCs or RCs is unstable, the block outputs a Boolean value of 0 at the S port.

If first input value is not 1

Select what you would like the block to do when the first coefficient of the LPC coefficient vector is not 1 . You can choose Replace it with 1, Normalize, Normalize and Warn, and Error.

References
 Supported
 Data Types

See Also

Makhoul, J Linear Prediction: A tutorial review. Proc. IEEE. 63, 63, 56 (1975).
Markel, J.D. and A. H. Gray, Jr., Linear Prediction of Speech. New York, Springer-Verlag, 1976.

- Double-precision floating-point
- Single-precision floating-point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Levinson-Durbin
LPC to LSF/LSP Conversion
LSF/LSP to LPC Conversion
LPC/RC to Autocorrelation

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

LPC/RC to Autocorrelation

Purpose

Library
Description

Convert linear prediction coefficients (LPCs) or reflection coefficients (RCs) to autocorrelation coefficients (ACs)

Estimation / Linear Prediction
The LPC/RC to Autocorrelation block either converts linear prediction coefficients (LPCs) to autocorrelation coefficients (ACs) or reflection coefficients (RCs) to autocorrelation coefficients (ACs). Set the Type of conversion parameter to LPC to autocorrelation or RC to autocorrelation to select the domain from which you want to convert your coefficients. The A port corresponds to LPC coefficients, and the K port corresponds to the RC coefficients.

Use the Specify \mathbf{P} parameter to set the value of the prediction error power. You can set this parameter to 1 by selecting Assume $P=1$. When you select Via input port, a P port appears on the block. You can use this port to input the value of the actual, non-unity prediction error power.

The If first input value is not 1 parameter specifies the behavior of the block when the first coefficient of the LPC coefficient vector is not 1 . The following options are available:

- Replace it with 1- The block changes the first value of the coefficient vector to 1 . The rest of the coefficient values are unchanged.
- Normalize - The block divides the entire vector of coefficients by the first coefficient so that the first coefficient of the LPC coefficient vector is 1.
- Normalize and Warn - The block divides the entire vector of coefficients by the first coefficient so that the first coefficient of the LPC coefficient vector is 1 . The block displays a warning message telling you that your vector of coefficients has been normalized.
- Error - The block displays an error telling you that the first coefficient of the LPC coefficient vector is not 1 .

LPC/RC to Autocorrelation

Dialog Box

References

Supported Data Types

Type of conversion

From the list select LPC to autocorrelation or RC to autocorrelation to specify the domain from which you want to convert your coefficients.

Specify P

From the list select Assume $\mathrm{P}=1$ or Via input port to specify the value of prediction error power.

If first input value is not 1

Select what you would like the block to do when the first coefficient of the LPC coefficient vector is not 1 . You can choose Replace it with 1, Normalize, Normalize and Warn, and Error.

Orfanidis, S.J. Optimum Signal Processing. New York, McGraw-Hill, 1988.
Makhoul, J. Linear Prediction: A tutorial review. Proc. IEEE. 63, 63, 56 (1975).
Markel, J.D. and A. H. Gray, Jr., Linear Prediction of Speech. New York, Springer-Verlag, 1976.

- Double-precision floating point
- Single-precision floating point

LPC/RC to Autocorrelation

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Levinson-Durbin	Signal Processing Blockset
	LPC to LSF/LSP Conversion	Signal Processing Blockset
	LSF/LSP to LPC Conversion	Signal Processing Blockset
	LPC to/from RC	Signal Processing Blockset

LU Factorization

Purpose
Library
Description

Factor square matrix into lower and upper triangular components
Math Functions / Matrices and Linear Algebra / Matrix Factorizations
The LU Factorization block factors a row permutation of the square input matrix A as $A_{p}=L^{*} U$, where L is the "psychologically lower triangular" matrix, and U is the upper triangular matrix. For more information, see the lu function reference page in the MATLAB documentation. The row-pivoted matrix A_{p} contains the rows of A permuted as indicated by the permutation index vector P.

$$
A p=A(P,:) \quad \% \text { Equivalent MATLAB code }
$$

The output of the LU Factorization block at port LU is a composite matrix with lower subtriangle elements from L and upper triangle elements from U. It is always sample based. The output is not in the same form as the output of the MATLAB lu function. In order to convert the output of the LU Factorization block to the MATLAB form, use the following equations:

```
L = tril(LU,-1)+diag(ones(size(LU,1),1));
U = triu(LU);
```

Here, LU is the output of the LU Factorization block. Due to roundoff error, these equations do not produce a result that is exactly the same as the MATLAB result.

The row-pivoted matrix A_{p} and permutation index vector P computed by the block are shown below for 3-by-3 input matrix A.

$$
A=\left[\begin{array}{ccc}
-1 & 8 & -5 \\
9 & -1 & 2 \\
2 & -5 & 7
\end{array}\right] \quad P=\left(\begin{array}{lll}
2 & 1 & 3
\end{array}\right) \quad A_{p}=\left[\begin{array}{ccc}
9 & -1 & 2 \\
-1 & 8 & -5 \\
2 & -5 & 7
\end{array}\right]
$$

The LU output is a composite matrix whose lower subtriangle forms L and whose upper triangle forms U .

Dialog Box

References

Show singularity status

When selected, the block indicates the singularity of the input at a third output port labeled S, which outputs Boolean data type values of 1 or 0 . An output of 1 indicates that the current input is singular, and an output of 0 indicates the current input is nonsingular.

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

Supported
 Data Types

Port	Supported Data Types
A	- Double-precision floating point - Single-precision floating point
LU	- Double-precision floating point - Single-precision floating point
P	- Double-precision floating point - Single-precision floating point
S	- Boolean

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Autocorrelation LPC
Cholesky Factorization
LDL Factorization
LU Inverse
LU Solver
Permute Matrix
QR Factorization
lu

Signal Processing Blockset MATLAB

See "Factoring Matrices" on page 6-8 for related information.

Dialog Box

References

Supported Data Types

See Also

Compute inverse of square matrix using LU factorization

Math Functions / Matrices and Linear Algebra / Matrix Inverses

The LU Inverse block computes the inverse of the square input matrix A by factoring and inverting row-pivoted variant A_{p}.

$$
A_{p}^{-1}=(L U)^{-1}
$$

L is a lower-triangular square matrix with unity diagonal elements, and U is an upper-triangular square matrix. The block's output is A^{-1}, and is always sample based.

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Cholesky Inverse
LDL Inverse
LU Factorization
LU Solver
inv

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
MATLAB

See "Inverting Matrices" on page 6-9 for related information.

Purpose
Library

Description

Algorithm

Solve $\mathrm{A} X=\mathrm{B}$ for X when A is square matrix

Math Functions / Matrices and Linear Algebra / Linear System Solvers

The LU Solver block solves the linear system $\mathrm{A} X=\mathrm{B}$ by applying LU factorization to the M-by-M matrix at the A port. The input to the B port is the right side M-by-N matrix, B. The output is the unique solution of the equations, M-by-N matrix X, and is always sample based.

A length-M 1-D vector input for right side B is treated as an M-by-1 matrix.

The $L U$ algorithm factors a row-permuted variant $\left(A_{p}\right)$ of the square input matrix A as

$$
A_{p}=L U
$$

where L is a lower-triangular square matrix with unity diagonal elements, and U is an upper-triangular square matrix.

The matrix factors are substituted for A_{p} in

$$
A_{p} X=B_{p}
$$

where B_{p} is the row-permuted variant of B, and the resulting equation

$$
L U X=B_{p}
$$

is solved for X by making the substitution $Y=\mathrm{U} X$, and solving two triangular systems.

$$
\begin{aligned}
L Y & =B_{p} \\
U X & =Y
\end{aligned}
$$

Dialog Box

Supported	- Double-precision floating point
Data Types	- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Autocorrelation LPC

Signal Processing Blockset

Cholesky Solver Signal Processing Blockset
LDL Solver Signal Processing Blockset
Levinson-Durbin Signal Processing Blockset
LU Factorization Signal Processing Blockset
LU Inverse Signal Processing Blockset
QR Solver Signal Processing Blockset
See "Solving Linear Systems" on page 6-6 for related information.

Purpose	Compute nonparametric estimate of the spectrum using the periodogram method
Library	- Estimation / Power Spectrum Estimation - Transforms
Description	The Magnitude FFT block computes a nonparametric estimate of the spectrum using the periodogram method. When the Output parameter is set to
Magnitude squared, the block output for an input u is equivalent to	

When the Output parameter is set to Magnitude, the block output for an input u is equivalent to

```
y = abs(fft(u,nfft)) % Equivalent MATLAB code
```

Both an M-by-N frame-based matrix input and an M-by-N sample-based matrix input are treated as M sequential time samples from N independent channels. The block computes a separate estimate for each of the N independent channels and generates an $\mathrm{N}_{\text {fft }}$-by- N matrix output. When you select Inherit FFT length from input dimensions, $\mathrm{N}_{\text {fft }}$ is specified by the frame size of the input, which must be a power of 2 . When you do not select Inherit FFT length from input dimensions, $\mathrm{N}_{\mathrm{fft}}$ is specified as a power of 2 by the FFT length parameter, and the block zero pads or truncates the input to $\mathrm{N}_{\mathrm{fft}}$ before computing the FFT.

Each column of the output matrix contains the estimate of the corresponding input column's power spectral density at $\mathrm{N}_{\text {fft }}$ equally spaced frequency points in the range $\left[0, \mathrm{~F}_{\mathrm{s}}\right.$), where F_{s} is the signal's sample frequency. The output is always sample based.

The block does not accept sample-based 1-by-N row vector inputs.
The Magnitude FFT block supports real and complex floating-point and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Magnitude FFT subsystem block for fixed-point signals.

Magnitude FFT

The settings for the fixed-point parameters of the FFT block in the diagram above are as follows:

- Sine table - Same word length as input
- Round integer calculations toward: Floor
- Saturate on integer overflow - unchecked
- Product output - Inherit via internal rule
- Accumulator - Inherit via internal rule
- Output - Inherit via internal rule

The settings for the fixed-point parameters of the Magnitude Squared block in the diagram above are as follows:

- Round integer calculations toward: Floor
- Saturate on integer overflow - checked
- Output - Inherit via internal rule

The Magnitude Squared block is an implementation of the Simulink Math Function block. Refer to the FFT, Zero Pad, and Math Function reference pages for more information.

Examples

The dspsacomp demo compares the periodogram method with several other spectral estimation methods.

Magnitude FFT

Dialog Box

References	Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ. Prentice Hall, 1989. Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996. Supported Data Types - Double-precision floating point

Magnitude FFT

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Burg Method
Signal Processing Blockset
Short-Time FFT
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

See "Power Spectrum Estimation" on page 6-5 for related information.

Purpose
Library
Description

Matrix 1-Nom

Compute the 1-norm of a matrix

Math Functions / Matrices and Linear Algebra / Matrix Operations

The Matrix 1-Norm block computes the 1-norm, or maximum column-sum, of an M-by-N input matrix, A.

$$
y=\|A\|_{1}=\max _{1 \leq j \leq N} \sum_{i=1}^{M}\left|a_{i j}\right|
$$

This is equivalent to

$$
\begin{gathered}
\mathrm{y}=\max (\operatorname{sum}(\operatorname{abs}(\mathrm{A}))) \quad \% \text { Equivalent MATLAB code } \\
{\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad\left||A|_{1}=\max \left(A_{1}, A_{2}, A_{3}\right)\right.} \\
\left|a_{13}\right|+\left|a_{23}\right|+\left|a_{33}\right|=A_{3} \\
\left|a_{12}\right|+\left|a_{22}\right|+\left|a_{32}\right|=A_{2} \\
\left|a_{11}\right|+\left|a_{21}\right|+\left|a_{31}\right|=A_{1}
\end{gathered}
$$

A length-M 1-D vector input is treated as an M-by-1 matrix. The output, y, is always a scalar.

The Matrix 1-Norm block supports real and complex floating-point inputs, and real fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix 1-Norm block for fixed-point signals.

Matrix 1-Norm

The block calculations are all done in the accumulator data type until the max is performed. The result is then cast to the output data type. You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" below.

Dialog Box There are no parameters on the Main pane of this dialog.
The Fixed-point pane of the Matrix 1-Norm block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Accumulator

Choose how you will specify the word length and fraction length of the accumulator:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:
ideal accumulator word length $=$
input word length + floor $(\log 2($ number of columns $))+1$
ideal accumulator fraction length $=$ input fraction length

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the word length and fraction length of the output of the block:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as input, these characteristics will match those of the input to the block.

Matrix 1-Norm

- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

References	Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.
Supported Data Types	- Double-precision floating point
	- Single-precision floating point
	- Fixed point (signed only)
	- 8-, 16-, and 32-bit signed integers
	To learn how to convert your data types to the above data types in and Simulink, see "Supported Data Types and How to Convert to T page 7-2.
See Also	Normalization Signal Processing Blockset
	Reciprocal Condition Signal Processing Blockset
	norm MATLAB

Matrix Exponential

Purpose Compute matrix exponential

Library

Description
Math Functions / Matrices and Linear Algebra / Matrix Operations
The Matrix Exponential block computes the matrix exponential using a scaling and squaring algorithm with a Pade approximation. The input matrix must be square.

Dialog Box

Supported Data Types

See Also
expm
Dot Product
Matrix Product
Matrix Scaling
Product

MATLAB
Simulink
Signal Processing Blockset
Signal Processing Blockset
Simulink

Matrix Multiply

Purpose
Library
Description

Algorithm

Dialog Box

Supported

 Data TypesMultiply input matrices
Math Functions / Matrices and Linear Algebra / Matrix Operations
The Matrix Multiply block multiplies n input matrices, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{U}_{n}$, in the forward direction, where you specify n in the Number of input ports parameter and U_{n} is the input at the nth port.

```
Y = ((((A*B)*C)*D) ... Un) % Equivalent MATLAB code
```

All inputs must have sizes compatible for matrix multiplication; that is, $\operatorname{size}(A, 2)=\operatorname{size}(B, 1)$, size $(B, 2)=\operatorname{size}(C, 1)$, and so on. Inputs can be real, complex, sample based, or frame based in any combination, but all inputs must have the same precision, single or double. A length-M 1-D vector input at any port is treated as an M-by-1 matrix.

The size of sample-based output Y is [size (A, 1) size (Un,2)]. That is, Y is M_{A}-by- N_{Un}

The Matrix Multiply block is optimized to use at most two temporary variables for storage of intermediate results.

Number of input ports

The number of inputs to the block.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Dot Product
Matrix Product
Matrix Scaling
Product

Simulink
Signal Processing Blockset
Signal Processing Blockset
Simulink

Matrix Product

Purpose
Library
Description

Row Product

Multiply matrix elements along rows or columns

Math Functions / Matrices and Linear Algebra / Matrix Operations

The Matrix Product block multiplies the elements of an M-by-N input matrix u along either the rows or columns. When the Multiply along parameter is set to Rows, the block multiplies across the elements of each row and outputs the resulting M-by-1 matrix. A length-N 1-D vector input is treated as a 1-by-N matrix.

$$
\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right] \quad \square \quad\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
\left(u_{11} u_{12} u_{13}\right) \\
\left(u_{21} u_{22} u_{23}\right) \\
\left(u_{31} u_{32} u_{33}\right)
\end{array}\right]
$$

This is equivalent to

$$
y=\operatorname{prod}(u, 2) \quad \% \text { Equivalent MATLAB code }
$$

When the Multiply along parameter is set to Columns, the block multiplies down the elements of each column and outputs the resulting 1-by-N matrix. A length-M 1-D vector input is treated as a M-by-1 matrix.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right]} \\
& \quad \begin{array}{l}
\square
\end{array} \\
& {\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\left(u_{11} u_{21} u_{31}\right)\left(u_{12} u_{22} u_{32}\right)\left(u_{13} u_{23} u_{33}\right)\right]}
\end{aligned}
$$

This is equivalent to

$$
y=\operatorname{prod}(u) \quad \% \text { Equivalent MATLAB code }
$$

The output of the Matrix Product block has the same frame status as the input. This block accepts real and complex floating-point and fixed-point inputs.

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix Product block for fixed-point signals.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page $8-15$. You can set the accumulator, product output, intermediate product, and output data types in the block dialog as discussed in "Dialog Box" below.

Matrix Product

Dialog Box

The Main pane of the Matrix Product block dialog appears as follows:

Multiply along

Indicate whether to multiply together the elements of each row or of each column of the input.

The Fixed-point pane of the Matrix Product block dialog appears as follows:

Matrix Product

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Intermediate product

As shown in "Fixed-Point Data Types" on page 9-625, the output of the multiplier is cast to the intermediate product data type before the next element of the input is multiplied into it. Use this parameter to specify how you would like to designate the intermediate product word and fraction lengths:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the intermediate product, in bits.

Matrix Product

- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the intermediate product. This block requires power-of-two slope and a bias of zero.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-625 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:
ideal product output word length $=$ input word length + intermediate product word length
ideal product output fraction length $=$ input fraction length + intermediate product fraction length

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-625 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the accumulator data type in this block.

Matrix Product

Note that the accumulator data type is only used when both inputs to the multiplier are complex:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:

> ideal accumulator word length $=$ ideal product output word length +1
> ideal accumulator fraction length $=$ ideal product output fraction length

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the word length and fraction length of the output of the block:

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.

Matrix Product

- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported - Double-precision floating point Data Types

See Also

Matrix Multiply	Signal Processing Blockset
Matrix Square	Signal Processing Blockset
Matrix Sum	Signal Processing Blockset
prod	MATLAB

Scale matrix rows or columns by specified vector

Math Functions / Matrices and Linear Algebra / Matrix Operations

The Matrix Scaling block scales the rows or columns of the M-by-N input matrix A by the values in input vector D. When the Mode parameter is set to Scale Rows ($D * A$), the input D can be a 1-D or 2-D vector of length M, and the block multiplies each element of D across the corresponding row of matrix A .

This is equivalent to premultiplying A by a diagonal matrix with diagonal D .

$$
y=\operatorname{diag}(D) * A \quad \% \text { Equivalent MATLAB code }
$$

When the Mode parameter is set to Scale Columns (A*D), the input D can be a 1-D or 2-D vector of length N , and the block multiplies each element of D across the corresponding column of matrix A.
$\left.\begin{array}{ccc}{\left[\begin{array}{lll}d_{1} & d_{2} & d_{3}\end{array}\right]} \\ \times & \times & \times \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \quad \square \quad\left[\begin{array}{l}d_{1} a_{11} d_{2} a_{12} d_{3} a_{13} \\ d_{1} a_{21} \\ d_{2} a_{22}\end{array} d_{3} a_{23}\right.$.

This is equivalent to postmultiplying A by a diagonal matrix with diagonal D.

```
y = A*diag(D) % Equivalent MATLAB code
```

The output of the Matrix Scaling block is the same size as the input matrix, A. When both inputs are sample based, the output is sample based; otherwise, the output is frame based. This block accepts real and complex floating-point and fixed-point inputs.

Matrix Scaling

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix Scaling block for fixed-point signals.

When the scaling vector D is designated in the block mask, its elements have the data type and scaling that you specify in the Scaling vector parameters on the Fixed-point tab. When the scaling vector comes in through the block port, its elements inherit their data type and scaling from the driving block.

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15.

You can set the scaling vector, accumulator, product output, and output data types in the block dialog as discussed below.

Dialog Box

The Main pane of the Matrix Scaling block dialog appears as follows:

Mode

Specify the mode of operation, row scaling or column scaling. Nontunable.

Scaling vector (D) source

Specify the source of the scaling vector, D. The scaling vector can come from an Input port or from a Dialog parameter.

Scaling vector (D)

Specify the scaling vector, D. This parameter is only visible when you select Input port for the Scaling vector (D) source parameter.

Matrix Scaling

The Fixed-point pane of the Matrix Scaling block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Scaling vector

Use this parameter to specify how you would like to designate the word and fraction lengths of the elements of the scaling vector, D :

- When you select Same word length as input, the word length of the scaling vector values will match that of the input to the block.

Matrix Scaling

- When you select Specify word length, you are able to enter the word length of the scaling vector values, in bits. In this mode, the fraction length of the scaling vector values is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the values.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the scaling vector elements, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the scaling vector element. This block requires power-of-two slope and a bias of zero.

Note The Scaling vector parameters on the Fixed-point pane are only applicable when you specify the scaling vector through the Scaling vector (D) parameter on the block mask. When the scaling vector comes in through the block port, the data type and scaling of its elements are inherited from the driving block.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-632 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:
ideal product output word length $=$ word length of first input + word length of scaling vector coefficients
ideal product output fraction length $=$
fraction length of first input +
fraction length of scaling vector coefficients

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on

Matrix Scaling

the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as first input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-632 and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the accumulator data type in this block. Note that the accumulator data type is only used when both inputs to the multiplier are complex:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:
ideal accumulator word length $=$ ideal product output word length +1
ideal accumulator fraction length $=$ ideal product output fraction length

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as first input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as first input, these characteristics will match those of the first input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- 8 -, 16-, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Matrix Scaling

See Also
Matrix Multiply
Matrix Product
Matrix Sum

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Matrix Square

Purpose \quad Compute square of input matrix

Library

Description

Math Functions / Matrices and Linear Algebra / Matrix Operations
The Matrix Square block computes the square of an M-by-N input matrix, u, by premultiplying with the Hermitian transpose.

```
y = u' * u % Equivalent MATLAB code
```

A length-M 1-D vector input is treated as an M-by-1 matrix. For both sample-based and frame-based inputs, output y is sample based with dimension N -by-N.

Applications

The Matrix Square block is useful in a variety of applications:

- General matrix squares - The Matrix Square block computes the output matrix, y , without explicitly forming u^{\prime}. It is therefore more efficient than other methods for computing the matrix square.
- Sum of squares - When the input is a column vector ($\mathrm{N}=1$), the block's operation is equivalent to a multiply-accumulate (MAC) process, or inner product. The output is the sum of the squares of the input, and is always a real scalar.
- Correlation matrix - When the input is a row vector ($\mathrm{M}=1$), the output, y , is the symmetric autocorrelation matrix, or outer product.

Dialog Box

Supported
 Data Types

Matrix Square

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Matrix Multiply	Signal Processing Blockset
	Matrix Product	Signal Processing Blockset
	Matrix Sum	Signal Processing Blockset
	Transpose	Signal Processing Blockset

Purpose
Library
Description

Sum matrix elements along rows or columns

Math Functions / Matrices and Linear Algebra / Matrix Operations

The Matrix Sum block sums the elements of an M-by-N input matrix u along either the rows or columns. When the Sum along parameter is set to Rows, the block sums across the elements of each row and outputs the resulting M-by-1 matrix. A length-N 1-D vector input is treated as a 1-by-N matrix.

$$
\left[\begin{array}{l}
u_{11} u_{12} u_{13} \\
u_{21} \\
u_{22} \\
u_{23} \\
u_{31}
\end{array} u_{32} u_{33}\right] \quad \square \quad\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
u_{11}+u_{12}+u_{13} \\
u_{21}+u_{22}+u_{23} \\
u_{31}+u_{32}+u_{33}
\end{array}\right]
$$

This is equivalent to

$$
y=\operatorname{sum}(u, 2) \quad \% \text { Equivalent MATLAB code }
$$

When the Sum along parameter is set to Columns, the block sums down the elements of each column and outputs the resulting 1-by-N matrix. A length-M 1 -D vector input is treated as a M-by- 1 matrix.

$$
\left.\begin{array}{l}
{\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23} \\
u_{31} & u_{32} & u_{33}
\end{array}\right]} \\
\quad \begin{array}{l}
y_{1}
\end{array} y_{2} y_{3}
\end{array}\right]=\left[\sum_{i=1}^{3} u_{i 1} \sum_{i=1}^{3} u_{i 2} \sum_{i=1}^{3} u_{i 3}\right] .\left[\begin{array}{l}
\text { in }
\end{array}\right.
$$

This is equivalent to

$$
y=\operatorname{sum}(u) \quad \% \text { Equivalent MATLAB code }
$$

The output of the Matrix Sum block has the same frame status as the input. This block accepts real and complex floating-point and fixed-point inputs.

Matrix Sum

Fixed-Point Data Types

The following diagram shows the data types used within the Matrix Sum block for fixed-point signals.

You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" below.

Dialog Box

The Main pane of the Matrix Sum block dialog appears as follows:

Sum along

Indicate whether to sum the elements of each row or of each column of the input.

The Fixed-point pane of the Matrix Sum block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Matrix Sum

Accumulator

As depicted above, the elements of the block input are cast to the accumulator data type before they are added together. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:
ideal accumulator word length $=$ input word length + floor $(\log 2($ number of rows or columns -1$))+1$
ideal accumulator fraction length $=$ input fraction length
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers To learn how to convert your data types to the above data types in and Simulink, see "Supported Data Types and How to Convert to T page 7-2.
See Also	Matrix Product Signal Processing Blockset Matrix Multiply Signal Processing Blockset sum MATLAB

Matrix Viewer

Purpose	Display matrices as color images
Library	Signal Processing Sinks
Description	The Matrix Viewer block displays an M-by-N matrix input by mapping the matrix element values to a specified range of colors. The display is updated as each new input is received. This block treats a length M 1-D vector input as an M-by-1 matrix.
Image Properties	

Select the Image Properties tab to show the image property parameters, which control the colormap and display.

You specify the mapping of matrix element values to colors in the Colormap matrix, Minimum input value, and Maximum input value parameters. For a colormap with L colors, the colormap matrix has dimension L-by-3, with one row for each color and one column for each element of the RGB triple that defines the color. Examples of RGB triples are
$\left.\begin{array}{lllll}{\left[\begin{array}{llll}1 & 0 & 0\end{array}\right]} & \text { (red) } \\ {[0} & 0 & 1\end{array}\right] l$ (blue)

See the ColorSpec property in the MATLAB documentation for complete information about defining RGB triples.

MATLAB provides a number of functions for generating predefined colormaps, such as hot, cool, bone, and autumn. Each of these functions accepts the colormap size as an argument, and can be used in the Colormap matrix parameter. For example, when you specify gray (128) for the Colormap matrix parameter, the matrix is displayed in 128 shades of gray. The color in the first row of the colormap matrix represents the value specified by the Minimum input value parameter, and the color in the last row represents the value specified by the Maximum input value parameter. Values between the minimum and maximum are quantized and mapped to the intermediate rows of the colormap matrix.

The documentation for the MATLAB colormap function provides complete information about specifying colormap matrices, and includes a complete list of the available colormap functions.

Axis Properties

Select the Axis Properties tab to show the axis property parameters, which control labeling and positioning.

The Axis origin parameter determines where the first element of the input matrix, $U(1,1)$, is displayed. When you specify Upper left corner, the matrix is displayed in matrix orientation, with $\mathrm{U}(1,1)$ in the upper-left corner.

$$
\left[\begin{array}{llll}
U_{11} & U_{12} & U_{13} & U_{14} \\
U_{21} & U_{22} & U_{23} & U_{24} \\
U_{31} & U_{32} & U_{33} & U_{34} \\
U_{41} & U_{42} & U_{43} & U_{44}
\end{array}\right]
$$

When you specify Lower left corner, the matrix is flipped vertically to image orientation, with $U(1,1)$ in the lower-left corner.

$$
\left[\begin{array}{llll}
U_{41} & U_{42} & U_{43} & U_{44} \\
U_{31} & U_{32} & U_{33} & U_{34} \\
U_{21} & U_{22} & U_{23} & U_{24} \\
U_{11} & U_{12} & U_{13} & U_{14}
\end{array}\right]
$$

Axis zoom, when selected, causes the image display to completely fill the figure window. Axis titles are not displayed. This option can also be selected from the pop-up menu that is displayed when you right-click in the figure window. When Axis zoom is cleared, the axis labels and titles are displayed in a gray border surrounding the image axes.

Figure Window

The image title in the figure title bar is the same as the block title. The axis tick marks reflect the size of the input matrix; the x-axis is numbered from 1 to N (number of columns), and the y-axis is numbered from 1 to M (number of rows).

Right-click on the image in the figure window to access the following menu items:

- Refresh erases all data on the scope display except for the most recent image.

Matrix Viewer

- Autoscale recomputes the minimum and maximum input values to fit the range of values observed in a series of 10 consecutive inputs. The numerical limits selected by the autoscale feature are shown in the Minimum input value and Maximum input value parameters, where you can make further adjustments to them manually.
- Axis zoom, when selected, causes the image to completely fill the figure window. Axis titles are not displayed. When Axis zoom is cleared, the axis labels and titles are displayed in a gray border surrounding the scope axes. This option can also be set in the Axis Properties pane of the parameter dialog box.
- Colorbar, when selected, displays a bar with the specified colormap to the right of the image axes.
- Save Position automatically updates the Figure position parameter in the Axis Properties pane to reflect the figure window's current position and size on the screen. To make the scope window open at a particular location on the screen when the simulation runs, drag the window to the desired location, resize it, and select Save Position. The parameter dialog box must be closed when you select Save Position for the Figure position parameter to be updated.

Examples

See the demo dspstfft.mdl for an example of using the Matrix Viewer block to create a moving spectrogram, or time-frequency plot, of a speech signal by updating just one column of the input matrix at each sample time.

Dialog Box

Colormap matrix

A 3-column matrix defining the colormap as a set of RGB triples, or a call to a colormap-generating function such as hot or spring. See the ColorSpec property for complete information about defining RGB triples, and the colormap function for a list of colormap-generating functions. Tunable.

Minimum input value

The input value to be mapped to the color defined in the first row of the colormap matrix. Right-click in the figure window and select Autoscale from pop-up menu to set this parameter to the minimum value observed in a series of 10 consecutive matrix inputs. Tunable.

Maximum input value

The input value to be mapped to the color defined in the last row of the colormap matrix. Right-click in the figure window and select Autoscale

Matrix Viewer

from the pop-up menu to set this parameter to the maximum value observed in a series of 10 consecutive matrix inputs. Tunable.

Display colorbar

Select to display a bar with the selected colormap to the right of the image axes. Tunable.

```
Block parameters: Matrix Yiewer
? 지
Matrix Viewer
Display a matrix as an image, scaling the colormap to the specified input data range. Colormap must be an Nx3 matrix of RGB values. Type "help graph3d' at the MATLAB prompt for a list of predefined colormaps.
```



```
\(\Gamma\) Axis zoom
```


 Apply

Axis origin

The position within the axes where the first element of the input matrix, $U(1,1)$, is plotted; bottom left or top left. Tunable.

X -axis title

The text to be displayed below the x-axis. Tunable.

Y-axis title

The text to be displayed to the left of the y-axis. Tunable.

Colorbar title

The text to be displayed to the right of the color bar, when Display colorbar is currently selected. Tunable.

Figure position, [x y width height]

A 4-element vector of the form [x y width height] specifying the position of the figure window, where $(0,0)$ is the lower-left corner of the display. Tunable.

Axis zoom

Resizes the image to fill the figure window. Tunable.

Supported Data Types

See Also
Spectrum Scope
Vector Scope
colormap
ColorSpec
image
Signal Processing Blockset
Signal Processing Blockset
MATLAB
MATLAB
MATLAB

Maximum

Purpose Find maximum values in an input or sequence of inputs
Library Statistics
Description

The Maximum block identifies the value and/or position of the largest element in each column of the input, or tracks the maximum values in a sequence of inputs over a period of time. The Mode parameter specifies the block's mode of operation and can be set to Value, Index, Value and Index, or Running.

The Maximum block supports real and complex floating-point and fixed-point inputs. Real fixed-point inputs can be either signed or unsigned, while complex fixed-point inputs must be signed. The data type of the maximum values output by the block match the data type of the input. The index values output by the block are double when the input is double, and uint 32 otherwise.

Value Mode

When Mode is set to Value, the block computes the maximum value in each column of the M-by-N input matrix u independently at each sample time.

```
val = max(u) % Equivalent MATLAB code
```

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by- 1 column vectors.

The output at each sample time, val, is a 1-by-N vector containing the maximum value of each column in u.

For complex inputs, the block selects the value in each column that has the maximum magnitude squared as shown below. For complex value $u=a+b i$, the magnitude squared is $a^{2}+b^{2}$.

The frame status of the output is the same as that of the input.

Index Mode

When Mode is set to Index, the block computes the maximum value in each column of the M-by-N input matrix u,

```
[val,idx] = max(u) % Equivalent MATLAB code
```

and outputs the sample-based 1-by-N index vector, idx. Each value in idx is an integer in the range [1 M] indexing the maximum value in the corresponding column of u. When inputs to the block are double-precision values, the index values are double-precision values. Otherwise, the index values are 32 -bit unsigned integer values.

As in Value mode, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

When a maximum value occurs more than once in a particular column of u, the computed index corresponds to the first occurrence. For example, when the input is the column vector [$\left.\begin{array}{lllll}3 & 2 & 1 & 2 & 3\end{array}\right]$ ', the computed index of the maximum value is 1 rather than 5 .

Value and Index Mode

When Mode is set to Value and Index, the block outputs both the vector of maxima, val, and the vector of indices, idx.

Running Mode

When Mode is set to Running, the block tracks the maximum value of each channel in a time-sequence of M-by-N inputs. For sample-based inputs, the output is a sample-based M-by-N matrix with each element $y_{i j}$ containing the maximum value observed in element $u_{i j}$ for all inputs since the last reset. For frame-based inputs, the output is a frame-based M-by-N matrix with each element $y_{i j}$ containing the maximum value observed in the j th column of all inputs since the last reset, up to and including element $u_{i j}$ of the current input.
As in the other modes, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running Maximum. The block resets the running maximum whenever a reset event is detected at the optional Rst port. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

For sample-based inputs, a reset event causes the running maximum for each channel to be initialized to the value in the corresponding channel of the current input. For frame-based inputs, a reset event causes the running maximum for each channel to be initialized to the earliest value in each channel of the current input.

You specify the reset event in the Reset port menu:

- None - disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Fixed-Point Data Types

The parameters on the Fixed-point pane of the block dialog are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 9-652. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Examples

The Maximum block in the model below calculates the running maximum of a frame-based 3-by-2 (two-channel) matrix input, u. The running maximum is reset at $t=2$ by an impulse to the block's Rst port.

The Maximum block has the following settings:

- Mode = Running
- Reset port = Non-zero signal

The Signal From Workspace block has the following settings

- $\boldsymbol{\operatorname { S i g n a l }}=u$
- Sample time $=1 / 3$
- Samples per frame $=3$
where

```
u = [6 1 3 -7 2 5 8 0 -1 -3 2 1;1 3 9 2 4 1 6 2 5 0 4 17]'
```

The Discrete Impulse block has the following settings:

- Delay $($ samples $)=2$
- Sample time = 1
- Samples per frame $=1$

The block's operation is shown in the figure below.

The statsdem demo illustrates the operation of several blocks from the Statistics library.

Dialog Box

The Main pane of the Maximum block dialog appears as follows:

Mode

Specify the block's mode of operation:

- Value - Output the maximum value of each input
- Index - Output the index of the maximum value
- Value and index - Output both the value and the index
- Running - Track the maximum value of the input sequence over time

For more information about these modes, refer to "Description" on page 9-652.

Reset port

Specify the reset event detected at the Rst input port when you select Running for the Mode parameter. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. For information about the possible values of this parameter, refer to "Resetting the Running Maximum" on page 9-653.

The Fixed-point pane of the Maximum block dialog appears as follows:

Note The parameters on the Fixed-point pane are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 9-652. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information:

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

[^4]- Fixed point - Signed and unsigned real fixed point, and signed complex fixed-point
- Boolean - The block accepts Boolean inputs to the Rst port.
- 32-bit unsigned integer - When inputs to the block are double-precision values, the index values are double-precision values. Otherwise, the index values are 32 -bit unsigned integer values.

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Mean
Minimum
MinMax
max

Signal Processing Blockset
Signal Processing Blockset
Simulink
MATLAB

Purpose Find mean value of an input or sequence of inputs
Library Statistics
Description

㺲
The Mean block computes the mean of each column in the input, or tracks the mean values in a sequence of inputs over a period of time. The Running mean parameter selects between basic operation and running operation.

The Mean block accepts real and complex fixed-point and floating-point inputs.

Basic Operation

When you do not select the Running mean check box, the block computes the mean of each column of M-by-N input matrix u independently at each sample time.

```
y = mean(u) % Equivalent MATLAB code
```

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, y , is a 1-by-N vector containing the mean value for each column in u. The mean of a complex input is computed independently for the real and imaginary components, as shown below.

The frame status of the output is the same as that of the input.

Running Operation

When you select the Running mean check box, the block tracks the mean value of each channel in a time-sequence of M-by-N inputs. For sample-based inputs, the output is a sample-based M-by-N matrix with each element $y_{i j}$ containing the mean value of element $u_{i j}$ over all inputs since the last reset. For frame-based inputs, the output is a frame-based M-by-N matrix with each
element $y_{i j}$ containing the mean value of the j th column over all inputs since the last reset, up to and including element $u_{i j}$ of the current input.

As in basic operation, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running Mean. The block resets the running mean whenever a reset event is detected at the optional Rst port. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

When the block is reset for sample-based inputs, the running mean for each channel is initialized to the value in the corresponding channel of the current input. For frame-based inputs, the running mean for each channel is initialized to the earliest value in each channel of the current input.

You specify the reset event by the Reset port parameter:

- None disables the Rst port.
- Ris ing edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Fixed-Point Data Types

The following diagram shows the data types used within the Mean block for fixed-point signals.

You can set the accumulator and output data types in the block dialog as discussed in "Dialog Box" on page 9-666.

Examples

The Mean block in the model below calculates the running mean of a frame-based 3-by-2 (two-channel) matrix input, u. The running mean is reset at $t=2$ by an impulse to the block's Rst port.

The Mean block has the following settings:

- Running mean $=$ Select this check box
- Reset port = Non-zero sample

The Signal From Workspace block has the following settings

- $\boldsymbol{\text { Signal}}=u$
- Sample time $=1 / 3$
- Samples per frame $=3$
where

$$
\mathrm{u}=\left[\begin{array}{lllllllllllllllllllllll}
6 & 1 & 3 & -7 & 2 & 5 & 8 & 0 & -1 & -3 & 2 & 1 ; & 1 & 3 & 9 & 2 & 4 & 1 & 6 & 2 & 5 & 0 & 4
\end{array}\right]
$$

The Discrete Impulse block has the following settings:

- Delay (samples) = 2

- Sample time = 1
- Samples per frame $=1$

The block's operation is shown in the figure below.

The statsdem demo illustrates the operation of several blocks from the Statistics library.

Dialog Box The Main pane of the Mean block dialog appears as follows.

Running mean

Enables running operation when selected.

Reset port

Determines the reset event that causes the block to reset the running mean. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Running mean parameter. For more information, see "Resetting the Running Histogram" on page 9-468.

The Fixed-point pane of the Mean block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types

See Also

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- Boolean - The block accepts Boolean inputs to the Rst port
- 8 -, 16-, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Maximum
Median
Minimum
Standard Deviation mean

Signal Processing Blockset
Signal Processing Blockset Signal Processing Blockset Signal Processing Blockset MATLAB

Median

Purpose Find median value of an input
Library
Statistics
Description
The Median block computes the median value of each column in an M-by-N input matrix.

```
y = median(u) % Equivalent MATLAB code
```

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, y , is a sample-based 1 -by- N vector containing the median value for each column in u.

When M is odd, the block sorts the column elements by value, and outputs the central row of the sorted matrix.

```
s = sort(u);
y = s((M+1)/2,:)
```

When M is even, the block sorts the column elements by value, and outputs the average of the two central rows in the sorted matrix.

```
s = sort(u);
y = mean([s(M/2,:);s(M/2+1,: )])
```

Complex inputs are sorted by magnitude squared. For complex value $u=a+b i$, the magnitude squared is $a^{2}+b^{2}$.

The Median block accepts real and complex fixed-point and floating-point inputs.

Fixed-Point Data Types

For fixed-point inputs, you can specify accumulator, product output, and output data types as discussed in "Dialog Box" on page 9-672. Not all these fixed-point parameters are applicable for all types of fixed-point inputs. The following table shows when each kind of data type and scaling is used.

	Output data type	Accumulator data type	Product output data type
Even M	X	X	
Odd M	X		
Odd M and complex	X	X	X
Even M and complex	X	X	X

The accumulator and output data types and scalings are used for fixed-point signals when M is even. The result of the sum performed while calculating the average of the two central rows of the input matrix is stored in the accumulator data type and scaling. The total result of the average is then put into the output data type and scaling.

The accumulator and product output parameters are used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before the input elements are sorted, as described in "Description" on page 9-670. The results of the squares of the real and imaginary parts are placed into the product output data type and scaling. The result of the sum of the squares is placed into the accumulator data type and scaling.

For fixed-point inputs that are both complex and have even M, the data types are used in all of the ways described. Therefore, in such cases the accumulator type is used in two different ways.

Median

Dialog Box The Main pane of the Median block dialog appears as follows:

Sort algorithm

Specify whether the elements of the input are sorted using a Quick sort or an Insertion sort algorithm.

The Fixed-point pane of the Median block dialog appears as follows:

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Note The product output, accumulator, and output parameters listed below are only used in certain cases. Refer to "Fixed-Point Data Types" on page 9-670 for more information.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths:

Median

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block:

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - 8 -, 16-, 32 -, and 128 -bit signed integers - 8 -, 16-, 32 -, and 128 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - 8 -, 16-, 32 -, and 128 -bit signed integers - 8 -, 16-, 32 -, and 128 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Maximum	Signal Processing Blockset
	Mean	Signal Processing Blockset
	Minimum	Signal Processing Blockset
	Sort	Signal Processing Blockset
	Standard Deviation	Signal Processing Blockset
	Variance	Signal Processing Blockset
	median	MATLAB

Minimum

Purpose Find minimum values in an input or sequence of inputs

Library
 Statistics

Description

The Minimum block identifies the value and/or position of the smallest element in each column of the input, or tracks the minimum values in a sequence of inputs over a period of time. The Mode parameter specifies the block's mode of operation, and can be set to Value, Index, Value and Index, or Running.

The Minimum block supports real and complex floating-point and fixed-point inputs. Fixed-point real inputs can be either signed or unsigned, while fixed-point complex inputs must be signed. The data type of the minimum values output by the block match the data type of the input. The index values output by the block are double when the input is double, and uint32 otherwise.

Value Mode

When Mode is set to Value, the block computes the minimum value in each column of the M-by-N input matrix u independently at each sample time.

```
val = min(u) % Equivalent MATLAB code
```

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, val, is a 1-by-N vector containing the minimum value of each column in u.

For complex inputs, the block selects the value in each column that has the minimum magnitude squared as shown below. For complex value $u=a+b i$, the magnitude squared is $a^{2}+b^{2}$.

The frame status of the output is the same as that of the input.

Index Mode

When Mode is set to Index, the block computes the minimum value in each column of the M-by-N input matrix u,

```
[val,idx] = min(u) % Equivalent MATLAB code
```

and outputs the sample-based 1-by-N index vector, idx. Each value in idx is an integer in the range [1 M] indexing the minimum value in the corresponding column of u. When inputs to the block are double-precision values, the index values are double-precision values. Otherwise, the index values are 32 -bit unsigned integer values.
As in Value mode, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by- 1 column vectors.

When a minimum value occurs more than once in a particular column of u, the computed index corresponds to the first occurrence. For example, when the input is the column vector $\left[\begin{array}{llll}-1 & 2 & 3 & -1\end{array}\right]$, the computed index of the minimum value is 1 rather than 5.

Value and Index Mode

When Mode is set to Value and Index, the block outputs both the vector of minima, val, and the vector of indices, $i d x$.

Running Mode

When Mode is set to Running, the block tracks the minimum value of each channel in a time-sequence of M-by-N inputs. For sample-based inputs, the output is a sample-based M-by-N matrix with each element $y_{i j}$ containing the minimum value observed in element $u_{i j}$ for all inputs since the last reset. For frame-based inputs, the output is a frame-based M-by-N matrix with each element $y_{i j}$ containing the minimum value observed in the j th column of all inputs since the last reset, up to and including element $u_{i j}$ of the current input.

As in the other modes, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

Minimum

Resetting the Running Minimum. The block resets the running minimum whenever a reset event is detected at the optional Rst port. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

When the block is reset for sample-based inputs, the running minimum for each channel is initialized to the value in the corresponding channel of the current input. For frame-based inputs, the running minimum for each channel is initialized to the earliest value in each channel of the current input.

Yo specify the reset event by the Reset port parameter:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Fixed-Point Data Types

The parameters on the Fixed-point pane of the block dialog are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 9-676. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Minimum

Examples

The Minimum block in the model below calculates the running minimum of a frame-based 3-by-2 (two-channel) matrix input. The running minimum is reset at $t=2$ by an impulse to the block's Rst port.

The Minimum block has the following settings:

- Mode = Running
- Reset port = Non-zero sample

The Signal From Workspace block has the following settings

- $\boldsymbol{\operatorname { S i g n a l }}=u$
- Sample time $=1 / 3$
- Samples per frame $=3$
where

```
u = [l6 1 3 -7 2 5 8 0 -1 -3 2 1;1 3 9 2 4 2 6 2 5 0 4 17]'
```

The Discrete Impulse block has the following settings:

- Delay (samples) = 2
- Sample time = 1
- Samples per frame $=1$

The block's operation is shown in the figure below.

Dialog Box
The Main pane of the Minimum block dialog appears as follows:

Minimum

Mode

Specify the block's mode of operation:

- Value - Output the minimum value of each input
- Index - Output the index of the minimum value
- Value and index - Output both the value and the index
- Running - Track the minimum value of the input sequence over time

For more information about these modes, refer to "Description" on page 9-676.

Reset port

Specify the reset event detected at the RST input port when you select Running for the Mode parameter. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Mode parameter to Running. For information about the possible values of this parameter, see "Resetting the Running Minimum" on page 9-678.

The Fixed-point pane of the Minimum block dialog appears as follows:

Note The parameters on the Fixed-point pane are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 9-676. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Minimum

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information:

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

[^5]- Fixed point - Signed and unsigned real fixed point, and signed complex fixed-point
- Boolean - The block accepts Boolean inputs to the Rst port.
- 32-bit unsigned integer - When inputs to the block are double-precision values, the index values are double-precision values. Otherwise, the index values are 32 -bit unsigned integer values.

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Maximum
Mean
MinMax
Histogram
min

Signal Processing Blockset
Signal Processing Blockset Simulink
Signal Processing Blockset MATLAB

Modified Covariance AR Estimator

Purpose

Library
Description

MGOVAR

MCov AR
Estimator

Compute estimate of autoregressive (AR) model parameters using modified covariance method

Estimation / Parametric Estimation

The Modified Covariance AR Estimator block uses the modified covariance method to fit an autoregressive (AR) model to the input data. This method minimizes the forward and backward prediction errors in the least squares sense. The input is a frame of consecutive time samples, which is assumed to be the output of an AR system driven by white noise. The block computes the normalized estimate of the AR system parameters, $A(z)$, independently for each successive input.

$$
H(z)=\frac{G}{A(z)}=\frac{G}{1+a(2) z^{-1}+\ldots+a(p+1) z^{-p}}
$$

You specify the order, p, of the all-pole model in the Estimation order parameter. To guarantee a valid output, you must set the Estimation order parameter to be less than or equal to two thirds the input vector length.

The output port labeled A outputs the normalized estimate of the AR model coefficients in descending powers of z.

```
[1 a(2) ... a(p+1)]
```

The scalar gain, G, is output from the output port labeled G.
See the Burg AR Estimator block reference page for a comparison of the Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

Dialog Box

Modified Covariance AR Estimator

Estimation order

The order of the AR model, p.

References
\section*{Supported

Data Types}

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.
\(\left.\begin{array}{l|l}\hline Port \& Supported Data Types

\hline Input \& • Double-precision floating point

\& - Single-precision floating point\end{array}\right\}\)| A | - Souble-precision floating point |
| :--- | :--- |
| | - Double-precision floating point |
| G | - Single-precision floating point |
| | |

The output data type is the same as the input data type. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Burg AR Estimator
Covariance AR Estimator Modified Covariance Method Yule-Walker AR Estimator armcov

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

Modified Covariance Method

Purpose
Compute parametric spectral estimate using modified covariance method
Library Estimation / Power Spectrum Estimation

Description

Examples

The dspsacomp demo compares the modified covariance method with several other spectral estimation methods.

Dialog Box

References

Estimation order

The order of the AR model.

Inherit FFT length from input dimensions

When selected, uses the input frame size as the number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT. Tunable.

FFT length

The number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT. When $\mathrm{N}_{\mathrm{fft}}$ exceeds the input frame size, the frame is zero-padded as needed. This parameter is enabled when you do not select Inherit FFT length from input dimensions.

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Modified Covariance Method

Supported
 Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	- Single-precision floating point
Output	• Double-precision floating point
	- Single-precision floating point

The output data type is the same as the input data type. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Burg Method	Signal Processing Blockset
Covariance Method	Signal Processing Blockset
Modified Covariance AR Estimator	Signal Processing Blockset
Short-Time FFT	Signal Processing Blockset
Yule-Walker Method	Signal Processing Blockset
pmcov	Signal Processing Toolbox

See "Power Spectrum Estimation" on page 6-5 for related information.

Multiphase Clock

Purpose	Generate multiple binary clock signals
Library	- Signal Processing Sources
	- Signal Management / Switches and Counters

Description The Multiphase Clock block generates a sample-based 1-by-N vector of clock signals, where you specify the integer N in the Number of phases parameter.
Each of the N phases has the same frequency, f, specified in hertz by the Clock frequency parameter.

The clock signal indexed by the Starting phase parameter is the first to become active, at $t=0$. The other signals in the output vector become active in turn, each one lagging the preceding signal's activation by $1 /(\mathrm{N} * f)$ seconds, the phase interval. The period of the sample-based output is therefore $1 /(\mathrm{N} * f)$ seconds.

The active level can be either high (1) or low (0), as specified by the Active level (polarity) parameter. The duration of the active level, D, is set by the Number of phase intervals over which the clock is active. This value, which can be an integer value between 1 and $\mathrm{N}-1$, specifies the number of phase intervals that each signal should remain in the active state after becoming active. The active duty cycle of the signal is D / N.

Examples

Configure the Multiphase Clock block in the model below to generate a 100 Hz five-phase output in which the third signal is first to become active. Use a high active level with a duration of one interval.

The corresponding settings are as follows:

- Clock frequency $=100$
- Number of phases $=5$
- Starting phase $=3$
- Number of phase intervals over which the clock is active $=1$

Multiphase Clock

- Active level (polarity) $=$ High (1)

The Scope window below shows the Multiphase Clock block's output for these settings. Note that the first active level appears at $t=0$ on $\mathrm{y}(3)$, the second active level appears at $t=0.002$ on $\mathrm{y}(4)$, the third active level appears at $t=0.004$ on $\mathrm{y}(5)$, the fourth active level appears at $t=0.006$ on $\mathrm{y}(1)$, and the fifth active level appears at $t=0.008$ on $y(2)$. Each signal becomes active $1 /(5 * 100)$ seconds after the previous signal.

To experiment further, try changing the Number of phase intervals over which clock is active setting to 3 so that the active-level duration is three phase intervals (60% duty cycle).

Multiphase Clock

Dialog Box

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters" in the online Simulink documentation for details.

Clock frequency

The frequency of all output clock signals.

Number of phases

The number of different phases, N , in the output vector.

Starting phase

The vector index of the output signal to first become active. Tunable.

Number of phase intervals over which clock is active

The duration of the active level for every output signal. Tunable in simulation, but not in Real-Time Workshop external mode.

Active level

The active level, High (1) or Low (0). Tunable.

Multiphase Clock

Output data type

The output data type. For information on the Logical and Boolean options of this parameter, see "Effects of Enabling and Disabling Boolean Support" on page 7-18.

Supported
Data Types

Clock
Counter
Pulse Generator
Event-Count Comparator

Simulink
Signal Processing Blockset
Simulink
Signal Processing Blockset

Purpose
Distribute arbitrary subsets of input rows or columns to multiple output ports

Library
Description

Select Rous

Signal Management / Indexing
The Multiport Selector block extracts multiple subsets of rows or columns from M-by-N input matrix u, and propagates each new submatrix to a distinct output port. A length-M 1-D vector input is treated as an M-by-1 matrix.

The Indices to output parameter is a cell array whose k th cell contains a one-dimensional indexing expression specifying the subset of input rows or columns to be propagated to the k th output port. The total number of cells in the array determines the number of output ports on the block.

When the Select parameter is set to Rows, the specified one-dimensional indices are used to select matrix rows, and all elements on the chosen rows are included. When the Select parameter is set to Columns, the specified one-dimensional indices are used to select matrix columns, and all elements on the chosen columns are included. A given input row or column can appear any number of times in any of the outputs, or not at all.

When an index references a nonexistent row or column of the input, the block reacts with the behavior specified by the Invalid index parameter. The following options are available:

- Clip index - Clip the index to the nearest valid value, and do not issue an alert.
Example: For a 64-by-4 input with Select = Rows, an index of 72 is clipped to 64 ; with Select $=$ Columns, an index of 72 is clipped to 4 . In both cases, an index of -2 is clipped to 1 .
- Clip and warn - Display a warning message in the MATLAB Command Window, and clip as above.
- Generate error - Display an error dialog box and terminate the simulation.

Consider the following Indices to output cell array:

```
{4,[1:2 5],[7;8],10:-1:6}
```


Multiport Selector

This is a four-cell array, which requires the block to generate four independent outputs (each at a distinct port). The table below shows the dimensions of these outputs when Select = Rows and the input dimension is M-by-N.

Cell	Expression	Description	Output Size
1	4	Row 4 of input	1 -by-N
2	$[1: 25]$	Rows 1,2, and 5 of input	3 -by-N
3	$[7 ; 8]$	Rows 7 and 8 of input	2 -by-N
4	$10:-1: 6$	Rows $10,9,8,7$, and 6 of input	5 -by-N

Dialog Box

Select

The dimension of the input to select, Rows or Columns.

Indices to output

A cell array specifying the row- or column-subsets to propagate to each of the output ports. The number of cells in the array determines the number of output ports on the block.

Invalid index

Response to an invalid index value.

Multiport Selector

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Outputs	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Permute Matrix	Signal Processing Blockset
	Selector	Simulink
	Submatrix	Signal Processing Blockset
	Variable Selector	Signal Processing Blockset

N-Sample Enable

Purpose
Output ones or zeros for specified number of sample times

Library

Description

- Signal Processing Sources
- Signal Management / Switches and Counters

The N-Sample Enable block outputs the inactive value (0 or 1, whichever is not selected in the Active level parameter) during the first N sample times, where N is the Trigger count value. Beginning with output sample $\mathrm{N}+1$, the block outputs the active value (1 or 0, whichever you select in the Active level parameter) until a reset event occurs or the simulation terminates.

The output is always sample based.
The Reset input check box enables the Rst input port. At any time during the count, a trigger event at the input port resets the counter to its initial state. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This block supports triggered subsystems when you select the Reset input check box.

You specify the triggering event in the Trigger type pop-up menu:

- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

N-Sample Enable

Dialog Box

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters" in the online Simulink documentation for details.

Trigger count

The number of samples for which the block outputs the active value.
Tunable.

Active level

The value to output after the first N sample times, 0 or 1 . Tunable.

Reset input

Enables the Rst input port. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

Trigger type

The type of event that triggers a reset when the Rst port is enabled. Nontunable.

Sample time

The sample period, T_{s}, for the block's counter. The block switches from the active value to the inactive value at $t=\mathrm{T}_{\mathrm{s}} *(\mathrm{~N}+1)$.

N-Sample Enable

Output data type

The output data type. Nontunable. For information on the Logical and Boolean options of this parameter, see "Effects of Enabling and Disabling Boolean Support" on page 7-18.

Supported Data Types

See Also

- Double-precision floating point
- Boolean - The block accepts Boolean inputs to the Rst port, which is enabled when you set the Reset input parameter. The block might output Boolean values depending on the Output data type parameter setting, as described in "Effects of Enabling and Disabling Boolean Support" on page 7-18. To learn how to disable Boolean output support, see "Steps to Disabling Boolean Support" on page 7-19.

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Counter
N-Sample Switch

Signal Processing Blockset
Signal Processing Blockset

N-Sample Switch

Purpose
Switch between two inputs after specified number of sample periods
Library
Signal Management / Switches and Counters

The N-Sample Switch block outputs the signal connected to the top input port during the first N sample times after the simulation begins or the block is reset, where you specify N in the Switch count parameter. Beginning with output sample $\mathrm{N}+1$, the block outputs the signal connected to the bottom input until the next reset event or the end of the simulation.

You specify the sample period of the output in the Sample time parameter (that is, the output sample period is not inherited from the sample period of either input). The block applies a zero-order hold at the input ports, so the value the block reads from a given port between input sample times is the value of the most recent input to that port.

Both inputs must have the same dimension, except in the following two cases:

- When one input is a scalar, the block expands the scalar input to match the size of the other input.
- When one input is a 1-D vector and the other input is a row or column vector with the same number of elements, the block reshapes the 1-D vector to match the dimension of the other input.

The inputs must either both be frame based or both be sample based.
The Reset input check box enables the Rst input port. At any time during the count, a trigger event at the Rst port resets the counter to zero. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This block supports triggered subsystems when you select the Reset input check box.

You specify the triggering event in the Trigger type pop-up menu, and can be one of the following:

- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero

\mathbf{N}-Sample Switch

- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see

N-Sample Switch

"Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Dialog Box

Supported
Data Types

Switch count

The number of sample periods, N , for which the output is connected to the top input before switching to the bottom input. Tunable.

Reset input

Enables the Rst input port when selected. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input.

Trigger type

The type of event at the Rst port that resets the block's counter. This parameter is enabled when you select Reset input. Tunable.

Sample time

The sample period, T_{s}, for the block's counter. The block switches inputs at $t=\mathrm{T}_{\mathrm{s}} *(\mathrm{~N}+1)$.

- Double-precision floating point
- Single-precision floating point

N-Sample Switch

- Fixed point (signed and unsigned)
- Custom data types
- Boolean - The block accepts Boolean inputs to the Rst port, which is enabled when you set the Reset input parameter.
- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Counter N-Sample Enable

Signal Processing Blockset
Signal Processing Blockset

Normalization

Purpose \quad Normalize input by its 2-norm or squared 2-norm
Library Math Functions / Math Operations
Description

The Normalization block independently normalizes each column of the M-by-N matrix input, u.

The block accepts the following types of inputs:

- Frame-based vectors and matrices
- Sample-based row and column vectors
- Sample-based unoriented (1-D) vectors

Note the block does not accept sample-based full matrix inputs.
The Normalization block accepts real and complex inputs. The block accepts floating-point signals only for the 2-norm mode, and both fixed-point and floating-point signals for the squared 2 -norm mode.

The output always has the same dimension and frame status as the input. For convenience, length-M 1-D vectors and sample-based length-M row vectors are both treated as M-by- 1 column vectors.

2-Norm

The 2-norm mode is supported for floating-point inputs only. When you specify 2-norm for the Norm parameter, the block normalizes the j th input column as follows

$$
y_{i j}=\frac{u_{i j}}{\|u\|_{j}+b}
$$

where you specify b in the Normalization bias parameter, and $\|u\|_{j}$ is the 2 -norm (or Euclidean norm) of the j th input column.

$$
\|u\|_{j}=\sqrt{\left|u_{1 j}\right|^{2}+\left|u_{2 j}\right|^{2}+\cdots+\left|u_{M j}\right|^{2}}
$$

Equivalently,

$$
y=u . /(\operatorname{norm}(u)+b) \quad \% \text { Equivalent MATLAB code }
$$

The normalization bias, b, is typically chosen to be a small positive constant (for example, 1e-10) that prevents potential division by zero.

Squared 2-Norm

The squared 2-norm mode is supported for both fixed-point and floating-point inputs. When you specify Squared 2 -norm for the Norm parameter, the block normalizes the j th input column as follows

$$
y_{i j}=\frac{u_{i j}}{\|u\|_{j}^{2}+b}
$$

where

$$
\|u\|_{j}^{2}=\left|u_{1 j}\right|^{2}+\left|u_{2 j}\right|^{2}+\cdots+\left|u_{M j}\right|^{2}
$$

Equivalently,

$$
y=u . /\left(\operatorname{norm}(u) . \wedge^{\wedge} 2+b\right) \quad \% \text { Equivalent MATLAB code }
$$

Fixed-Point Data Types

The following diagram shows the data types used within the Normalization block for fixed-point signals (squared 2 -norm mode).

The output of the multiplier is in the product output data type when the input is real. When the input is complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types" on page 8-15. You can set the accumulator,

Normalization

product output, intermediate product, and output data types in the block dialog as discussed in "Dialog Box" below.

Dialog Box
The Main pane of the Normalization dialog appears as follows:

Norm

Specify the type of normalization to apply, 2-norm or Squared 2-norm. 2 -norm mode supports floating-point signals. Squared 2 -norm supports both fixed-point and floating-point signals. Tunable.

Normalization bias

Specify the real value b to be added in the denominator to avoid division by zero. Tunable.

The Fixed-Point pane of the Normalization dialog appears as follows:

Note The parameters on this pane are only applicable to fixed-point signals when the block is in squared 2-norm mode. Refer to "Fixed-Point Data Types" on page 9-707 for a diagram of how the product output, accumulator, and output data types are used in this case.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. The bias b is also quantized into the accumulator data type:

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types

See Also
Matrix Scaling
Reciprocal Condition
norm

Signal Processing Blockset
Signal Processing Blockset
MATLAB

Offset

Truncate vectors by removing or keeping beginning or ending values

Signal Operations

The Offset block removes or keeps values from the beginning or end of a vector and outputs the result in a vector of user-specified length. The inputs to the In ports (In1, In2, ...) can be scalars or vectors, but they must be the same size and data type. The offset values are the inputs to the O ports (O1, O2, ...); they must be scalar values with the same data type. These offset values should be integer values because they determine the number of values the block discards or retains from each input vector. The block rounds any offset value that is a noninteger value to the nearest integer value. There is one output port for each pair of In and O ports. This block supports sample-based and frame-based signals.

Use the Mode parameter to determine which values the block discards or retains from the input vector. To discard the initial values of the vector, select Remove beginning samples. To discard the final values of the vector, select Remove ending samples. To retain the initial values of the vector, select Keep beginning samples. To retain the final values of a vector, select Keep ending samples.

Use the Number of input data-offset pairs parameter to specify the number of inputs to the block. The number of input ports is twice the scalar value you enter. For example, if you enter 3, ports $\operatorname{In} 1, \mathrm{O} 1, \operatorname{In} 2, \mathrm{O} 2, \operatorname{In} 3$, and O 3 appear on the block.

The block uses the Output port length parameter to determine the length of the output vectors. If you select Same as input, the block outputs vectors that are the same length as the input to the In ports. If you select User-defined, the Output length parameter appears. Enter a scalar that represents the desired length of the output vectors. If your desired output length is greater than the number of values you extracted from your input vector, the block zero-pads the end of the vector to reach the length you specified.

Use the Action for out of range offset value parameter to determine how the block behaves when an offset value is not in the range $0 \leq$ offset value $\leq N$, where N is the input vector length. Select Clip if you want any offset values less than 0 to be set to 0 and any offset values greater than N to be set to N . Select Clip and warn if you want to be warned when any offset values less than

0 are set to 0 and any offset values greater than N are set to N . Select Error if you want the simulation to stop and display an error when the offset values are out of range.

Dialog Box

Mode

Use this parameter to determine which values the block discards or retains from the input vector. Your choices are Remove beginning samples, Remove ending samples, Keep beginning samples, and Keep ending samples.

Number of input data-offset pairs

Specify the number of inputs to the block. The number of input ports is twice the scalar value you enter.

Output port length

Use this parameter to specify the length of the output vectors. If you select Same as input, the output vectors are the same length as the input vectors. If you select User-defined, you can enter the desired length of the output vectors.

Output length

Enter a scalar that represents the desired length of the output vectors. This parameter is visible if, for the Output port length parameter, you select User-defined.

Action for out of range offset value

Use this parameter to determine how the block behaves when an offset value is not in the range such that $0 \leq$ offset value $\leq N$, where N is the input vector length. When you want any offset values less than 0 to be set to 0 and any offset values greater than N to be set to N , select Clip. When you want to be warned when any offset values less than 0 are set to 0 and any offset values greater than N are set to N , select Clip and warn. When you want the simulation to stop and display an error when the offset values are out of range, select Error.

Supported Data Types

Port	Supported Data Types
In	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers
O	- Double-precision floating point - Single-precision floating point - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Out	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers

Overlap-Add FFT Filter

Purpose
 Library
 Description

Implement overlap-add method of frequency-domain filtering

Filtering / Filter Designs

The Overlap-Add FFT Filter block uses an FFT to implement the overlap-add method, a technique that combines successive frequency-domain filtered sections of an input sequence.

Valid inputs to this block are 1-D vectors, sample-based vectors, frame-based vectors, and frame-based full matrices. All outputs are unbuffered into sample-based row vectors. The length of the output vector is equal to the number of channels in the input vector. An M-by- 1 sample-based input has M channels, so it would result in a length-M sample-based output vector. An M-by-1 frame-based input has only one channel, so would result in a 1-by-1 (scalar) output.

The block's data output rate is M times faster than its data input rate, where M is the input frame-size. Thus, the block's data input and output rates are the same when the inputs are 1-D vectors, sample-based vectors, or frame-based row vectors. For frame-based column and frame-based full-matrix inputs, the block's data output rate is M times greater than the block's data input rate.

1-D vectors are treated as length-N sample-based vectors, and result in sample-based length-N row vectors.

The block breaks the scalar input sequence u, of length nu, into length- L nonoverlapping data sections,
u

which it linearly convolves with the filter's FIR coefficients,

$$
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{n+1} z^{-n}
$$

The numerator coefficients for $\mathrm{H}(z)$ are specified as a vector by the FIR coefficients parameter. The coefficient vector, $b=[b(1) b(2) \ldots b(n+1)]$, can be generated by one of the filter design functions in the Signal Processing Toolbox, such as fir1. All filter states are internally initialized to zero.

Overlap-Add FFT Filter

When either the filter coefficients or the inputs to the block are complex, the Output parameter should be set to Complex. Otherwise, the default Output setting, Real, instructs the block to take only the real part of the solution.

The block's overlap-add operation is equivalent to

$$
y=i f f t(f f t(u(i: i+L-1), n f f t) . * f f t(b, n f f t))
$$

where you specify nfft in the FFT size parameter as a power-of-two value greater (typically much greater) than $n+1$. Values for FFT size that are not powers of two are rounded upwards to the nearest power-of-two value to obtain nfft.

The block overlaps successive output sections by n points and sums them.

The first L samples of each summation are output in sequence. The block chooses the parameter L based on the filter order and the FFT size.

```
L = nfft - n
```


Latency

In single-tasking operation, the Overlap-Add FFT Filter block has a latency of $n f f t-n+1$ samples. The first $n f f t-n+1$ consecutive outputs from the block are zero; the first filtered input value appears at the output as sample $n f f t-n+2$.

In multitasking operation, the Overlap-Add FFT Filter block has a latency of 2* ($n f f t-n+1$) samples. The first 2* ($n f f t-n+1$) consecutive outputs from the block are zero; the first filtered input value appears at the output as sample 2* $(n f f t-n)+3$.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on

Overlap-Add FFT Filter

models with multiple sample rates in the Real-Time Workshop documentation.

Dialog Box

References

FFT size

The size of the FFT, which should be a power-of-two value greater than the length of the specified FIR filter.

FIR coefficients

The filter numerator coefficients.

Output

The complexity of the output; Real or Complex. When the input signal or the filter coefficients are complex, this should be set to Complex.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Overlap-Add FFT Filter

Supported	• Double-precision floating point
Data Types	• Single-precision floating point
	To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also Overlap-Save FFT Filter Signal Processing Blockset

Overlap-Save FFT Filter

Purpose
 Library
 Description

Implement overlap-save method of frequency-domain filtering

Filtering / Filter Designs
The Overlap-Save FFT Filter block uses an FFT to implement the overlap-save method, a technique that combines successive frequency-domain filtered sections of an input sequence.

Valid inputs to this block are 1-D vectors, sample-based vectors, frame-based vectors, and frame-based full matrices. All outputs are unbuffered into sample-based row vectors. The length of the output vector is equal to the number of channels in the input vector. An M-by- 1 sample-based input has M channels, so it would result in a length-M sample-based output vector. An M-by-1 frame-based input has only one channel, so would result in a 1-by-1 (scalar) output.

The block's data output rate is M times faster than its data input rate, where M is the input frame-size. Thus, the block's data input and output rates are the same when the inputs are 1-D vectors, sample-based vectors, or frame-based row vectors. For frame-based column and frame-based full-matrix inputs, the block's data output rate is M times greater than the block's data input rate.

1-D vectors are treated as length-N sample-based vectors, and result in sample-based length-N row vectors.

Overlapping sections of input u are circularly convolved with the FIR filter coefficients

$$
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{n+1} z^{-n}
$$

The numerator coefficients for $H(z)$ are specified as a vector by the FIR coefficients parameter. The coefficient vector, $b=[b(1) b(2) \ldots b(n+1)]$, can be generated by one of the filter design functions in the Signal Processing Toolbox, such as fir1. All filter states are internally initialized to zero.

When either the filter coefficients or the inputs to the block are complex, the Output parameter should be set to Complex. Otherwise, the default Output setting, Real, instructs the block to take only the real part of the solution.

Overlap-Save FFT Filter

The circular convolution of each section is computed by multiplying the FFTs of the input section and filter coefficients, and computing the inverse FFT of the product.

$$
y=i f f t(f f t(u(i: i+(L-1)), n f f t) . * f f t(b, n f f t))
$$

where you specify nfft in the FFT size parameter as a power of two value greater (typically much greater) than $n+1$. Values for FFT size that are not powers of two are rounded upwards to the nearest power-of-two value to obtain nfft.

The first n points of the circular convolution are invalid and are discarded. The Overlap-Save FFT Filter block outputs the remaining nfft-n points, which are equivalent to the linear convolution.

Latency

In single-tasking operation, the Overlap-Save FFT Filter block has a latency of $n f f t-n+1$ samples. The first $n f f t-n+1$ consecutive outputs from the block are zero; the first filtered input value appears at the output as sample $n f f t-n+2$.

In multitasking operation, the Overlap-Save FFT Filter block has a latency of $2^{*}(n f f t-n+1)$ samples. The first $2^{*}(n f f t-n+1)$ consecutive outputs from the block are zero; the first filtered input value appears at the output as sample 2* $(n f f t-n)+3$.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Overlap-Save FFT Filter

Dialog Box

References

Supported Data Types

FFT size

The size of the FFT, which should be a power of two value greater than the length of the specified FIR filter.

FIR coefficients

The filter numerator coefficients.

Output

The complexity of the output; Real or Complex. When the input signal or the filter coefficients are complex, this should be set to Complex.

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Overlap-Save FFT Filter

See Also
Overlap-Add FFT Filter
Signal Processing Blockset

Purpose

Library

Description

Overwrite submatrix or subdiagonal of input

- Math Functions / Matrices and Linear Algebra / Matrix Operations
 - Signal Management / Indexing

The Overwrite Values block overwrites a contiguous submatrix or subdiagonal of an input matrix. You can provide the overwriting values by typing them in a block parameter, or through an additional input port (useful for providing overwriting values that change at each time step).

The block accepts both sample- and frame-based vectors and matrices. The output has the same size and frame status as the original input signal (not necessarily the same size and frame status as the signal containing the overwriting values).

Overwrite Values

Specifying the Overwriting Values

The Source of overwriting value(s) parameter determines how you must provide the overwriting values, and has the following settings.

- Specify via dialog - You must provide the overwriting value(s) in the Overwrite with parameter. The block uses the same overwriting values to overwrite the specified portion of the input at each time step. To learn how to specify valid overwriting values, see "Valid Overwriting Values" on page 9-724.
- Second input port - You must provide overwriting values through a second block input port, V. Use this setting to provide different overwriting values at each time step. (The output inherits its size, rate, and frame status from the input signal, not the overwriting values.)

The rate at which you provide the overwriting values through input port V must match the rate at which the block receives each input matrix at input port A. The rate requirements depend on whether the input signal and overwriting values signal have the same frame status:

- When both signals are sample based, their sample rates must be the same.
- When both signals are frame based, their frame rates must be the same.
- When one signal is sample based and one signal is frame based, the sample rate of the sample-based signal must be the same as the frame rate of the frame-based signal.

Valid Overwriting Values. The overwriting values can be a single constant, vector, or matrix, depending on the portion of the input you are overwriting, regardless
of whether you provide the overwriting values through an input port or by providing them in the Overwrite with parameter.

Valid Overwriting Values

Portion of Input to Overwrite Valid Overwriting Values Example

A single element in the input

$$
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
$$

Any constant value, v

$$
v=9\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & 9 & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
$$

A length- k portion of the diagonal

$$
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
$$

$$
\begin{aligned}
& k=3 \\
& k=\left[\begin{array}{lll}
2 & 4 & 6
\end{array}\right] \text { or }\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right] \\
& {\left[\begin{array}{lllll}
2 & x & x & x & x \\
x & 4 & x & x & x \\
x & x & 6 & x & x \\
x & x & x & x & x
\end{array}\right]}
\end{aligned}
$$

Any length- k row vector, v
Any length- k column or row vector, v

$$
\left[\begin{array}{ccccc}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
$$

A length- k portion of a row

$$
\begin{aligned}
& k=3 \\
& =
\end{aligned} \quad v=\left[\begin{array}{lll}
2 & 4 & 6
\end{array}\right]
$$

Overwrite Values

Valid Overwriting Values (Continued)

Portion of Input to Overwrite

Valid Overwriting Values Example

A length- k portion of a column

$$
\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
$$

Any length- k column vector, v
$k=2 \quad v=\left[\begin{array}{l}4 \\ 6\end{array}\right]$ $\left[\begin{array}{ccccc}x & x & x & x & x \\ x & x & x & 4 & x \\ x & x & x & 6 & x \\ x & x & x & x & x\end{array}\right]$

Any m-by- n matrix, v

$$
\left[\begin{array}{ccccc}
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x \\
x & x & x & x & x
\end{array}\right]
$$

$$
\left.\begin{array}{l}
m=2 \\
n=3
\end{array} \quad v=\left[\begin{array}{lll}
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], ~ \begin{array}{lllll}
x & x & x & x & x \\
x & x & 4 & 5 & 6 \\
x & x & 7 & 8 & 9 \\
x & x & x & x & x
\end{array}\right] \quad .
$$

Overwrite Values

Dialog Box

Note Only some of the following parameters are visible in the dialog box at any one time.

Overwrite Values

Overwrite

Determines whether to overwrite a specified submatrix or a specified portion of the diagonal.

Source of overwriting value(s)

Determines where you must provide the overwriting values: either through an input port, or by providing them in the Overwrite with parameter. For more information, see "Specifying the Overwriting Values" on page 9-724.

Overwrite with

The value(s) with which to overwrite the specified portion of the input matrix. Enabled only when Source of overwriting value(s) is set to Specify via dialog. To learn how to specify valid overwriting values, see "Valid Overwriting Values" on page 9-724.

Row span

The range of input rows to be overwritten. Options are All rows, One row, or Range of rows. For descriptions of these options, see "Dialog Box" on page 9-727.

Row/Starting row

The input row that is the first row of the submatrix that the block overwrites. For a description of the options for the Row and Starting row parameters, see the table called "Settings for Row, Column, Starting Row, and Starting Column Parameters" on page 9-733. (Row is enabled when Row span is set to One row, and Starting row when Row span is set to Range of rows.)

Row index/Starting row index

Index of the input row that is the first row of the submatrix that the block overwrites. See how to use these parameters in the table called "Settings for Row, Column, Starting Row, and Starting Column Parameters" on page 9-733. (Row index is enabled when Row is set to Index, and Starting row index when Starting row is set to Index.)

Row offset/Starting row offset

The offset of the input row that is the first row of the submatrix that the block overwrites. See how to use these parameters in the table called "Settings for Row, Column, Starting Row, and Starting Column Parameters" on page 9-733. (Row offset is enabled when Row is set to

Offset from middle or Offset from last, and Starting row offset is enabled when Starting row is set to Offset from middle or Offset from last.)

Ending row

The input row that is the last row of the submatrix that the block overwrites. For a description of this parameter's options, see the table called "Settings for Ending Row and Ending Column Parameters" on page 9-734. (Enabled when Row span is set to Range of rows, and Starting row is set to any option but Last.)

Ending row index

Index of the input row that is the last row of the submatrix that the block overwrites. See how to use this parameter in the table called "Settings for Ending Row and Ending Column Parameters" on page 9-734. (Enabled when Ending row is set to Index.)

Ending row offset

The offset of the input row that is the last row of the submatrix that the block overwrites. See how to use this parameter in the table called "Settings for Ending Row and Ending Column Parameters" on page 9-734. (Enabled when Ending row is set to Offset from middle or Offset from last.)

Column span

The range of input columns to be overwritten. Options are All columns, One column, or Range of columns. For descriptions of the analogous row options, see "Dialog Box" on page 9-727.

Column/Starting column

The input column that is the first column of the submatrix that the block overwrites. For a description of the options for the Column and Starting column parameters, see the table called "Settings for Row, Column, Starting Row, and Starting Column Parameters" on page 9-733. (Column is enabled when Column span is set to One column, and Starting column when Column span is set to Range of columns.)

Column index/Starting column index

Index of the input column that is the first column of the submatrix that the block overwrites. See how to use these parameters in the table called

Overwrite Values

"Settings for Row, Column, Starting Row, and Starting Column Parameters" on page 9-733. (Column index is enabled when Column is set to Index, and Starting column index when Starting column is set to Index.)

Column offset/Starting column offset

The offset of the input column that is the first column of the submatrix that the block overwrites. See how to use these parameters in the table called "Settings for Row, Column, Starting Row, and Starting Column Parameters" on page 9-733. (Column offset is enabled when Column is set to Offset from middle or Offset from last, and Starting column offset is enabled when Starting column is set to Offset from middle or Offset from last.)

Ending column

The input column that is the last column of the submatrix that the block overwrites. For a description of this parameter's options, see in the table called "Settings for Ending Row and Ending Column Parameters" on page 9-734. (Enabled when Column span is set to Range of columns, and Starting column is set to any option but Last.)

Ending column index

Index of the input column that is the last column of the submatrix that the block overwrites. See how to use this parameter in the table called "Settings for Ending Row and Ending Column Parameters" on page 9-734. (Enabled when Ending column is set to Index.)

Ending column offset

The offset of the input column that is the last column of the submatrix that the block overwrites. See how to use this parameter in the table called "Settings for Ending Row and Ending Column Parameters" on page 9-734. (Enabled when Ending column is set to Offset from middle or Offset from last.)

Diagonal span

The range of diagonal elements to be overwritten. Options are All elements, One element, or Range of elements. For descriptions of these options, see "Overwriting a Subdiagonal" on page 9-735.

Element/Starting element

The input diagonal element that is the first element in the subdiagonal that the block overwrites. For a description of the options for the Element and Starting element parameters, see the table called "Element and Starting Element Parameters" on page 9-736. (Element is enabled when Element span is set to One element, and Starting element when Element span is set to Range of elements.)

Element index/Starting element index

Index of the input diagonal element that is the first element of the subdiagonal that the block overwrites. See how to use these parameters in the table called "Element and Starting Element Parameters" on page 9-736. (Element index is enabled when Element is set to Index, and Starting element index when Starting element is set to Index.)

Element offset/Starting element offset

The offset of the input diagonal element that is the first element of the subdiagonal that the block overwrites. See how to use these parameters in the table called "Element and Starting Element Parameters" on page 9-736. (Element offset is enabled when Element is set to Offset from middle or Offset from last, and Starting element offset is enabled when Starting element is set to Offset from middle or Offset from last.)

Ending element

The input diagonal element that is the last element of the subdiagonal that the block overwrites. For a description of this parameter's options, see the table called "Ending Element Parameters" on page 9-737. (Enabled when Element span is set to Range of elements, and Starting element is set to any option but Last.)

Ending element index

Index of the input diagonal element that is the last element of the subdiagonal that the block overwrites. See how to use this parameter in the table called "Ending Element Parameters" on page 9-737. (Enabled when Ending element is set to Index.)

Ending element offset

The offset of the input diagonal element that is the last element of the subdiagonal that the block overwrites. See how to use this parameter in the

Overwrite Values

table called "Ending Element Parameters" on page 9-737. (Enabled when Ending element is set to Offset from middle or Offset from last.)

Examples Overwriting a Submatrix

To overwrite a submatrix, following these steps:
1 Set the Overwrite parameter to Submatrix.
2 Specify the overwriting values as described in "Specifying the Overwriting Values" on page 9-724.
3 Specify which rows and columns of the input matrix are contained in the submatrix that you want to overwrite by setting the Row span parameter to one of the following options (and the Column span to the analogous column-related options):

- All rows - The submatrix contains all rows of the input matrix.
- One row - The submatrix contains only one row of the input matrix, which you must specify in the Row parameter, as described in the following table.
- Range of rows - The submatrix contains one or more rows of the input, which you must specify in the Starting Row and Ending row parameters, as described in the following tables.

4 When you set Row span to One row or Range of rows, you need to further specify the row(s) contained in the submatrix by setting the Row or Starting row and Ending row parameters. Likewise, when you set Column span to One column or Range of columns, you must further specify the column(s) contained in the submatrix by setting the Column or Starting column and Ending column parameters. For descriptions of the settings for these parameters, see the following tables.

Settings for Row, Column, Starting Row, and Starting Column Parameters

Seftings for Specifying the Submatrix's First Row or Column	First Row of Submatrix (Only row for Row span = One row)	First Column of Submatrix (Only row for Row span = One row)
First	First row of the input	First column of the input
Index	Input row specified in the Row index parameter	Input column specified in the Column index parameter
Offset from last	Input row with the index M - rowOffset where M is the number of input rows, and rowOffset is the value of the Row offset or Starting row offset parameter	Input column with the index N - colOffset where is the number of input columns, and colOffset is the value of the Column offset or Starting column offset parameter
Last	Last row of the input	Last column of the input

Overwrite Values

Settings for Specifying the Submatrix's Last Row or Column	Last Row of Submatrix	Last Column of Submatrix
Index	Input row specified in the Ending row index parameter	Input column specified in the Ending column index parameter
Offset from last	Input row with the index M - rowOffset where M is the number of input rows, and rowOffset is the value of the Ending row offset parameter	Input column with the index N - colOffset where N is the number of input columns, and colOffset is the value of the Ending column offset parameter
Last	Last row of the input	Last column of the input
Offset from middle	Input row with the index floor(M/2 + 1 - rowOffset) where M is the number of input rows, and rowOffset is the value of the Ending row offset parameter	Input column with the index floor(N/2 + 1 - rowOffset) where N is the number of input columns, and colOffset is the value of the Ending column offset parameter
Middle	Input row with the index floor (M/2 + 1) where M is the number of input rows	Input columns with the index floor(N/2 + 1) where N is the number of input columns

For example, to overwrite the lower-right 2-by-3 submatrix of a 3-by-5 input matrix with all zeros, enter the following set of parameters:

- Overwrite = Submatrix
- Source of overwriting value(s) = Specify via dialog
- Overwrite with $=0$
- Row span = Range of rows
- Starting row $=$ Index
- Starting row index $=2$
- Ending row = Last
- Column span = Range of columns
- Starting column $=0$ ffset from last
- Starting column offset $=2$
- Ending column = Last

The figure below shows the block with the above settings overwriting a portion of a 3-by-5 input matrix.

There are often several possible parameter combinations that select the same submatrix from the input. For example, instead of specifying Last for Ending column, you could select the same submatrix by specifying

- Ending column = Index
- Ending column index $=5$

Overwriting a Subdiagonal

To overwrite a subdiagonal, follow these steps:
1 Set the Overwrite parameter to Diagonal.
2 Specify the overwriting values as described in "Specifying the Overwriting Values" on page 9-724.
3 Specify the subdiagonal that you want to overwrite by setting the Diagonal span parameter to one of the following options:

- All elements - Overwrite the entire input diagonal.
- One element - Overwrite one element in the diagonal, which you must specify in the Element parameter (described below).
- Range of elements - Overwrite a portion of the input diagonal, which you must specify in the Starting element and Ending element parameters, as described in the following table.

Overwrite Values

4 When you set Diagonal span to One element or Range of elements, you need to further specify which diagonal element(s) to overwrite by setting the Element or Starting element and Ending element parameters. See the following tables.

Element and Starting Element Parameters

Settings for Element and Starting Element Parameters	First Element in Subdiagonal (Only element when Diagonal span = One element)
First	Diagonal element in first row of the input
Index	k th diagonal element, where k is the value of the Element index or Starting element index parameter
Offset from last	Diagonal element in the row with the index $M-$ offset where M is the number of input rows, and offset is the value of the Element offset or Starting element offset parameter
Last	Diagonal element in the last row of the input
Offset from middle	Diagonal element in the input row with the index floor $(M / 2+1-$ offset) where M is the number of input rows, and offset is the value of the Element offset or Starting element offset parameter
Middle	Diagonal element in the input row with the index floor $(M / 2+1)$ where M is the number of input rows

Ending Element Parameters Settings for Ending Element Parameter Index Last Element in Subdiagonal	
Offset from last	k th diagonal element, where k is the value of the Ending element index parameter
Diagonal element in the row with the index $M-$ offset where M is the number of input rows, and offset is the value of the Ending element offset parameter	
Last	Diagonal element in the last row of the input
Offset from middle	Diagonal element in the input row with the index floor $(M / 2+1-$ offset $)$ where M is the number of input rows, and offset is the value of the Ending element offset parameter
Middle	Diagonal element in the input row with the index floor $(M / 2+1)$ where M is the number of input rows

Overwrite Values

Supported
 Data Types

Port	Supported Data Types
A	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
V	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
B	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Reshape	Simulink
	Selector	Simulink
	Submatrix	Signal Processing Blockset
	Variable Selector	Signal Processing Blockset
	reshape	MATLAB

Purpose
Library
Description

Alter input dimensions by padding (or truncating) rows and/or columns
Signal Operations
The Pad block changes the dimensions of the input matrix from M_{i}-by- N_{i} to M_{0}-by- N_{0} by padding or truncating along the columns, rows, or columns and rows. Use the Pad along parameter to specify the dimensions to change.

Use the Value parameter to specify the value with which to pad your input matrix.

Using the Pad signal at parameter, you can choose to pad your input matrix at the end or the beginning of a row and/or column.

The Number of output rows and/or Number of output columns parameters refer to the dimensions of the output, M_{o} and N_{o}. You can set these parameters to User-specified or Next power of two. When you choose User-specified, enter a scalar value in the Specified number of output rows and/or Specified number of output columns parameters. When you choose Next power of two, the block pads the input matrix along the columns and/or rows until the length of the columns and/or rows is equal to a power of two. When the length of the input matrix's columns and/or rows is already equal to a power of two, the block does not pad the input matrix.

When you choose User-specified for the Number of output rows and/or Number of output columns parameters, you can specify a scalar value in the Specified number of output rows and/or Specified number of output columns parameters that truncates the size of your input matrix. The following options are available for the Action when truncation occurs parameter:

- None - Select this option when you do not want to be notified that the input matrix is truncated.
- Warning - Choose this option when you want a warning to be displayed in the MATLAB Command Window when the input matrix is truncated.
- Error - Click this option when you want an error dialog box to be displayed and the simulation terminated when the input matrix is truncated.

The behavior of the Pad block and Zero Pad block is identical, with the exception that the Pad block can pad the input matrix with values other than
zero. See the Zero Pad block reference page for more information on the behavior of the Zero Pad block.

Dialog Box

Value

The scalar value with which to pad the input matrix. Tunable.

Pad signal at

The input matrix can be padded at the beginning of the rows and/or columns or at the end of the rows and/or columns.

Pad along

The direction along which to pad or truncate. Columns specifies that the row dimension should be changed to M_{0}. Rows specifies that the column dimension should be changed to N_{o}. Columns and rows specifies that both
column and row dimensions should be changed. None disables padding and truncation and passes the input through to the output unchanged.

Number of output rows

The total number of output rows. When you select User-specified, type a scalar value in the Specified Number of output rows parameter. When you select Next power of two, the block pads the columns of the input matrix until the number of rows is equal to a power of two. When the number of rows is already equal to a power of two, the block does not pad the input matrix.

Specified number of output rows

The desired number of rows in the output, M_{0}. This parameter is enabled when you select Columns or Columns and rows in the Pad along menu and User-specified is chosen in the Number of output rows parameter.

Number of output columns

The total number of output columns. When you select User-specified, type a scalar value in the Specified Number of output columns parameter. When you select Next power of two, the block pads the rows of the input matrix until the number of columns is equal to a power of two. When the number of columns is already equal to a power of two, the block does not pad the input matrix.

Specified number of output columns

The desired number of columns in the output, N_{o}. This parameter is enabled when you select Rows or Columns and rows in the Pad along menu and User-specified is chosen in the Number of output columns parameter.

Action when truncation occurs

Choose None when you do not want to be notified that the input matrix is truncated. Select Warning to display a warning when the input matrix is truncated. Choose Error when you want an error dialog box to be displayed and the simulation terminated when the input matrix is truncated.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating-point - Single-precision floating-point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating-point - Single-precision floating-point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Matrix Concatenation
Repeat
Submatrix
Upsample
Variable Selector
Zero Pad

Simulink
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Peak Finder

Purpose
Determine whether each value of input signal is local minimum or maximum

Library
Description

Signal Operations
The Peak Finder block outputs the number of local extrema in the input signal at the Cnt port. Optionally, it can also output the extrema indices, the extrema values, and a binary indicator of whether or not the extrema are maxima or minima.

The Peak Finder block compares the current signal value to the previous and next values to determine if the current value is an extremum. Use the Peak type(s) parameter to specify whether you are looking for maxima, minima, or both.

If you select the Output peak indices check box, the Idx port appears on the block. The block outputs the zero-based extrema indices at the Idx port. If you select the Output peak values check box, the Val port appears on the block. The block outputs the extrema values at the Val port. If you select either of these check boxes and Maxima and Minima is selected for the Peak type(s), the Pol port also appears on the block. If the signal value is a maximum, the block outputs a 1 at the Pol ("Polarity") port. If the signal value is a minimum, the block outputs a 0 at the Pol port.

Note that nothing is output at the Idx, Val, and Pol ports for an input signal value that is not an extremum.

Use the Maximum number of peaks to find parameter to specify how many extrema to look for in each input signal. The block stops searching the input signal once this maximum number of extrema has been found.

If you select the Ignore peaks within threshold of neighboring values check box, the block no longer detects low-amplitude peaks. This feature allows the block to ignore noise within a threshold value that you define. Enter a threshold value for the Threshold parameter. Now, the current value is a maximum if (current - previous) $>$ threshold and (current - next) $>$ threshold. The current value is a minimum if (current - previous) <-threshold and (current-next) <-threshold.

This block supports single-channel, frame-based, and sample-based inputs. These input signals must be real-valued fixed-point or floating-point scalars or vectors.

Examples Example 1

Consider the input vector

```
[9 6 10 3 4 5 0 12]
```

The table below shows the analysis made by the Peak Finder block. Note that the first and last input signal values are not considered:

Previous, current, and next values	9610	6103	1034	345	450	5012
Current value if it is an extremum	6	10	3	--	5	0
Index of current value if it is an extremum	1	2	3	--	5	6
Polarity of current value if it is an extremum	0	1	0	--	1	0

Therefore, for this example the outputs at the block ports are
Cnt: 5
Idx: $\left[\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right]$
Val: [6 10 3 5 0]
Pol: [lllll $\left.0 \begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}\right]$

Example 2

Note that the Overflow mode parameter can affect the output of the block when the input is fixed point. Consider the following model:

Peak Finder

In this model, the settings in the DSP Constant block are

- Constant value - [$\left.\begin{array}{lll}-1 & 0.5 & -1\end{array}\right]$
- Sample mode - Discrete
- Output - Sample -based
- Sample time - 1
- Output data type - Fixed-point
- Signed - selected
- Word length - 16
- Set fraction length in output to - User-defined
- Fraction length - 15

Peak Finder

The settings in the Peak Finder blocks are

- Peak type(s) - Maxima
- Output peak indices - not selected
- Output peak values - selected
- Maximum number of peaks to find - 2
- Ignore peaks within threshold of neighboring values - selected
- Threshold - 0.25
- Rounding mode - Floor
- Overflow mode - Wrap for Peak Finder Wrap, Saturate for Peak Finder Saturate

Setting the Overflow mode parameter of the Peak Finder Wrap block to Wrap causes the calculations (current - previous) $>$ threshold and (current - next) > threshold to wrap on overflow, thereby causing the maximum to be missed.

Dialog Box The Main pane of the Peak Finder block dialog appears as follows:

Peak Finder

Peak type(s)

Specify whether you are looking for maxima, minima, or both.

Output peak indices

Select this check box if you want the block to output the extrema indices at the Idx port.

Output peak values

Select this check box if you want the block to output the extrema values at the Val port.

Maximum number of peaks to find

Enter the number of extrema to look for in each input signal. The block stops searching the input signal for extrema once the maximum number of extrema has been found. The value of this parameter must be an integer greater than or equal to one.

Ignore peaks within threshold of neighboring values

Select this check box if you want to eliminate the detection of peaks whose amplitudes are within a specified threshold of neighboring values.

Threshold

Enter your threshold value. This parameter appears if you select the Ignore peaks within threshold of neighboring values check box.

The Fixed-point pane of the Peak Finder block dialog appears as follows:

Rounding mode

Select the rounding mode to be used when block inputs are fixed point.

Overflow mode

Select the overflow mode to be used when block inputs are fixed point.

Supported Data Types

Port	Supported Data Types
Input	\bullet Double-precision floating point
	\bullet Single-precision floating point
	\bullet Fixed point (signed and unsigned)
	$\bullet 8-, 16-$, and 32-bit signed integers
	$\bullet 8-, 16-$, and 32-bit unsigned integers
	$\bullet 32$-bit unsigned integers
Cnt	$\bullet 32$-bit unsigned integers
Idx	

Peak Finder

Port	Supported Data Types
Val	• Double-precision floating point
	• Single-precision floating point
	- Fixed point (signed and unsigned)
	$\bullet 8-, 16-$, and 32-bit signed integers
	$\bullet 8-, 16-$, and 32-bit unsigned integers
Pol	\bullet Boolean

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Maximum
Minimum

Signal Processing Blockset
Signal Processing Blockset

Purpose
 Library
 Description

Example

Compute nonparametric estimate of the spectrum

Estimation / Power Spectrum Estimation

The Periodogram block computes a nonparametric estimate of the spectrum. The block averages the squared magnitude of the FFT computed over windowed sections of the input and normalizes the spectral average by the square of the sum of the window samples.

Both an M-by-N frame-based matrix input and an M-by-N sample-based matrix input are treated as M sequential time samples from N independent channels. The block computes a separate estimate for each of the N independent channels and generates an $\mathrm{N}_{\text {fft }}$-by- N matrix output. When you select the Inherit FFT length from input dimensions check box, $\mathrm{N}_{\mathrm{fft}}$ is specified by the frame size of the input, which must be a power of 2 . When you clear the Inherit FFT length from input dimensions check box, $\mathrm{N}_{\mathrm{fft}}$ is specified as a power of 2 by the FFT length parameter, and the block zero pads or truncates the input to $\mathrm{N}_{\mathrm{fft}}$ before computing the FFT.

Each column of the output matrix contains the estimate of the corresponding input column's power spectral density at $\mathrm{N}_{\text {fft }}$ equally spaced frequency points in the range $\left[0, \mathrm{~F}_{\mathrm{s}}\right.$), where F_{s} is the signal's sample frequency. The output is always sample based.

The Number of spectral averages specifies the number of spectra to average. Setting this parameter to 1 effectively disables averaging.

The Window type, Stopband ripple, Beta, and Window sampling parameters all apply to the specification of the window function; see the Window Function block reference page for more details on these four parameters.

The dspstfft demo provides an illustration of using the Periodogram and Matrix Viewer blocks to create a spectrogram. The dspsacomp demo compares the Periodogram block with several other spectral estimation methods.

Periodogram

Dialog Box

Window type

Enter the type of window to apply. See the Window Function block reference page for more details. Tunable.

Stopband attenuation in dB

Enter the level, in dB , of stopband attenuation, R_{s}, for the Chebyshev window. This parameter is enabled if, for the Window type parameter, you choose Chebyshev. Tunable.

Beta

Enter the β parameter for the Kaiser window. This parameter is enabled if, for the Window type parameter, you chose Kaiser. Increasing Beta widens the mainlobe and decreases the amplitude of the window sidelobes in the window's frequency magnitude response. Tunable.

Window sampling

From the list, choose Symmetric or Periodic. Tunable.

Periodogram

Inherit FFT length from input dimensions

When you select this check box, the block uses the input frame size as the number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT.

FFT length

Enter the number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT. When $\mathrm{N}_{\mathrm{fft}}$ exceeds the input frame size, the frame is zero-padded as needed. This parameter is enabled when you clear the Inherit FFT length from input dimensions check box.

Number of spectral averages

Enter the number of spectra to average; setting this parameter to 1 disables averaging.

References

Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	\bullet Single-precision floating point
Output	• Double-precision floating point
	\bullet Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Periodogram

See Also
Burg Method
Inverse Short-Time FFT
Magnitude FFT
Short-Time FFT
Spectrum Scope
Window Function
Yule-Walker Method pwelch

Signal Processing Blockset
Signal Processing Toolbox

See "Power Spectrum Estimation" on page 6-5 for related information.

Purpose Reorder matrix rows or columns

Library

Description

Math Functions / Matrices and Linear Algebra / Matrix Operations
The Permute Matrix block reorders the rows or columns of M-by-N input matrix A as specified by indexing input P.

When the Permute parameter is set to Rows, the block uses the rows of A to create a new matrix with the same column dimension. Input P is a length- L vector whose elements determine where each row from A should be placed in the L-by-N output matrix.

```
% Equivalent MATLAB code
y = [A(P(1),:) ; A(P(2),:) ; A(P(3),:) ; ... ; A(P(end),:)]
```

For row permutation, a length-M 1-D vector input at the A port is treated as a M-by-1 matrix.

When the Permute parameter is set to Columns, the block uses the columns of A to create a new matrix with the same row dimension. Input P is a length- L vector whose elements determine where each column from A should be placed in the M-by-L output matrix.

```
% Equivalent MATLAB code
y = [A(:,P(1)) A(:,P(2)) A(:,P(3)) ... A(:,P(end))]
```

For column permutation, a length-N 1-D vector input at the A port is treated as a 1-by-N matrix.

When an index value in input P references a nonexistent row or column of matrix A, the block reacts with the behavior specified by the Invalid permutation index parameter. The following options are available:

- Clip index - Clip the index to the nearest valid value (1 or M for row permutation, and 1 or N for column permutation), and do not issue an alert. Example: For a 3-by-7 input matrix, a column index of 9 is clipped to 7, and a row index of -2 is clipped to 1 .
- Clip and warn - Display a warning message in the MATLAB command window, and clip the index as described above.
- Generate error - Display an error dialog box and terminate the simulation.

Permute Matrix

When length of the permutation vector P is not equal to the number of rows or columns of the input matrix A, you can choose to get an error dialog box and terminate the simulation by selecting Error when length of \mathbf{P} is not equal to Permute dimension size.

When input A is frame based, the output is frame based; otherwise, the output is sample based.

Examples

In the model below, the top Permute Matrix block places the second row of the input matrix in both the first and fifth rows of the output matrix, and places the third row of the input matrix in the three middle rows of the output matrix. The bottom Permute Matrix block places the second column of the input matrix in both the first and fifth columns of the output matrix, and places the third column of the input matrix in the three middle columns of the output matrix.

As shown in the example above, rows and columns of A can appear any number of times in the output, or not at all.

Dialog Box

Permute

Method of constructing the output matrix; by permuting rows or columns of the input.

Index mode

When set to One-based, a value of 1 in the permutation vector P refers to the first row or column of the input matrix A. When set to Zero-based, a value of 0 in P refers to the first row or column of A.

Invalid permutation index

Response to an invalid index value. Tunable.

Error when length of P is not equal to Permute dimension size

Option to display an error dialog box and terminate the simulation when the length of the permutation vector P is not equal to the number of rows or columns of the input matrix A.

Permute Matrix

Supported
 Data Types

Port	Supported Data Types
A	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
P	- Double-precision floating point - Single-precision floating point - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Submatrix	Signal Processing Blockset
	Transpose	Signal Processing Blockset
	Variable Selector	Signal Processing Blockset
	permute	MATLAB

Permute Matrix

See "Reordering Channels in Multichannel Frame-Based Signals" on page 1-54 for related information.

Polynomial Evaluation

Purpose
 Description

Evaluate polynomial expression
Library Math Functions / Polynomial Functions

The Polynomial Evaluation block applies a polynomial function to the real or complex input at the In port.

```
y = polyval(u) % Equivalent MATLAB code
```

The Polynomial Evaluation block performs these types of operation more efficiently than the equivalent construction using Simulink Sum and Math Function blocks.

When you select the Use constant coefficients check box, you specify the polynomial expression in the Constant coefficients parameter. When you do not select Use constant coefficients, a variable polynomial expression is specified by the input to the Coeffs port. In both cases, the polynomial is specified as a vector of real or complex coefficients in order of descending exponents.

The table below shows some examples of the block's operation for various coefficient vectors.

Coefficient Vector	Equivalent Polynomial Expression
$\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right]$	$y=u^{4}+2 u^{3}+3 u^{2}+4 u+5$
$\left[\begin{array}{llllll}1 & 0 & 3 & 0 & 5\end{array}\right]$	$y=u^{4}+3 u^{2}+5$
[1 2+i 3 4-3i 5i]	$y=u^{4}+(2+i) u^{3}+3 u^{2}+(4-3 i) u+5 i$

Each element of a vector or matrix input to the In port is processed independently, and the output size and frame status are the same as the input.

Polynomial Evaluation

Dialog Box

Supported Data Types

See Also
Least Squares Polynomial Fit
Math Function
Sum
polyval

Signal Processing Blockset
Simulink
Simulink
MATLAB

Polynomial Stability Test

Purpose

Library
Description
$|\operatorname{root}(\mathrm{u})|<1$

Use Schur-Cohn algorithm to determine whether all roots of input polynomial are inside unit circle

Math Functions / Polynomial Functions
The Polynomial Stability Test block uses the Schur-Cohn algorithm to determine whether all roots of a polynomial are within the unit circle.

```
y = all(abs(roots(u)) < 1) % Equivalent MATLAB code
```

Each column of the M-by-N input matrix u contains M coefficients from a distinct polynomial,

$$
f(x)=u_{1} x^{M-1}+u_{2} x^{M-2}+\cdots+u_{M}
$$

arranged in order of descending exponents, $u_{1}, u_{2}, \ldots, u_{\mathrm{M}}$. The polynomial has order M-1 and positive integer exponents.

Inputs can be frame based or sample based, and both represent the polynomial coefficients as shown above. For convenience, a length-M 1-D vector input is treated as an M-by-1 matrix.

The output is a 1 -by-N matrix with each column containing the value 1 or 0 . The value 1 indicates that the polynomial in the corresponding column of the input is stable; that is, the magnitudes of all solutions to $f(x)=0$ are less than 1 . The value 0 indicates that the polynomial in the corresponding column of the input might be unstable; that is, the magnitude of at least one solution to $f(x)=0$ is greater than or equal to 1 .

The output is always sample based.

Applications

This block is most commonly used to check the pole locations of the denominator polynomial, $A(z)$, of a transfer function, $H(z)$.

$$
H(z)=\frac{B(z)}{A(z)}=\frac{b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}}{a_{1}+a_{2} z^{-1}+\ldots+a_{n} z^{-(n-1)}}
$$

The poles are the $n-1$ roots of the denominator polynomial, $A(z)$. When any poles are located outside the unit circle, the transfer function $H(z)$ is unstable.

Polynomial Stability Test

As is typical in DSP applications, the transfer function above is specified in descending powers of z^{-1} rather than z.

Dialog Box

Block Parameters: Polynomial Stability Test

| Polynomial Stability Test (mask) |
| :---: | :---: | :---: |
| Determines if all roots of the input polynomial lie inside the unit circle.
 Implemented using the Schur-Cohn algoithm. |
| $0 K$ Cancel Help Epply |

Supported Data Types

See Also
Least Squares Polynomial Fit Polynomial Evaluation polyfit

Signal Processing Blockset
Signal Processing Blockset MATLAB

Pseudoinverse

Purpose
Library
Description

Pseudoinverse
(SVD)

Compute Moore-Penrose pseudoinverse of matrix
Math Functions / Matrices and Linear Algebra / Matrix Inverses
The Pseudoinverse block computes the Moore-Penrose pseudoinverse of input matrix A.

$$
[U, S, V]=\operatorname{svd}(A, 0) \quad \text { \% Equivalent MATLAB code }
$$

The pseudoinverse of A is the matrix A^{+}such that

$$
A^{+}=V S^{+} U^{*}
$$

where U and V are orthogonal matrices, and S is a diagonal matrix. The pseudoinverse has the following properties:

- $\mathrm{AA}^{+}=\left(\mathrm{AA}^{+}\right)^{*}$
- $\mathrm{A}^{+} \mathrm{A}=\left(\mathrm{A}^{+} \mathrm{A}\right)^{*}$
- $\mathrm{AA}^{+} \mathrm{A}=\mathrm{A}$
- $\mathrm{A}^{+} \mathrm{AA}^{+}=\mathrm{A}^{+}$

The output is always sample based.

Dialog Box

References

Supported
Data Types

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Cholesky Inverse	Signal Processing Blockset
LDL Inverse	Signal Processing Blockset
LU Inverse	Signal Processing Blockset
Singular Value Decomposition	Signal Processing Blockset
inv	MATLAB

See "Inverting Matrices" on page 6-9 for related information.

QR Factorization

Purpose
Library
Description

Example

Factor rectangular matrix into unitary and upper triangular components
Math Functions / Matrices and Linear Algebra / Matrix Factorizations
The QR Factorization block uses a modified Gram-Schmidt iteration to factor a column permutation of the M-by-N input matrix A as

$$
A_{e}=Q R
$$

where Q is an M-by- $\min (M, N)$ unitary matrix, and R is a $\min (M, N)-b y-N$ upper-triangular matrix. A length-M vector input is treated as an M-by-1 matrix, and is always sample based.

The column-pivoted matrix A_{e} contains the columns of A permuted as indicated by the contents of length-N permutation vector E.

$$
\mathrm{Ae}=\mathrm{A}(:, \mathrm{E}) \quad \text { \% Equivalent MATLAB code }
$$

The block selects a column permutation vector E , which ensures that the diagonal elements of matrix R are arranged in order of decreasing magnitude.

$$
\left|r_{i+1, j+1}\right|>\left|r_{i, j}\right| \quad i=j
$$

QR factorization is an important tool for solving linear systems of equations because of good error propagation properties and the invertability of unitary matrices.

$$
Q^{-1}=Q^{*}
$$

Unlike LU and Cholesky factorizations, the matrix A does not need to be square for QR factorization. Note, however, that QR factorization requires twice as many operations as Gaussian elimination.

A sample factorization is shown below. The input to the block is matrix A, which is permuted according to vector E to produce matrix A_{e}. Matrix A_{e} is factored to produce the Q and R output matrices.

Dialog Box

References

Supported
 Data Types

See Also

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Cholesky Factorization	Signal Processing Blockset
LU Factorization	Signal Processing Blockset
QR Solver	Signal Processing Blockset
Singular Value Decomposition	Signal Processing Blockset
qr	MATLAB

See "Factoring Matrices" on page 6-8 for related information.

Purpose
Library
Description

Algorithm

Find minimum-norm-residual solution to $\mathrm{A} X=\mathrm{B}$
Math Functions / Matrices and Linear Algebra / Linear System Solvers
The QR Solver block solves the linear system $\mathrm{A} X=\mathrm{B}$, which can be overdetermined, underdetermined, or exactly determined. The system is solved by applying QR factorization to the M-by-N matrix, A , at the A port. The input to the B port is the right side M-by-L matrix, B. A length-M 1-D vector input at either port is treated as an M-by-1 matrix.

The output at the x port is the N-by-L matrix, X . X is always sample based, and is chosen to minimize the sum of the squares of the elements of $B-A X$. When B is a vector, this solution minimizes the vector 2 -norm of the residual ($\mathrm{B}-\mathrm{AX}$ is the residual). When B is a matrix, this solution minimizes the matrix Frobenius norm of the residual. In this case, the columns of X are the solutions to the L corresponding systems $A X_{k}=B_{k}$, where B_{k} is the k th column of B, and X_{k} is the kth column of X.

X is known as the minimum-norm-residual solution to $\mathrm{AX}=\mathrm{B}$. The minimum-norm-residual solution is unique for overdetermined and exactly determined linear systems, but it is not unique for underdetermined linear systems. Thus when the QR Solver is applied to an underdetermined system, the output X is chosen such that the number of nonzero entries in X is minimized.

QR factorization factors a column-permuted variant $\left(\mathrm{A}_{\mathrm{e}}\right)$ of the M-by-N input matrix A as

$$
A_{e}=Q R
$$

where Q is a $M-$ by- $\min (M, N)$ unitary matrix, and R is a $\min (M, N)-b y-N$ upper-triangular matrix.

The factored matrix is substituted for A_{e} in

$$
A_{e} X=B_{e}
$$

and

$$
Q R X=B_{e}
$$

is solved for X by noting that $\mathrm{Q}^{-1}=\mathrm{Q}^{*}$ and substituting $\mathrm{Y}=\mathrm{Q}^{*} \mathrm{~B}_{\mathrm{e}}$. This requires computing a matrix multiplication for Y and solving a triangular system for X .

$$
R X=Y
$$

Dialog Box

Supported Data Types

See Also

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Levinson-Durbin
LDL Solver
LU Solver
QR Factorization
SVD Solver

Signal Processing Blockset

See "Solving Linear Systems" on page 6-6 for related information.

Purpose

Library

Description

Store inputs in FIFO register
Signal Management / Buffers
The Queue block stores a sequence of input samples in a first in, first out (FIFO) register. The register capacity is set by the Register size parameter, and inputs can be scalars, vectors, or matrices.

The block pushes the input at the In port onto the end of the queue when a trigger event is received at the Push port. When a trigger event is received at the Pop port, the block pops the first element off the queue and holds the Out port at that value. The first input to be pushed onto the queue is always the first to be popped off.

A trigger event at the optional Clr port (enabled by the Clear input check box) empties the queue contents. When you select Clear output port on reset, then a trigger event at the Clr port empties the queue and sets the value at the Out port to zero. This setting also applies when a disabled subsystem containing
the Queue block is reenabled; the Out port value is only reset to zero in this case when you select Clear output port on reset.

When two or more of the control input ports are triggered at the same time step, the operations are executed in the following order:

1 Cl r
2 Push
3 Pop
The rate of the trigger signal must be the same as the rate of the data signal input. You specify the triggering event for the Push, Pop, and Clr ports by the Trigger type pop-up menu:

- Rising edge - Triggers execution of the block when the trigger input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers execution of the block when the trigger input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers execution of the block when the trigger input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers execution of the block at each sample time that the trigger input is not zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based trigger signals have a one-sample latency, and frame-based trigger signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a trigger event, and when it applies the trigger. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

The Push onto full register parameter specifies the block's behavior when a trigger is received at the Push port but the register is full. The Pop empty register parameter specifies the block's behavior when a trigger is received at the Pop port but the register is empty. The following options are available for both cases:

- Ignore - Ignore the trigger event, and continue the simulation.
- Warning - Ignore the trigger event, but display a warning message in the MATLAB Command Window.
- Error - Display an error dialog box and terminate the simulation.

Note The Push onto full register and Pop empty register parameters are diagnostic parameters. Like all diagnostic parameters on the Configuration Parameters dialog box, they are set to Ignore in the Real-Time Workshop code generated for this block.

Examples

The Push onto full register parameter additionally offers the Dynamic reallocation option, which dynamically resizes the register to accept as many additional inputs as memory permits. To find out how many elements are on the queue at a given time, enable the Num output port by selecting the Output number of register entries option.

Example 1

The table below illustrates the Queue block's operation for a Register size of 4, Trigger type of Either edge, and Clear output port on reset enabled. Because the block triggers on both rising and falling edges in this example, each transition from 1 to 0 or 0 to 1 in the Push, Pop, and Clr columns below represents a distinct trigger event. A 1 in the Empty column indicates an empty queue, while a 1 in the Full column indicates a full queue.

In	$\begin{gathered} \text { Pus } \\ \mathrm{h} \end{gathered}$	Pop	Cl r	Queue				Out	$\begin{aligned} & \text { Emp } \\ & \text { ty } \end{aligned}$	$\begin{gathered} \text { Ful } \\ 1 \end{gathered}$	Num
7	0	0	0	top	5	4	bottom	3	0	0	2
8	0	1	0	top		5	bottom	4	0	0	1
9	0	0	0	top			bottom	5	1	0	0
10	1	0	0	top		10	bottom	5	0	0	1
11	0	0	0	top	11	10	bottom	5	0	0	2
12	1	0	1	top		12	bottom	0	0	0	1

Note that at the last step shown, the Push and Clr ports are triggered simultaneously. The Clr trigger takes precedence, and the queue is first cleared and then pushed.

Example 2

The dspqdemo demo provides another example of the operation of the Queue block.

Dialog Box

B Block Parameters: Queue		? ${ }^{\text {] }}$	
Queue (mask) (link) Implements a queue, or "First In, First Out" (FIFO) register.			
Parameters Register size:圆			
Trigger type: Rising edge			
Push onto fullPynamic reallocation register:			
Pop empty register: Warning \quad -			
Γ Empty register output			
Γ Full register output			
Г Output number of register entries			
Γ Clear input			
「 Clear output port on reset			
QK Cancel	Help	Apply	

Register size

The number of entries that the FIFO register can hold.

Trigger type

The type of event that triggers the block's execution. The rate of the trigger signal must be the same as the rate of the data signal input. Tunable.

Push onto full register

Response to a trigger received at the Push port when the register is full. Inputs to this port must have the same built-in data type as inputs to the Pop and Clr input ports.

Pop empty register

Response to a trigger received at the Pop port when the register is empty. Inputs to this port must have the same built-in data type as inputs to the Push and Clr input ports. Tunable.

Empty register output

Enable the Empty output port, which is high (1) when the queue is empty, and low (0) otherwise.

Full register output

Enable the Full output port, which is high (1) when the queue is full, and low (0) otherwise. The Full port remains low when you select Dynamic reallocation from the Push onto full register parameter.

Output number of register entries

Enable the Num output port, which tracks the number of entries currently on the queue. When inputs to the In port are double-precision values, the outputs from the Num port are double-precision values. Otherwise, the outputs from the Num port are 32 -bit unsigned integer values.

Clear input

Enable the Clr input port, which empties the queue when the trigger specified by the Trigger type is received. Inputs to this port must have the same built-in data type as inputs to the Push and Pop input ports.

Clear output port on reset

Reset the Out port to zero (in addition to clearing the queue) when a trigger is received at the Clr input port. Tunable.

Supported
 Data Types

Port	Supported Data Types
In	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Push	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers Inputs to this port must have the same built-in data type as inputs to the Pop and Clr input ports
Pop	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers Inputs to this port must have the same built-in data type as inputs to the Push and Clr input ports.

Port	Supported Data Types
Clr	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers Inputs to this port must have the same built-in data type as inputs to the Push and Pop input ports.
Out	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Empty	- Double-precision floating point - Boolean The block outputs Boolean values at this port when Boolean support is enabled, as described in "Effects of Enabling and Disabling Boolean Support" on page 7-18. To learn how to disable Boolean output support, see "Steps to Disabling Boolean Support" on page 7-19

Port	Supported Data Types
Full	- Double-precision floating point - Boolean The block outputs Boolean values at this port when Boolean support is enabled, as described in "Effects of Enabling and Disabling Boolean Support" on page 7-18. To learn how to disable Boolean output support, see "Steps to Disabling Boolean Support" on page 7-19
Num	- Double-precision floating point The block outputs a double-precision floating-point value at this port when the data type of the In port is double-precision floating-point. - 32-bit unsigned integers The block outputs a 32-bit unsigned integer value at this port when the data type of the In port is anything other than double-precision floating-point.

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Buffer
Delay Line
Stack

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Random Source

Purpose Generate randomly distributed values

Library Signal Processing Sources

Description

The Random Source block generates a frame of M values drawn from a uniform or Gaussian pseudorandom distribution, where you specify M in the Samples per frame parameter.

This reference page contains a detailed discussion of the following Random Source block topics:

- "Distribution Type" on page 9-780
- "Output Complexity" on page 9-781
- "Output Repeatability" on page 9-782
- "Specifying the Initial Seed" on page 9-783
- "Sample Period" on page 9-784
- "Dialog Box" on page 9-785
- "Supported Data Types" on page 9-788
- "See Also" on page 9-788

Distribution Type

When the Source type parameter is set to Uniform, the output samples are drawn from a uniform distribution whose minimum and maximum values are specified by the Minimum and Maximum parameters, respectively. All values in this range are equally likely to be selected. A length- N vector specified for one or both of these parameters generates an N-channel output (M-by-N matrix) containing a unique random distribution in each channel.

For example, specify

- Minimum $=\left[\begin{array}{llll}0 & 0 & -3 & -3\end{array}\right]$
- Maximum = $\left[\begin{array}{lll}10 & 10 & 20\end{array}\right]$
to generate a four-channel output whose first and second columns contain random values in the range $[0,10]$, and whose third and fourth columns contain random values in the range [-3, 20]. When you specify only one of the Minimum and Maximum parameters as a vector, the block scalar expands the other parameter so it is the same length as the vector.

Random Source

When the Source type parameter is set to Gaussian, you must also set the Method parameter, which determines the method by which the block computes the output, and has the following settings:

- Ziggurat - Produces Gaussian random values by using the Ziggurat method, which is the same method used by the MATLAB randn function.
- Sum of uniform values - Produces Gaussian random values by adding and scaling uniformly distributed random signals based on the central limit theorem. This theorem states that the probability distribution of the sum of a sufficiently high number of random variables approaches the Gaussian distribution. You must set the Number of uniform values to sum parameter, which determines the number of uniformly distributed random numbers to sum to produce a single Gaussian random value.
For both settings of the Method parameter, the output samples are drawn from the normal distribution defined by the Mean and Variance parameters. A length- N vector specified for one or both of the Mean and Variance parameters generates an N -channel output (M-by-N frame matrix) containing a distinct random distribution in each column. When you specify only one of these parameters as a vector, the block scalar expands the other parameter so it is the same length as the vector.

Output Complexity

The block's output can be either real or complex, as determined by the Real and Complex options in the Complexity parameter. (These settings control all channels of the output, so real and complex data cannot be combined in the same output.) For complex output with a Uniform distribution, the real and imaginary components in each channel are both drawn from the same uniform random distribution, defined by the Minimum and Maximum parameters for that channel.

For complex output with a Gaussian distribution, the real and imaginary components in each channel are drawn from normal distributions with different means. In this case, the Mean parameter for each channel should specify a complex value; the real component of the Mean parameter specifies the mean of the real components in the channel, while the imaginary component specifies the mean of the imaginary components in the channel. When either the real or imaginary component is omitted from the Mean parameter, a default value of 0 is used for the mean of that component.

Random Source

For example, a Mean parameter setting of [5+2i 0.5 3i] generates a three-channel output with the following means.

Channel 1 mean	real $=5$	imaginary $=2$
Channel 2 mean	real $=0.5$	imaginary $=0$
Channel 3 mean	real $=0$	imaginary $=3$

For complex output, the Variance parameter, σ^{2}, specifies the total variance for each output channel. This is the sum of the variances of the real and imaginary components in that channel.

$$
\sigma^{2}=\sigma_{R e}^{2}+\sigma_{I m}^{2}
$$

The specified variance is equally divided between the real and imaginary components, so that

$$
\begin{aligned}
& \sigma_{R e}^{2}=\frac{\sigma^{2}}{2} \\
& \sigma_{I m}^{2}=\frac{\sigma^{2}}{2}
\end{aligned}
$$

Output Repeatability

The Repeatability parameter determines whether or not the block outputs the same signal each time you run the simulation. You can set the parameter to one of the following options:

- Repeatable - Outputs the same signal each time you run the simulation. The first time you run the simulation, the block randomly selects an initial seed. The block reuses these same initial seeds every time you rerun the simulation.
- Specify seed - Outputs the same signal each time you run the simulation. Every time you run the simulation, the block uses the initial seed(s) specified in the Initial seed parameter. Also see the next section, "Specifying the Initial Seed" on page 9-783.

Random Source

- Not repeatable - Does not output the same signal each time you run the simulation. Every time you run the simulation, the block randomly selects an initial seed.

Specifying the Initial Seed

When you set the Repeatability parameter to Specify seed, you must set the Initial seed parameter. The Initial seed parameter specifies the initial seed for the pseudorandom number generator. The generator produces an identical sequence of pseudorandom numbers each time it is executed with a particular initial seed.

Specifying Initial Seeds for Real Outputs. To specify the N initial seeds for an N -channel real-valued output (Complexity parameter set to Real), provide one of the following in the Initial seed parameter:

- Length-N vector of initial seeds - Uses each vector element as an initial seed for the corresponding channel in the N -channel output.
- Single scalar - Uses the scalar to generate N random values, which it uses as the seeds for the N -channel output.

Specifying Initial Seeds for Complex Outputs. To specify the initial seeds for an N-channel complex-valued output (Complexity parameter set to Complex), provide one of the following in the Initial seed parameter:

- Length-N vector of initial seeds - Uses each vector element as an initial seed for generating N channels of real random values. The block uses pairs of adjacent values in each of these channels as the real and imaginary components of the final output, as illustrated in the following figure.
- Single scalar - Uses the scalar to generate N random values, which it uses as the seeds for generating N channels of real random values. The block uses pairs of adjacent values in each of these channels as the real and imaginary components of the final output, as illustrated in the following figure.

Random Source

Use N channels of real random values to create the N -channel complex random output.
Real random values

-0.19	Complex random values			
-0.51	-1.13			
0.66	0.54			
1.10	1.84			
-0.02	0.37			
0.04	-1.22	\quad	$-0.19+-0.64 \mathrm{i}$	$0.51+-1.13 \mathrm{i}$
:---:	:---:			

Sample Period

The Sample time parameter value, T_{s}, specifies the random sequence sample period when the Sample mode parameter is set to Discrete. In this mode, the block generates the number of samples specified by the Samples per frame parameter value, M, and outputs this frame with a period of $\mathrm{M} * \mathrm{~T}_{\mathrm{s}}$. For $\mathrm{M}=1$, the output is sample based; otherwise, the output is frame based.

When Sample mode is set to Continuous, the block is configured for continuous-time operation, and the Sample time and Samples per frame parameters are disabled. Note that many blocks in the DSP Blockset do not accept continuous-time inputs.

Random Source

Dialog Box

Only some of the parameters described below are visible in the dialog box at any one time.

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters" in the online Simulink documentation for details.

Source type

The distribution from which to draw the random values, Uniform or Gaussian. For more information, see "Distribution Type" on page 9-780.

Method

The method by which the block computes the Gaussian random values, Ziggurat or Sum of uniform values. This parameter is enabled when Source type is set to Gaussian. For more information, see "Distribution Type" on page 9-780.

Random Source

Minimum

The minimum value in the uniform distribution. This parameter is enabled when you select Uniform from the Source type parameter. Tunable.

Maximum

The maximum value in the uniform distribution. This parameter is enabled when you select you select Uniform from the Source type parameter. Tunable.

Number of uniform values to sum

The number of uniformly distributed random values to sum to compute a single number in a Gaussian random distribution. This parameter is enabled when the Source type parameter is set to Gaussian, and the Method parameter is set to Sum of uniform values. For more information, see "Distribution Type" on page 9-780.

Mean

The mean of the Gaussian (normal) distribution. This parameter is enabled when you select Gaussian from the Source type parameter. Tunable.

Variance

The variance of the Gaussian (normal) distribution. This parameter is enabled when you select Gaussian from the Source type parameter. Tunable.

Repeatability

The repeatability of the block output: Not repeatable, Repeatable, or Specify seed. In the Repeatable and Specify seed settings, the block outputs the same signal every time you run the simulation. For details, see "Output Repeatability" on page 9-782.

Initial seed

The initial seed(s) to use for the random number generator when you set the Repeatability parameter to Specify seed. For details, see "Specifying the Initial Seed" on page 9-783. Tunable.

Inherit output port attributes

When you select this check box, block inherits the sample mode, sample time, output data type, complexity, and signal dimensions of a sample-based signal from a downstream block. When you select this check
box, the Sample mode, Sample time, Samples per frame, Output data type, and Complexity parameters are disabled.

Suppose you want to back propagate a 1-D vector. The output of the Random Source block is a length M sample-based 1-D vector, where length M is inherited from the downstream block. When the Minimum, Maximum, Mean, or Variance parameter specifies N channels, the 1-D vector output contains M / N samples from each channel. An error occurs in this case when M is not an integer multiple of N .

Suppose you want to back propagate a M-by-N signal. When $\mathrm{N}>1$, your signal has N channels. When $\mathrm{N}=1$, your signal has M channels. The value of the Minimum, Maximum, Mean, or Variance parameter can be a scalar or a vector of length equal to the number of channels. You can specify these parameters as either row or column vectors, except when the signal is a row vector. In this case, the Minimum, Maximum, Mean, or Variance parameter must also be specified as a row vector.

Sample mode

The sample mode, Continuous or Discrete. This parameter is enabled when the Inherit output port attributes check box is cleared.

Sample time

The sample period, T_{s}, of the random output sequence. The output frame period is $\mathrm{M} * \mathrm{~T}_{\mathrm{s}}$. This parameter is enabled when the Inherit output port attributes check box is cleared.

Samples per frame

The number of samples, M, in each output frame. This parameter is enabled when the Inherit output port attributes check box is cleared.

Output data type

The data type of the output, single-precision or double-precision. This parameter is enabled when the Inherit output port attributes check box is cleared.

Output complexity

The complexity of the output, Real or Complex. This parameter is enabled when the Inherit output port attributes check box is cleared.

Random Source

Supported
 Data Types

See Also
Discrete Impulse
DSP Constant
Maximum
Minimum
Signal From Workspace
Standard Deviation
Variance
Random Number
Signal Generator
rand
randn

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Simulink
Simulink
MATLAB
MATLAB

Real Cepstrum

Purpose Compute real cepstrum of input

Library
 Transforms

Description
The Real Cepstrum block computes the real cepstrum of each channel in the real-valued M-by-N input matrix, u. For both sample-based and frame-based inputs, the block assumes that each input column is a frame containing M consecutive samples from an independent channel. The block does not accept complex-valued inputs.

The output is a real M_{0}-by-N matrix, where you specify M_{0} in the FFT length parameter. Each output column contains the length- M_{0} real cepstrum of the corresponding input column.

```
    y = real(ifft(log(abs(fft(u,Mo))))) % Equivalent MATLAB code
```

or, more compactly,

```
y = rceps(u,Mo)
```

When you select the Inherit FFT length from input port dimensions check box, the output frame size matches the input frame size $\left(\mathrm{M}_{0}=M\right)$. In this case, a sample-based length-M row vector input is processed as a single channel (that is, as an M-by- 1 column vector), and the output is a length-M row vector. A 1-D vector input is always processed as a single channel, and the output is a $1-\mathrm{D}$ vector.

The output is always sample based, and the output port rate is the same as the input port rate.

Real Cepstrum

Dialog Box

Inherit FFT length from input port dimensions

When selected, matches the output frame size to the input frame size.

FFT length

The number of frequency points at which to compute the FFT, which is also the output frame size, M_{0}. This parameter is available when you do not select Inherit FFT length from input port dimensions.

Supported
Data Types

See Also

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Complex Cepstrum
DCT
FFT
rceps

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

Reciprocal Condition

Purpose

Library

Description

RGond

Compute reciprocal condition of square matrix in the 1-norm

Math Functions / Matrices and Linear Algebra / Matrix Operations

The Reciprocal Condition block computes the reciprocal of the condition number for a square input matrix A.

```
    y = rcond(A) % Equivalent MATLAB code
```

or

$$
y=\frac{1}{\kappa}=\frac{1}{\left\|A^{-1}\right\|_{1}\|A\|_{1}}
$$

where κ is the condition number ($\kappa \geq 1$), and y is the scalar sample-based output ($0 \leq y<1$).

The matrix 1-norm, $\|A\|_{1}$, is the maximum column-sum in the M -by-M matrix A.

$$
\|A\|_{1}=\max _{1 \leq j \leq M} \sum_{i=1}^{M}\left|a_{i j}\right|
$$

For a 3-by-3 matrix:

$$
\left.\begin{gathered}
{\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad\|A\|_{1}=\max \left(A_{1}, A_{2}, A_{3}\right)} \\
\left|a_{13}\right|+\left|a_{23}\right|+\left|a_{33}\right|=A_{3} \\
\left|a_{12}\right|+\left|a_{22}\right|+\left|a_{32}\right|=A_{2}
\end{gathered} \right\rvert\, \begin{gathered}
\left|a_{11}\right|+\left|a_{21}\right|+\left|a_{31}\right|=A_{1}
\end{gathered}
$$

Reciprocal Condition

Dialog Box

References

Supported Data Types

See Also

Block Parameters: Reciprocal Condition x
Reciprocal Condition (mask)
Estimates the reciprocal of the condition of a square input matrix in the 1 -norm. If input is well conditioned, the output is near 1.0 . If input is badly conditioned, output is near 0.0 .

Help Apply

Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Matrix 1-Norm
Normalization rcond

Remez FIR Filter Design

Note The Remez FIR Filter Design block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

Purpose Design and apply an equiripple FIR filter.

Library

Description
dspobslib
The Remez FIR Filter Design block implements the Parks-McClellan algorithm to design and apply a linear-phase filter with an arbitrary multiband magnitude response. The filter design, which uses the firpm function in the Signal Processing Toolbox, minimizes the maximum error between the desired frequency response and the actual frequency response. Such filters are called equiripple due to the equiripple behavior of their approximation error. The block applies the filter to a discrete-time input using the Direct-Form II Transpose Filter block.

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The Filter type parameter allows you to specify one of the following filters:

- Multiband

The multiband filter has an arbitrary magnitude response and linear phase.

- Differentiator

The differentiator filter approximates the ideal differentiator. Differentiators are antisymmetric FIR filters with approximately linear magnitude responses. To obtain the correct derivative, scale the Gains at these frequencies vector by $\pi \mathrm{F}_{\mathrm{s}} \mathrm{rad} / \mathrm{s}$, where F_{s} is the sample frequency in Hertz.

Remez FIR Filter Design

- Hilbert Transformer

The Hilbert transformer filter approximates the ideal Hilbert transformer. Hilbert transformers are antisymmetric FIR filters with approximately constant magnitude.
The Band-edge frequency vector parameter is a vector of frequency points in the range 0 to 1 , where 1 corresponds to half the sample frequency. Each band is defined by the two bounding frequencies, so this vector must have even length. Frequency points must appear in ascending order. The Gains at these frequencies parameter is a vector of the same size containing the desired magnitude response at the corresponding points in the Band-edge frequency vector.

Each odd-indexed frequency-amplitude pair defines the left endpoint of a line segment representing the desired magnitude response in that frequency band. The corresponding even-indexed frequency-amplitude pair defines the right endpoint. Between the frequency bands specified by these end-points, there may be undefined sections of the specified frequency response. These are called "don't care" or "transition" regions, and the magnitude response in these areas is a by-product of the optimization in the other (specified) frequency ranges.

```
Band edge frequency }=[\begin{array}{llllll}{00.3}\\{0}&{\mp@subsup{\overbrace}{0.4}{0.6}}&{\mp@subsup{\overbrace}{0.7}{1}}\end{array}
Gains =
    Band: [\mp@subsup{\underbrace}{i}{0}1}\mp@subsup{\underbrace}{i}{0}\mp@subsup{\underbrace}{i}{0}\mp@subsup{\underbrace}{~}{0.5 0.5]
```


The Weights parameter is a vector that specifies the emphasis to be placed on minimizing the error in certain frequency bands relative to others. This vector

Remez FIR Filter Design

Examples

specifies one weight per band, so it is half the length of the Band-edge frequency vector and Gains at these frequencies vectors.

In most cases, differentiators and Hilbert transformers have only a single band, so the weight is a scalar value that does not affect the final filter. However, the Weights parameter is useful when using the block to design an antisymmetric multiband filter, such as a Hilbert transformer with stopbands.

Example 1: Multiband

Consider a lowpass filter with a transition band in the normalized frequency range 0.4 to 0.5 , and 10 times greater error minimization in the stopband than in the passband.

In this case:

- Filter type = Multiband

- Band-edge frequency vector $=\left[\begin{array}{llll}0 & 0.4 & 0.5 & 1\end{array}\right]$
- Gains at these frequencies $=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]$
- Weights = [1 10]

Example 2: Differentiator

Assume the specifications for a differentiator filter require it to have order 21. The "ramp" response extends over the entire frequency range. In this case, specify:

- Filter type = Differentiator

- Band-edge frequency vector $=\left[\begin{array}{ll}0 & 1\end{array}\right]$
- Gains at these frequencies $=[0 \mathrm{pi} * \mathrm{Fs}]$
- Filter order $=21$

For a type III (even order) filter, the differentiation band should stop short of half the sample frequency. For example, if the filter order is 20 , you could specify the block parameters as follows:

- Filter type = Differentiator
- Band-edge frequency vector $=\left[\begin{array}{ll}0 & 0.9\end{array}\right]$
- Gains at these frequencies $=\left[\begin{array}{ll}0 & 0.9 * p i * F s\end{array}\right]$
- Filter order $=20$

Remez FIR Filter Design

Dialog Box

Filter type

The filter type. Tunable.

Band-edge frequency vector

A vector of frequency points, in ascending order, in the range 0 to 1 . The value 1 corresponds to half the sample frequency. This vector must have even length. Tunable.

Gains at these frequencies

A vector of frequency-response magnitudes corresponding to the points in the Band-edge frequency vector. This vector must be the same length as the Band-edge frequency vector. Tunable.

Weights

A vector containing one weight for each frequency band. This vector must be half the length of the Band-edge frequency and Gains at these frequencies vectors. Tunable.

Filter order

The filter order.

Remez FIR Filter Design

References
Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Repeat

Purpose
 Resample input at higher rate by repeating values

Library Signal Operations

Description

Repeat
$5 \times$
The Repeat block upsamples each channel of the M_{i}-by-N input to a rate L times higher than the input sample rate by repeating each consecutive input
\qquad sample L times at the output. You specify the integer L in the Repetition count parameter.

This block supports triggered subsystems if, for Frame-based mode, you select Maintain input frame rate.

Sample-Based Operation

When the input is sample based, the block treats each of the $\mathrm{M} * \mathrm{~N}$ matrix elements as an independent channel, and upsamples each channel over time. The Frame-based mode parameter must be set to Maintain input frame size. The output sample rate is L times higher than the input sample rate ($\mathrm{T}_{\mathrm{s} o}=\mathrm{T}_{\mathrm{si}} / \mathrm{L}$), and the input and output sizes are identical.

Frame-Based Operation

When the input is frame based, the block treats each of the N input columns as a frame containing M_{i} sequential time samples from an independent channel. The block upsamples each channel independently by repeating each row of the input matrix L times at the output. The Frame-based mode parameter determines how the block adjusts the rate at the output to accommodate the repeated rows. There are two available options:

- Maintain input frame size

The block generates the output at the faster (upsampled) rate by using a proportionally shorter frame period at the output port than at the input port. For L repetitions of the input, the output frame period is L times shorter than the input frame period $\left(\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{fi}} / \mathrm{L}\right)$, but the input and output frame sizes are equal.

The model below shows a single-channel input with a frame period of 1 second being upsampled through 4 -times repetition to a frame period of 0.25 second. The input and output frame sizes are identical.

- Maintain input frame rate

The block generates the output at the faster (upsampled) rate by using a proportionally larger frame size than the input. For L repetitions of the input, the output frame size is L times larger than the input frame size $\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}} * \mathrm{~L}\right)$, but the input and output frame rates are equal.
The model below shows a single-channel input of frame size 16 being upsampled through 4 -times repetition to a frame size of 64 . The input and output frame rates are identical.

Latency

Zero Latency. The Repeat block has zero-tasking latency for all single-rate operations. The block is single-rate for the particular combinations of sampling mode and parameter settings shown in the table below.

Sampling Mode	Parameter Settings
Sample based	Repetition count parameter, L, is 1.
Frame based	Repetition count parameter, L, is 1, or Frame-based mode parameter is Maintain input frame rate.

Repeat

The block also has zero latency for all multirate operations in the Simulink single-tasking mode.

Zero tasking latency means that the block repeats the first input (received at $t=0$) for the first L output samples, the second input for the next L output samples, and so on. The Initial condition parameter value is not used.

Nonzero Latency. The Repeat block has tasking latency only for multirate operation in the Simulink multitasking mode:

- In sample-based mode, the initial condition for each channel is repeated for the first L output samples. The channel's first input appears as output sample $\mathrm{L}+1$. The Initial condition value can be an M_{i}-by-N matrix containing one value for each channel, or a scalar to be applied to all signal channels.
- In frame-based mode, the first row of the initial condition matrix is repeated for the first L output samples, the second row of the initial condition matrix is repeated for the next L output samples, and so on. The first row of the first input matrix appears in the output as sample $M_{i} L+1$. The Initial condition value can be an M_{i}-by-N matrix, or a scalar to be repeated across all elements of the M_{i}-by-N matrix. See the example below for an illustration of this case.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Example Construct the frame-based model shown below.

Adjust the block parameters as follows.

- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 . This represents an output frame period of $1(0.25 * 4)$. The first channel should contain the positive ramp signal $1,2, \ldots, 100$, and the second channel should contain the negative ramp signal $-1,-2, \ldots,-100$.
- Signal $=\left[(1: 100)^{\prime}(-1:-1:-100)^{\prime}\right]$
- Sample time $=0.25$
- Samples per frame $=4$
- Configure the Repeat block to upsample the two-channel input by increasing the output frame rate by a factor of 2 relative to the input frame rate. Set an initial condition matrix of
$\left[\begin{array}{ll}11 & -11 \\ 12 & -12 \\ 13 & -13 \\ 14 & -14\end{array}\right]$
- Repetition count $=2$
- Initial condition $=\left[\begin{array}{lllll}11 & -11 ; 12 & -12 ; 13 & -13 ; 14 & -14\end{array}\right]$
- Frame-based mode = Maintain input frame size
- Configure the Probe blocks by clearing the Probe width and Probe complex signal check boxes (if desired).

This model is multirate because there are at least two distinct sample rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, in the Solver pane of the Configuration Parameters dialog box, set the Type list to Fixed-step and set the Solver list to discrete (no continuous states). For the Tasking mode for periodic sample times parameter, select MultiTasking. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples of each channel are shown below.

```
yout =
    11 -11
    11-11
```

12	-12
12	-12
13	-13
13	-13
14	-14
14	-14
1	-1
1	-1
2	-2
2	-2
3	-3
3	-3
4	-4
4	-4
5	-5
5	-5

Since we ran this frame-based multirate model in multitasking mode, the block repeats each row of the initial condition matrix for L output samples, where L is the Repetition count of 2. The first row of the first input matrix appears in the output as sample 9 (that is, sample $\mathrm{M}_{\mathrm{i}} \mathrm{L}+1$, where M_{i} is the input frame size).

Dialog Box

芽 Block Parameters: Repeat		? ${ }^{\text {x }}$
$\left[\begin{array}{l}\text { Repeat (mask) (link) } \\ \text { Repeat input samples } \mathrm{N} \text { times. }\end{array}\right.$		
-Parameters		
Repetition count:		
5		
Initial conditions:		
0		
Frame-based mode: Maintain input frame size		∇
QK Cancel	Help	Apply

Repetition count

The integer number of times, L, that the input value is repeated at the output. This is the factor by which the output frame size or sample rate is increased.

Initial conditions

The value with which the block is initialized for cases of nonzero latency; a scalar or matrix.

Frame-based mode

For frame-based operation, the method by which to implement the repetition (upsampling): Maintain input frame size (that is, increase the frame rate), or Maintain input frame rate (that is, increase the frame size). The Frame-based mode parameter must be set to Maintain input frame size for sample-base inputs.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	FIR Interpolation	Signal Processing Blockset
	Upsample	Signal Processing Blockset
	Zero Pad	Signal Processing Blockset

RLS Adaptive Filter

Note The RLS Adaptive Filter block is still supported but is likely to be obsoleted in a future release. We recommend replacing this block with the RLS Filter block.

Purpose

Library

Description

Compute filter estimates for an input using the RLS adaptive filter algorithm dspobslib

The RLS Adaptive Filter block recursively computes the recursive least squares (RLS) estimate of the FIR filter coefficients.
The corresponding RLS filter is expressed in matrix form as

$$
\begin{aligned}
k(n) & =\frac{\lambda^{-1} P(n-1) u(n)}{1+\lambda^{-1} u^{H}(n) P(n-1) u(n)} \\
y(n) & =\hat{w}^{H}(n-1) u(n) \\
e(n) & =d(n)-y(n) \\
\hat{w}(n) & =\hat{w}(n-1)+k(n) e^{*}(n) \\
P(n) & =\lambda^{-1} P(n-1)-\lambda^{-1} k(n) u^{H}(n) P(n-1)
\end{aligned}
$$

where λ^{-1} denotes the reciprocal of the exponential weighting factor. The variables are as follows.

Variable	Description
n	The current algorithm iteration
$u(n)$	The buffered input samples at step n
$P(n)$	The inverse correlation matrix at step n
$k(n)$	The gain vector at step n
$\hat{w}(n)$	The vector of filter-tap estimates at step n

RLS Adaptive Filter

Variable	Description
$y(n)$	The filtered output at step n
$e(n)$	The estimation error at step n
$d(n)$	The desired response at step n
λ	The exponential memory weighting factor

The block icon has port labels corresponding to the inputs and outputs of the RLS algorithm. Note that inputs to the In and Err ports must be sample-based scalars. The signal at the Out port is a scalar, while the signal at the Taps port is a sample-based vector.

Block Ports	Corresponding Variables
In	u, the scalar input, which is internally buffered into the vector $u(n)$
Out	$y(n)$, the filtered scalar output
Err	$e(n)$, the scalar estimation error
Taps	$\hat{w}(n)$, the vector of filter-tap estimates

An optional Adapt input port is added when you select the Adapt input check box in the dialog box. When this port is enabled, the block continuously adapts the filter coefficients while the Adapt input is nonzero. A zero-valued input to the Adapt port causes the block to stop adapting, and to hold the filter coefficients at their current values until the next nonzero Adapt input.

The implementation of the algorithm in the block is optimized by exploiting the symmetry of the inverse correlation matrix $P(n)$. This decreases the total number of computations by a factor of two.

The FIR filter length parameter specifies the length of the filter that the RLS algorithm estimates. The Memory weighting factor corresponds to λ in the equations, and specifies how quickly the filter "forgets" past sample information. Setting $\lambda=1$ specifies an infinite memory; typically, $0.95 \leq \lambda \leq 1$.

RLS Adaptive Filter

The Initial value of filter taps specifies the initial value $\hat{w}(0)$ as a vector, or as a scalar to be repeated for all vector elements. The initial value of $P(n)$ is

$$
I \frac{1}{\hat{\sigma}^{2}}
$$

where you specify $\hat{\sigma}^{2}$ in the Initial input variance estimate parameter.

Example

Dialog Box

The rlsdemo demo illustrates a noise cancellation system built around the RLS Adaptive Filter block.

Block Parameters:	S Adap			区
[RLS Adaptive Filter				
Exponentially weigh adaptive FIR filterin and the Adapt input coefficients.	recursive input sign is zero,	ares (R pt inpu hm stop	hnm for x is en g the fil	
-Parameters				
FIR filter length:				
32				
Memory weighti	actor (0 to			
1.0				
Initial value of fil	aps:			
0.0				
Initial input varia	estimate			
0.1				
Γ Adapt input				
OK	Cancel	Help	$\triangle \mathrm{spp} \mid \mathrm{j}$	

FIR filter length

The length of the FIR filter.

Memory weighting factor

The exponential weighting factor, in the range $[0,1]$. A value of 1 specifies an infinite memory. Tunable.

Initial value of filter taps

The initial FIR filter coefficients.

Initial input variance estimate

RLS Adaptive Filter

	The initial value of $1 / \mathrm{P}(n)$. Adapt input Enables the Adapt port.
References	Haykin, S. Adaptive Filter Theory. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.
Supported Data Types	- Double-precision floating point - Single-precision floating point
	To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.
See Also	Kalman Adaptive Filter LMS Adaptive Filter
	See "Adaptive Filters" on page 3-53 for related information.
	Signal Processing Blockset

Purpose

Library
Description

Compute filtered output, filter error, and filter weights for a given input and desired signal using RLS adaptive filter algorithm

Filtering / Adaptive Filters

The RLS Filter block recursively computes the least squares estimate (RLS) of the FIR filter weights. The block estimates the filter weights, or coefficients, needed to convert the input signal into the desired signal. Connect the signal you want to filter to the Input port. This input signal can be a sample-based scalar or a single-channel frame-based signal. Connect the signal you want to model to the Desired port. The desired signal must have the same data type, frame status, complexity, and dimensions as the input signal. The Output port outputs the filtered input signal, which can be sample or frame based. The Error port outputs the result of subtracting the output signal from the desired signal.

The corresponding RLS filter is expressed in matrix form as

$$
\begin{aligned}
\mathbf{k}(n) & =\frac{\lambda^{-1} \mathbf{P}(n-1) \mathbf{u}(n)}{1+\lambda^{-1} \mathbf{u}^{H}(n) \mathbf{P}(n-1) \mathbf{u}(n)} \\
y(n) & =\mathbf{w}(n-1) \mathbf{u}(n) \\
e(n) & =d(n)-y(n) \\
\mathbf{w}(n) & =\mathbf{w}(n-1)+\mathbf{k}^{H}(n) e(n) \\
\mathbf{P}(n) & =\lambda^{-1} \mathbf{P}(n-1)-\lambda^{-1} \mathbf{k}(n) \mathbf{u}^{H}(n) \mathbf{P}(n-1)
\end{aligned}
$$

where λ^{-1} denotes the reciprocal of the exponential weighting factor. The variables are as follows.

Variable	Description
n	The current time index
$\mathbf{u}(n)$	The vector of buffered input samples at step n
$\mathbf{P}(n)$	The inverse correlation matrix at step n
$\mathbf{k}(n)$	The gain vector at step n

RLS Filter

Variable	Description
$\mathbf{w}(n)$	The vector of filter-tap estimates at step n
$y(n)$	The filtered output at step n
$e(n)$	The estimation error at step n
$d(n)$	The desired response at step n
λ	The forgetting factor

The implementation of the algorithm in the block is optimized by exploiting the symmetry of the inverse correlation matrix $P(n)$. This decreases the total number of computations by a factor of two.

Use the Filter length parameter to specify the length of the filter weights vector.

The Forgetting factor (0 to 1) parameter corresponds to λ in the equations. It specifies how quickly the filter "forgets" past sample information. Setting $\lambda=1$ specifies an infinite memory. Typically, $1-\frac{1}{2 L}<\lambda<1$, where L is the filter length. You can specify a forgetting factor using the input port, Lambda, or enter a value in the Forgetting factor ($\mathbf{0}$ to 1) parameter in the Block Parameters: RLS Filter dialog box.
Enter the initial filter weights, $\hat{w}(0)$, as a vector or a scalar for the Initial value of filter weights parameter. When you enter a scalar, the block uses the scalar value to create a vector of filter weights. This vector has length equal to the filter length and all of its values are equal to the scalar value.

The initial value of $P(n)$ is

where you specify σ^{2} in the Initial input variance estimate parameter.
When you select the Adapt port check box, an Adapt port appears on the block. When the input to this port is nonzero, the block continuously updates the filter
weights. When the input to this port is zero, the filter weights remain at their current values.

When you want to reset the value of the filter weights to their initial values, use the Reset input parameter. The block resets the filter weights whenever a reset event is detected at the Reset port. The reset signal rate must be the same rate as the data signal input.

From the Reset input list, select None to disable the Reset port. To enable the Reset port, select one of the following from the Reset input list:

- Rising edge - Triggers a reset operation when the Reset input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Reset input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

RLS Filter

- Either edge - Triggers a reset operation when the Reset input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Reset input is not zero

Abstract

Note When running simulations in the Simulink MultiTasking mode, sample-based reset signals have a one-sample latency, and frame-based reset signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a reset event, and when it applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Select the Output filter weights check box to create a Wts port on the block. For each iteration, the block outputs the current updated filter weights from this port.

Example The rlsdemo demo illustrates a noise cancellation system built around the RLS Filter block.

Dialog Box

Filter length

Enter the length of the FIR filter weights vector.

Specify forgetting factor via

Select Dialog to enter a value for the forgetting factor in the Block parameters: RLS Filter dialog box. Select Input port to specify the forgetting factor using the Lambda input port.

Forgetting factor (0 to 1)

Enter the exponential weighting factor in the range $0 \leq \lambda \leq 1$. A value of 1 specifies an infinite memory. Tunable.

RLS Filter

Initial value of filter weights

Specify the initial values of the FIR filter weights.

Initial input variance estimate

The initial value of $1 / \mathrm{P}(n)$.

Adapt port

Select this check box to enable the Adapt input port.

Reset input

Select this check box to enable the Reset input port.

Output filter weights

Select this check box to export the filter weights from the Wts port.

References	Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley \& Sons, 1996.
Supported - Double-precision floating point Data Types - Single-precision floating point	
	To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Kalman Adaptive Filter
LMS Filter
Signal Processing Blockset
Block LMS Filter
Fast Block LMS Filter
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
See "Adaptive Filters" on page 3-53 for related information.

Compute root-mean-square (RMS) value of an input or sequence of inputs

Statistics

The RMS block computes the RMS value of each column in the input, or tracks the RMS value of a sequence of inputs over a period of time. The Running RMS parameter selects between basic operation and running operation.

Basic Operation

When you do not select the Running RMS check box, the block computes the RMS value of each column in M-by-N input matrix u independently at each sample time.

```
y = sqrt(sum(u.*conj(u))/size(u,1)) % Equivalent MATLAB code
```

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, y, is a 1-by-N vector containing the RMS value for each column in u. The RMS value of the j th column is

$$
y_{j}=\sqrt{\frac{\sum_{i=1}^{M} u_{i j}^{2}}{M}}
$$

The frame status of the output is the same as that of the input.

Running Operation

When you select the Running RMS check box, the block tracks the RMS value of each channel in a time-sequence of M-by-N inputs. For sample-based inputs, the output is a sample-based M-by-N matrix with each element $y_{i j}$ containing the RMS value of element $u_{i j}$ over all inputs since the last reset. For frame-based inputs, the output is a frame-based M-by-N matrix with each element $y_{i j}$ containing the RMS value of the j th column over all inputs since the last reset, up to and including element $u_{i j}$ of the current input.
As in basic operation, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running RMS. The block resets the running RMS whenever a reset event is detected at the optional Rst port. The reset signal rate must be a positive integer multiple of the rate of the data signal input.
When the block is reset for sample-based inputs, the running RMS for each channel is initialized to the value in the corresponding channel of the current input. For frame-based inputs, the running RMS for each channel is initialized to the earliest value in each channel of the current input.

You specify the reset event in the Reset port parameter:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Example

The RMS block in the model below calculates the running RMS of a frame-based 3-by-2 (two-channel) matrix input, u. The running RMS is reset at $t=2$ by an impulse to the block's Rst port.

The RMS block has the following settings:

- Running RMS = Select this check box
- Reset port = Non-zero sample

The Signal From Workspace block has the following settings:

- Signal = u

- Sample time $=1 / 3$
- Samples per frame $=3$
where

$$
\mathrm{u}=\left[\begin{array}{lllllllllllllllllllllll}
6 & 1 & 3 & -7 & 2 & 5 & 8 & 0 & -1 & -3 & 2 & 1 ; & 1 & 3 & 9 & 2 & 4 & 1 & 6 & 2 & 5 & 0 & 4
\end{array}\right]
$$

The Discrete Impulse block has the following settings:

- Delay $($ samples $)=2$
- Sample time = 1
- Samples per frame $=1$

The block's operation is shown in the figure below.

Dialog Box

Supported Data Types

See Also

Running RMS

Enables running operation when selected.

Reset port

Determines the reset event that causes the block to reset the running RMS. The reset signal rate must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you set the Running RMS parameter. For more information, see "Resetting the Running RMS" on page 9-816.

- Double-precision floating point
- Single-precision floating point
- Boolean - The block accepts Boolean inputs to the Rst port.

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Mean
Variance

Signal Processing Blockset
Signal Processing Blockset

Sample and Hold

Purpose Sample and hold input signal
Library Signal Operations
Description
The Sample and Hold block acquires the input at the signal port whenever it receives a trigger event at the trigger port (marked by \ddagger). The block then holds the output at the acquired input value until the next triggering event occurs. When the acquired input is frame based, the output is frame based; otherwise, the output is sample based.

The trigger input must be a sample-based scalar with sample rate equal to the input frame rate at the signal port. You specify the trigger event in the Trigger type pop-up menu:

- Rising edge triggers the block to acquire the signal input when the trigger input rises from a negative value or zero to a positive value.
- Falling edge triggers the block to acquire the signal input when the trigger input falls from a positive value or zero to a negative value.
- Either edge triggers the block to acquire the signal input when the trigger input either rises from a negative value or zero to a positive value or falls from a positive value or zero to a negative value.

You specify the block's output prior to the first trigger event using the Initial condition parameter. When the acquired input is an M-by-N matrix, the Initial condition can be an M-by-N matrix, or a scalar to be repeated across all elements of the matrix. When the input is a length-M 1-D vector, the Initial condition can be a length-M row or column vector, or a scalar to be repeated across all elements of the vector.

If you select the Latch (buffer) input check box, the block outputs the value of the input from the previous time step until the next triggering event occurs. To use this block in a loop, select this check box.

Dialog Box

Trigger type

The type of event that triggers the block to acquire the input signal.

Initial condition

The block's output prior to the first trigger event.

Latch (buffer) input

If you select this check box, the block outputs the value of the input from the previous time step until the next triggering event occurs.

Sample and Hold

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Trigger	- Any data type supported by the Trigger block
Outputs	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Downsample
N-Sample Switch

Signal Processing Blockset
Signal Processing Blockset

Note The Scalar Quantizer block is still supported but is likely to be obsoleted in a future release. We recommend replacing this block with the Scalar Quantizer Encoder block or the Scalar Quantizer Decoder block.

Purpose

Library

Description

Convert an input signal into a set of quantized output values. Convert an input signal into a set of index values. Convert a set of index values into a quantized output signal.
dspobslib
The Scalar Quantizer block has three modes of operation. In Encoder mode, the block maps each input value to a quantization region by comparing the input value to the quantizer boundary points defined in the Boundary points parameter. The block outputs the index of the associated region. In Decoder mode, the block transforms the input index values into quantized output values, defined in the Codebook parameter. In the Encoder and Decoder mode, the block performs both the encoding and decoding operations. The block outputs the index values and the quantized output values.

You can select how you want to enter the Boundary points and/or Codebook values using the Source of quantizer parameters. When you select Specify via dialog, type the parameters into the block parameters dialog box. Select Input ports, and port B and/or C appears on the block. In Encoder and Encoder and decoder mode, the input to port B is used as the Boundary points. In Decoder and Encoder and decoder mode, the input to port C is used as the Codebook.

In Encoder and Encoder and decoder mode, the Boundary points are the values used to break up the input signal into regions. Each region is specified by an index number. When your first boundary point is -inf and your last boundary point is inf, your quantizer is unbounded. When your first and last boundary point is finite, your quantizer is bounded. When only your first or last boundary point is -inf or inf, your quantizer is semi-bounded.

For instance, when your input signal ranges from 0 to 11, you can create a bounded quantizer using the following boundary points:

Scalar Quantizer

[0 0.53 .75 .86 .011$]$

The boundary points can have equal or varied spacing. Any input values between 0 and 0.5 would correspond to index 0 . Input values between 0.5 and 3.7 would correspond to index 1 , and so on.

Suppose you wanted to create an unbounded quantizer with the following boundary points:

```
[-inf 0 2 5.5 7.1 10 inf]
```

When your input signal has values less than 0 , these values would be assigned to index 0 . When your input signal has values greater than 10 , these values would be assigned to index 6 .

When an input value is the same as a boundary point, the Tie-breaking rule parameter defines the index to which the value is assigned. When you want the input value to be assigned to the lower index value, select Choose the lower index. To assign the input value with the higher index, select Choose the higher index.

In Decoder and Encoder and decoder mode, the Codebook is a vector of quantized output values that correspond to each index value.

In Encoder and Encoder and decoder mode, the Searching method determines how the appropriate quantizer index is found. Select Linear and the Scalar Quantizer block compares the input value to the first region defined by the first two boundary points. When the input value does not fall within this region, the block then compares the input value to the next region. This process continues until the input value is determined to be within a region and is associated with the appropriate index value. The computational cost of this process is of the order P , where P is the number of boundary points.

Select Binary for the Searching method and the block compares the input value to the middle value of the boundary points vector. When the input value is larger than this boundary point, the block discards the boundary points that are lower than this middle value. The block then compares the input value to the middle boundary point of the new range, defined by the remaining boundary points. This process continues until the input value is associated with the appropriate index value. The computational cost of this process is of the order $\log _{2} P$, where P is the number of boundary points. In most cases, the Binary option is faster than the Linear option.

In Decoder mode, the input to this block is a vector of index values, where $0 \leq$ index $<N$ and N is the length of the codebook vector. Use the Action for out of range input parameter to determine what happens when an input index value is out of this range. When you want any index values less than 0 to be set to 0 and any index values greater than or equal to N to be set to $\mathrm{N}-1$, select Clip. When you want to be warned when any index values less than 0 are set to 0 and any index values greater than or equal to N are set to $\mathrm{N}-1$, select Clip and warn. When you want the simulation to stop and display an error when the index values are out of range, select Error.

In Encoder and decoder mode, you can select the Output the quantization error check box. The quantization error is the difference between the input value and the quantized output value. Select this check box to output the quantization error for each input value from the Err port on this block.

Data Type Support

In Encoder mode, the input data values and the boundary points can be the input to the block at ports U and B. Similarly, in Encoder and decoder mode, the codebook values can also be the input to the block at port C. The data type of the input data values, boundary points, and codebook values can be double, single, uint8, uint16, uint32, int8, int16, or int32. In Decoder mode, the input to the block can be the index values and the codebook values. The data type of the index input to the block at port Idx can be uint8, uint16, uint32, int8, int16, or int32. The data type of the codebook values can be double, single, uint8, uint16, uint32, int8, int16, or int32.

In Encoder mode, the output of the block is the index values. In Encoder and decoder mode, the output can also include the quantized output values and the quantization error. In Encoder and Encoder and decoder mode, use the Output index data type parameter to specify the data type of the index output from the block at port Idx. The data type of the index output can be uint8, uint16, uint32, int8, int16, or int32. The data type of the quantized output and the quantization error can be double, single, uint8, uint16, uint32, int8, int16, or int32. In Decoder mode, the output of the block is the quantized output values. Use the Output data type parameter to specify the data type of the quantized output values. The data type can be double, single, uint8, uint16, uint32, int8, int16, int32.

Scalar Quantizer

Note The input data, codebook values, boundary points, quantization error, and the quantized output values must have the same data type whenever they are present in any of the quantizer modes

Dialog Box

Scalar Quantizer (mask) (link)

The Scalar Quantizer block has three modes of operation. In Encoder mode, the block maps each input value to a quantization region by comparing the input value to the user-specified quantizer boundary points. The block outputs the index of the associated region. In Decoder mode, the block transforms the input index values into quantized output values, defined by the quantizer codebook. In the Encoder \& Decoder mode, the block performs both the encoding and decoding operations. The block outputs the index values and the quantized output values.

The Boundary points parameter is a vector of dimension N whose values are arranged in ascending order ($[\mathrm{p} 1 \mathrm{p} 2 \ldots \mathrm{pN}]$). The quantizer codebook is a vector of length $(\mathrm{N}-1)$. The quantizer is unbounded if p 1 is -inf and $p \mathrm{~N}$ is inf. When the quantizer is bounded, p 1 is the lower bound for the input values. Any input less than p1 is clipped to p1 and then quantized. Similarly, pN is the upper bound for the input values. Any input greater than pN is clipped to pN and is then quantized.

Scalar Quantizer

Quantizer mode

Specify Encoder, Decoder, or Encoder and decoder as a mode of operation. Nontunable.

Source of quantizer parameters

Choose Specify via dialog to type the parameters into the block parameters dialog box. Select Input ports to specify the parameters using the block's input ports. In Encoder and Encoder and decoder mode, input
the Boundary points using port B. In Decoder and Encoder and decoder mode, input the Codebook values using port C. Nontunable.

Boundary points

Enter a vector of values that represent the boundary points of the quantizer regions. Tunable.

Codebook

Enter a vector of quantized output values that correspond to each index value. Tunable.

Searching method

Select Linear and the block finds the region in which the input value is located using a linear search. Select Binary and the block finds the region in which the input value is located using a binary search. Nontunable.

Tie-breaking rule

Set this parameter to determine the behavior of the block when the input value is the same as the boundary point. When you select Choose the lower index, the input value is assigned to lower index value. When you select Choose the higher index, the value is assigned to the higher index. Nontunable.

Action for out of range input

Choose the block's behavior when an input index value is out of range, where $0 \leq$ index $<N$ and N is the length of the codebook vector. Select Clip, when you want any index values less than 0 to be set to 0 and any index values greater than or equal to N to be set to $\mathrm{N}-1$. Select Clip and warn, when you want to be warned when any index values less than 0 are set to 0 and any index values greater than or equal to N are set to $\mathrm{N}-1$. Select Error, when you want the simulation to stop and display an error when the index values are out of range. Nontunable.

Output the quantization error

In Encoder and decoder mode, select this check box to output the quantization error from the Err port on this block. Nontunable.

Output index data type

In Encoder and Encoder and decoder mode, specify the data type of the index output from the block at port Idx. The data type can be uint8,

Scalar Quantizer

uint16, uint32, int8, int16, or int32. This parameter becomes visible when you select the Show additional parameters check box. Nontunable.

Output data type

In Decoder mode, specify the data type of the quantized output. The data type can be uint8, uint16, uint32, int8, int16, int32, single, or double. This parameter becomes visible when you select Specify via dialog for the Source of quantizer parameters and you select the Show additional parameters check box. Nontunable.

References

Supported Data Types

See Also

Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.

- Double-precision floating point
- Single-precision floating point
- Fixed point
- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16-, and 32 -bit unsigned integers

For more information on what data types are supported for each quantizer mode, see "Data Type Support" on page 9-825. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Quantizer
Scalar Quantizer Decoder
Scalar Quantizer Design
Scalar Quantizer Encoder
Uniform Encoder
Uniform Decoder

Simulink
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Purpose

Library

Description

Convert each index value into quantized output value

Quantizers

The Scalar Quantizer Decoder block transforms the zero-based input index values into quantized output values. The set of all possible quantized output values is defined by the Codebook values parameter.

Use the Codebook values parameter to specify a matrix containing all possible quantized output values. You can select how you want to enter the codebook values using the Source of codebook parameter. When you select Specify via dialog, type the codebook values into the block parameters dialog box. When you select Input port, port C appears on the block. The block uses the input to port C as the Codebook values parameter.

The input to this block is a vector of integer index values, where $0 \leq$ index $<N$ and N is the number of distinct codeword vectors in the codebook matrix. Use the Action for out of range index value parameter to determine what happens when an input index value is outside this range. When you want any index value less than 0 to be set to 0 and any index value greater than or equal to N to be set to $\mathrm{N}-1$, select Clip. When you want to be warned when clipping occurs, select Clip and warn. When you want the simulation to stop and the block to display an error when the index values are out of range, select Error.

Data Type Support

The data type of the index values input at port I can be uint8, uint16, uint32, int8, int16, or int32. The data type of the codebook values input at port C can be double, single, or Fixed-point.

The output of the block is the quantized output values. If, for the Source of codebook parameter, you select Specify via dialog, the Codebook and output data type parameter appears. You can use this parameter to specify the data type of the codebook and quantized output values. In this case, the data type of the output values can be Same as input, double, single, Fixed-point, or User-defined. If, for the Source of codebook parameter you select Input port, the quantized output values have the same data type as the codebook values input at port C.

Scalar Quantizer Decoder

Dialog Box

Block Parameters: Scalar Quantizer Decoder		? \times x	
-Scalar Quantizer Decoder (mask) (link)			
For each input index value, the block outputs the corresponding codeword. Each element of the Codebook parameter represents a codeword.			
Parameters			
Source of codebook: Specifuviadialon			
Action for out of range index value: Clip		\checkmark	
Codebook values:			
[1:10]			
Codebook and output data type: double			
QK Cancel	Help	Apply	

Source of codebook

Choose Specify via dialog to type the codebook values into the block parameters dialog box. Select Input port to specify the codebook using input port C. Nontunable.

Action for out of range index value

Use this parameter to determine the block's behavior when an input index value is out of range, where $0 \leq i n d e x<N$ and N is the length of the codebook vector. Select Clip, when you want any index values less than 0 to be set to 0 and any index values greater than or equal to N to be set to $\mathrm{N}-1$. Select Clip and warn, when you want to be warned when clipping occurs. Select Error, when you want the simulation to stop and the block to display an error when the index values are outside the range. Nontunable.

Codebook values

Enter a vector of quantized output values that correspond to each index value. Tunable.

Codebook and output data type

Use this parameter to specify the data type of the codebook and quantized output values. The data type can be Same as input, double, single,

Scalar Quantizer Decoder

Fixed-point, or User-defined. This parameter becomes visible when you select Specify via dialog for the Source of codebook parameter. Nontunable.

Signed

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned. This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point.

Scalar Quantizer Decoder

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Codebook and output data type parameter and User-defined for the Set fraction length in output to parameter.

Scalar Quantizer Decoder

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from Simulink Fixed Point. This parameter is only visible when you select User-defined for the Codebook and output data type parameter.

References

Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.

Scalar Quantizer Decoder

Supported
 Data Types

Port	Supported Data Types
I	$\bullet 8-, 16-$, and 32-bit signed integers
	$\bullet 8-, 16-$, and 32-bit unsigned integers
C	\bullet Double-precision floating point
	\bullet Single-precision floating point
	\bullet Fixed point
	$\bullet 8-, 16-$, and 32-bit signed integers
	\bullet Double-precision floating point
Q(U)	\bullet Single-precision floating point
	\bullet Fixed point
	$\bullet 8-, 16-$, and 32-bit signed integers
	$\bullet 8-, 16-$, and 32-bit unsigned integers

For more information on what data types are supported for each quantizer mode, see "Data Type Support" on page 9-831. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Quantizer
Scalar Quantizer Design
Scalar Quantizer Encoder
Uniform Encoder
Uniform Decoder

Simulink
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Scalar Quantizer Design

Purpose

Library

Description

Scalar Quantizer Design

Start Scalar Quantizer Design Tool (SQDTool) to design scalar quantizer using Lloyd algorithm

Quantizers
Double-click on the Scalar Quantizer Design block to start SQDTool, a GUI that allows you to design and implement a scalar quantizer. Based on your input values, SQDTool iteratively calculates the codebook values that minimize the mean squared error until the stopping criteria for the design process is satisfied. The block uses the resulting quantizer codebook values and boundary points to implement your scalar quantizer encoder and/or decoder.

For the Training Set parameter, enter a set of observations, or samples, of the signal you want to quantize. This data can be any variable defined in the MATLAB workspace including a variable created using a MATLAB function, such as the default value randn $(10000,1)$.

You have two choices for the Source of initial codebook parameter. Select Auto-generate to have the block choose the values of the initial codebook vector. In this case, the minimum training set value becomes the first codeword, and the maximum training set value becomes the last codeword. Then, the remaining initial codewords are equally spaced between these two values to form a codebook vector of length N , where N is the Number of levels parameter. When you select User defined, enter the initial codebook values in the Initial codebook field. Then, set the Source of initial boundary points parameter. You can select Mid-points to locate the boundary points at the midpoint between the codewords. To calculate the mid-points, the block internally arranges the initial codebook values in ascending order. You can also choose User defined and enter your own boundary points in the Initial boundary points (unbounded) field. Only one boundary point can be located between two codewords. When you select User defined for the Source of initial boundary points parameter, the values you enter in the Initial codebook and Initial boundary points (unbounded) fields must be arranged in ascending order.

Scalar Quantizer Design

Note This block assumes that you are designing an unbounded quantizer. Therefore, the first and last boundary points are always - inf and inf regardless of any other boundary point values you might enter.

After you have specified the quantization parameters, the block performs an iterative process to design the optimal scalar quantizer. Each step of the design process involves using the Lloyd algorithm to calculate codebook values and quantizer boundary points. Then, the block calculates the squared quantization error and checks whether the stopping criteria has been satisfied.

The two possible options for the Stopping criteria parameter are Relative threshold and Maximum iteration. When you want the design process to stop when the fractional drop in the squared quantization error is below a certain value, select Relative threshold. Then, for Relative threshold, type the maximum acceptable fractional drop. When you want the design process to stop after a certain number of iterations, choose Maximum iteration. Then, enter the maximum number of iterations you want the block to perform in the Maximum iteration field. For Stopping criteria, you can also choose Whichever comes first and enter a Relative threshold and Maximum iteration value. The block stops iterating as soon as one of these conditions is satisfied.

With each iteration, the block quantizes the training set values based on the newly calculated codebook values and boundary points. When the training point lies on a boundary point, the algorithm uses the Tie-breaking rules parameter to determine which region the value is associated with. When you want the training point to be assigned to the lower indexed region, select Lower indexed codeword. To assign the training point with the higher indexed region, select Higher indexed codeword.

The Searching methods parameter determines how the block compares the training points to the boundary points. Select Linear search and SQDTool compares each training point to each quantization region sequentially. This process continues until all the training points are associated with the appropriate regions.

Select Binary search for the Searching methods parameter and the block compares the training point to the middle value of the boundary points vector.

Scalar Quantizer Design

When the training point is larger than this boundary point, the block discards the lower boundary points. The block then compares the training point to the middle boundary point of the new range, defined by the remaining boundary points. This process continues until the training point is associated with the appropriate region.

Click Design and Plot to design the quantizer with the parameter values specified on the left side of the GUI. The performance curve and the staircase character of the quantizer are updated and displayed in the figures on the right side of the GUI.

Note You must click Design and Plot to apply any changes you make to the parameter values in the SQDTool dialog box.

SQDTool can export parameter values that correspond to the figures displayed in the GUI. Click the Export Outputs button, or press Ctrl+E, to export the Final Codebook, Final Boundary Points, and Error values to the workspace, a text file, or a MAT-file. The Error values represent the mean squared error for each iteration.

In the Model section of the GUI, specify the destination of the block that will contain the parameters of your quantizer. For Destination, select Current model to create a block with your parameters in the model you most recently selected. Type gcs in the MATLAB Command Window to display the name of your current model. Select New model to create a block in a new model file.

From the Block type list, select Encoder to design a Scalar Quantizer Encoder block. Select Decoder to design a Scalar Quantizer Decoder block. Select Both to design a Scalar Quantizer Encoder block and a Scalar Quantizer Decoder block.

In the Encoder block name field, enter a name for the Scalar Quantizer Encoder block. In the Decoder block name field, enter a name for the Scalar Quantizer Decoder block. When you have a Scalar Quantizer Encoder and/or Decoder block in your destination model with the same name, select the Overwrite target block(s) check box to replace the block's parameters with the current parameters. When you do not select this check box, a new Scalar Quantizer Encoder and/or Decoder block is created in your destination model.

Scalar Quantizer Design

Click Generate Model. SQDTool uses the parameters that correspond to the current plots to set the parameters of the Scalar Quantizer Encoder and/or Decoder blocks.

Scalar Quantizer Design

Dialog Box

Training Set

Enter the samples of the signal you would like to quantize. This data set can be a MATLAB function or a variable defined in the MATLAB workspace. The typical length of this data vector is 1 e 6 .

Scalar Quantizer Design

Source of initial codebook

Select Auto-generate to have the block choose the initial codebook values. Select User defined to enter your own initial codebook values.

Number of levels

Enter the length of the codebook vector. For a b-bit quantizer, the length should be $N=2^{b}$.

Initial codebook

Enter your initial codebook values. From the Source of initial codebook list, select User defined in order to activate this parameter.

Source of initial boundary points

Select Mid-points to locate the boundary points at the midpoint between the codebook values. Choose User defined to enter your own boundary points. From the Source of initial codebook list, select User defined in order to activate this parameter.

Initial boundary points (unbounded)

Enter your initial boundary points. This block assumes that you are designing an unbounded quantizer. Therefore, the first and last boundary point are - inf and inf, regardless of any other boundary point values you might enter. From the Source of initial boundary points list, select User defined in order to activate this parameter.

Stopping criteria

Choose Relative threshold to enter the maximum acceptable fractional drop in the squared quantization error. Choose Maximum iteration to specify the number of iterations at which to stop. Choose Whichever comes first and the block stops the iteration process as soon as the relative threshold or maximum iteration value is attained.

Relative threshold

Type the value that is the maximum acceptable fractional drop in the squared quantization error.

Maximum iteration

Enter the maximum number of iterations you want the block to perform. From the Stopping criteria list, select Maximum iteration in order to activate this parameter.

Searching methods

Choose Linear search to use a linear search method when comparing the training points to the boundary points. Choose Binary search to use a binary search method when comparing the training points to the boundary points.

Tie-breaking rules

When a training point lies on a boundary point, choose Lower indexed codeword to assign the training point to the lower indexed quantization region. Choose Higher indexed codeword to assign the training point to the higher indexed region.

Design and Plot

Click this button to display the performance curve and the staircase character of the quantizer in the figures on the right side of the GUI. These plots are based on the current parameter settings.

You must click Design and Plot to apply any changes you make to the parameter values in the SQDTool GUI.

Export Outputs

Click this button, or press Ctrl+E, to export the Final Codebook, Final Boundary Points, and Error values to the workspace, a text file, or a MAT-file.

Destination

Choose Current model to create a Scalar Quantizer block in the model you most recently selected. Type gcs in the MATLAB Command Window to display the name of your current model. Choose New model to create a block in a new model file.

Block type

Select Encoder to design a Scalar Quantizer Encoder block. Select Decoder to design a Scalar Quantizer Decoder block. Select Both to design a Scalar Quantizer Encoder block and a Scalar Quantizer Decoder block.

Encoder block name

Enter a name for the Scalar Quantizer Encoder block.

Decoder block name

Enter a name for the Scalar Quantizer Decoder block.

Scalar Quantizer Design

Overwrite target block(s)

When you do not select this check box and a Scalar Quantizer Encoder and/or Decoder block with the same block name exists in the destination model, a new Scalar Quantizer Encoder and/or Decoder block is created in the destination model. When you select this check box and a Scalar Quantizer Encoder and/or Decoder block with the same block name exists in the destination model, the parameters of these blocks are overwritten by new parameters.

Generate Model

Click this button and SQDTool uses the parameters that correspond to the current plots to set the parameters of the Scalar Quantizer Encoder and/or Decoder blocks.

References
 Supported
 Data Types

See Also

Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.

- Double-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Quantizer
Scalar Quantizer Decoder
Scalar Quantizer Encoder
Uniform Encoder
Uniform Decoder

Simulink
Signal Processing Blockset Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Scalar Quantizer Encoder

Purpose

Library

Description

Scalar Quantizer Encoder

Encode each input value by associating it with the index value of a quantization region

Quantizers
The Scalar Quantizer Encoder block maps each input value to a quantization region by comparing the input value to the quantizer boundary points defined in the Boundary points parameter. The block outputs the zero-based index of the associated region.

You can select how you want to enter the Boundary points using the Source of quantizer parameters. When you select Specify via dialog, type the boundary points into the block parameters dialog box. When you select Input port, port B appears on the block. The block uses the input to port B as the Boundary points parameter.

Use the Boundary points parameter to specify the boundary points for your quantizer. These values are used to break up the set of input numbers into regions. Each region is specified by an index number.

Let N be the number of quantization regions. When the codebook is defined as [c1 c2 c3 ... cN], and the Boundary points parameter is defined as [p0 p1 p2 p3 ... pN], then $p 0<c 1<p 1<c 2 \ldots p(N-1)<c N<p N$ for a regular quantizer. When your quantizer is bounded, from the Partitioning list, select Bounded. You need to specify $\mathrm{N}+1$ boundary points, or [p0 p1 p2 p3 ... pN]. When your quantizer is unbounded, from the Partitioning list, select Unbounded. You need to specify $\mathrm{N}-1$ boundary points, or $[\mathrm{p} 1$ p2 p3 ... p(N-1)]; the block sets p0 equal to -inf and pN equal to inf.

The block uses the Partitioning parameter to interpret the boundary points you enter. For instance, to create a bounded quantizer, from the Partitioning list, select Bounded and enter the following boundary points:

```
[0 0.5 3.7 5.8 6.0 11]
```

The block assigns any input values between 0 and 0.5 to index 0 , input values between 0.5 and 3.7 to index 1 , and so on. The block assigns any values that are less than 0 to index 0 , the lowest index value. The block assigns any values that are greater than 11 to index 4 , the highest index value.

Scalar Quantizer Encoder

To create an unbounded quantizer, from the Partitioning list, select Unbounded and enter the following boundary points:

```
[0 0.5 3.7 5.8 6.0 11]
```

The block assigns any input values between 0 and 0.5 to index 1 , input values between 0.5 and 3.7 to index 2 , and so on. The block assigns any input values less than 0 to index 0 and any values greater than 11 to index 6 .

The Searching method parameter determines how the appropriate quantizer index is found. When you select Linear, the Scalar Quantizer Encoder block compares the input value to the first region defined by the first two boundary points. When the input value does not fall within this region, the block then compares the input value to the next region. This process continues until the input value is determined to be within a region and is associated with the appropriate index value. The computational cost of this process is of the order P, where P is the number of boundary points.

When you select Binary for the Searching method, the block compares the input value to the middle value of the boundary points vector. When the input value is larger than this boundary point, the block discards the boundary points that are lower than this middle value. The block then compares the input value to the middle boundary point of the new range, defined by the remaining boundary points. This process continues until the input value is associated with the appropriate index value. The computational cost of this process is of the order $\log _{2} P$, where P is the number of boundary points. In most cases, the Binary option is faster than the Linear option.
When an input value is the same as a boundary point, the Tie-breaking rule parameter determines the region to which the value is assigned. When you want the input value to be assigned to the lower indexed region, select Choose the lower index. To assign the input value with the higher indexed region, select Choose the higher index.

Select the Output codeword check box to output the codeword values that correspond to each index value at port $\mathrm{Q}(\mathrm{U})$.

Select the Output the quantization error check box to output the quantization error for each input value from the Err port on this block. The quantization error is the difference between the input value and the quantized output value.

When you select either the Output codeword check box or the Output quantization error check box, you must also enter your codebook values. If, from the Source of quantizer parameters list, you choose Specify via dialog, use the Codebook parameter to enter a vector of quantized output values that correspond to each region. If, from the Source of quantizer parameters list, you choose Input port, use input port C to specify your codebook values.

If, for the Partitioning parameter, you select Bounded, the Output clipping status check box and the Action for out of range input parameter appear. When you select the Output clipping status check box, port S appears on the block. Any time an input value is outside the range defined by the Boundary points parameter, the block outputs a 1 at the S port. When the value is inside the range, the blocks outputs a 0 .

You can use the Action for out of range input parameter to determine the block's behavior when an input value is outside the range defined by the Boundary points parameter. Suppose the boundary points for a bounded quantizer are defined as [p0 p1 p2 p3 ... pN] and the possible index values are defined as [i0 i1 i2 ... i(N-1)], where i0=0 and i0<i1<i2<...<i(N-1). When you want any input value less than $p 0$ to be assigned to index value io and any input values greater than PN to be assigned to index value $i(N-1)$, select Clip. When you want to be warned when clipping occurs, select Clip and warn. When you want the simulation to stop and the block to display an error when the index values are out of range, select Error.

The Scalar Quantizer Encoder block accepts real floating-point and fixed-point inputs. For more information on the data types accepted by each port, see "Data Type Support" on page 9-847 or "Supported Data Types" on page 9-852.

Data Type Support

The input data values, boundary points, and codebook values can be input to the block at ports U, B, and C, respectively. The data type of the inputs can be double, single, or Fixed-point.

The outputs of the block can be the index values, the quantized output values, the quantization error, and the clipping status. Use the Index output data type parameter to specify the data type of the index output from the block at port I. You can choose int8, uint8, int16, uint16, int32, or uint32. The data

Scalar Quantizer Encoder

type of the quantized output and the quantization error can be double，single， or Fixed－point．The clipping status values output at port S are Boolean values．

Note The input data，boundary points，codebook values，quantized output values，and the quantization error must have the same data type whenever they are present．

Dialog Box

國Block Parameters：Scalar Quantizer Encoder		？ x
－Scalar Quantizer Encoder（mask）（link）		
If the Codebook parameter is defined as $[\mathrm{c} 1 \mathrm{c} 2 \mathrm{c} 3 \ldots \mathrm{cN}]$ and the Boundary points parameter is denoted by $[\mathrm{p} 0 \mathrm{p} 1 \mathrm{p} 2 \mathrm{p} 3 \ldots \mathrm{pN}]$ ，then $\mathrm{p} 0<\mathrm{c} 1<\mathrm{p} 1<\mathrm{c} 2 \ldots \mathrm{p}(\mathrm{N}-1 \mathrm{kc} \mathrm{cN}<\mathrm{pN}$ for a regular quantizer．If your quantizer is bounded，you need to specify［p0 p1 p2 p3 ． pN ］．For any input less than p 0 or greater than p N ，you can optionally output the clipping status．If your quantizer is unbounded，you need to specify［p1 p2 p3 \ldots p（N－1）］ and the block sets $\mathrm{p} 0=-\operatorname{lnf}$ and $\mathrm{pN}=+\operatorname{lnf}$ ．		
Parameters		
Source of quantizer parameters：Specily via dialon w		
Partitioning：Bounded		
［1：10］		
Searching method：Linear		
Tie－breaking rule：Choose the lower index		
「 Output codeword		
厂 Output quantization error		
「 Output clipping status		
Action for out of range input：Clip		
「 ．．－．－．－．．．．．．－Show additional parameters ．．．．．．．．．．．．．．		
QK Cancel	Help	$\Delta p p l y$

Scalar Quantizer Encoder

Source of quantizer parameters

Choose Specify via dialog to enter the boundary points and codebook values using the block parameters dialog box. Select Input port to specify the parameters using the block's input ports. Input the boundary points and codebook values using ports B and C, respectively. Nontunable.

Partitioning

When your quantizer is bounded, select Bounded. When your quantizer is unbounded, select Unbounded. Nontunable.

Boundary points

Enter a vector of values that represent the boundary points of the quantizer regions. This parameter is visible when you select Specify via dialog from the Source of quantizer parameters list. Tunable.

Searching method

When you select Linear, the block finds the region in which the input value is located using a linear search. When you select Binary, the block finds the region in which the input value is located using a binary search. Nontunable.

Tie-breaking rule

Set this parameter to determine the behavior of the block when the input value is the same as the boundary point. When you select Choose the lower index, the input value is assigned to lower indexed region. When you select Choose the higher index, the value is assigned to the higher indexed region. Nontunable.

Output codeword

Select this check box to output the codeword values that correspond to each index value at port $\mathrm{Q}(\mathrm{U})$. Nontunable.

Output quantization error

Select this check box to output the quantization error for each input value at port Err. Nontunable.

Codebook

Enter a vector of quantized output values that correspond to each index value. If, for the Partitioning parameter, you select Bounded and your boundary points vector has length N , then you must specify a codebook of length N-1. If, for the Partitioning parameter, you select Unbounded and

Scalar Quantizer Encoder

your boundary points vector has length N , then you must specify a codebook of length $\mathrm{N}+1$.

This parameter is visible when you select Specify via dialog from the Source of quantizer parameters list and you select either the Output codeword or Output quantization error check box. Tunable.

Output clipping status

When you select this check box, port S appears on the block. Any time an input value is outside the range defined by the Boundary points parameter, the block outputs a 1 at this port. When the value is inside the range, the block outputs a 0 . This parameter is visible when you select Bounded from the Partitioning list.

Action for out of range input

Use this parameter to determine the behavior of the block when an input value is outside the range defined by the Boundary points parameter. Suppose the boundary points are defined as [p0 p1 p2 p3 ... pN] and the index values are defined as [i0 i1 i2 ... i(N-1)]. When you want any input value less than po to be assigned to index value i0 and any input values greater than $p N$ to be assigned to index value $i(N-1)$, select Clip. When you want to be warned when clipping occurs, select Clip and warn. When you want the simulation to stop and the block to display an error when the index values are out of range, select Error. This parameter is visible when you select Bounded from the Partitioning list.

Scalar Quantizer Encoder

Index output data type

Specify the data type of the index output from the block at port I. You can choose int8, uint8, int16, uint16, int32, or uint32. Nontunable.

Round integer calculations toward

Select the rounding mode for integer output.

Scalar Quantizer Encoder

Saturate on integer overflow

When selected, overflows saturate.

References

Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.

Supported Data Types

Port	Supported Data Types
U	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers
B	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8-, 16-, and 32-bit signed integers
C	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
I	- 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Q(U)	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers

Scalar Quantizer Encoder

Port	Supported Data Types
Err	• Double-precision floating point
	• Single-precision floating point
	• Fixed point (signed only)
	\bullet 8-, 16-, and 32-bit signed integers
S	• Boolean

For more information on what data types are supported for each quantizer mode, see "Data Type Support" on page 9-831. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Quantizer
Scalar Quantizer Decoder
Scalar Quantizer Design
Uniform Encoder
Uniform Decoder

Simulink
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Short-Time FFT

Purpose

Library
Description

hort-Time FFT

Compute nonparametric estimate of the spectrum using short-time, fast Fourier transform (FFT) method

Transforms
The Short-Time FFT block computes a nonparametric estimate of the spectrum. The block buffers, applies a window, and zero pads the input signal. Then, the block takes the FFT of the signal, transforming it into the frequency domain.

Connect your sample-based or frame-based, single-channel analysis window to the $\mathrm{w}(\mathrm{n})$ port. For the Analysis window length parameter, enter the length of the analysis window, W . When your analysis window is a sample-based signal, the block buffers it into a frame-based signal with frame length W . When your analysis window is a frame-based signal and its frame length is not W , the block buffers the signal so that its frame length is W .

Connect your sample-based or frame-based, single-channel or multichannel input signal to the $\mathrm{x}(\mathrm{n})$ port. After the block buffers and windows this signal, it zero-pads the signal before computing the FFT. For the FFT length parameter, enter the length to which the block pads the input signal. For the Overlap between consecutive windows (in samples) parameter, enter the number of samples to overlap each frame of the input signal.

The complex-valued, sample-based, single-channel or multichannel short-time FFT is output at port $\mathrm{X}(\mathrm{n}, \mathrm{k})$.

The Short-Time FFT block supports real and complex floating-point and fixed-point signals.

Fixed-Point Data Types

The following diagram shows the data types used within the Short-Time FFT subsystem block for fixed-point signals.

The settings for the fixed-point parameters of the Matrix Scaling block in the diagram above are as follows:

- Round integer calculations toward: Floor
- Saturate on integer overflow - unchecked
- Scaling vector - Same word length as input
- Product output - Inherit via internal rule
- Accumulator - Inherit via internal rule
- Output - Same as first input

The settings for the fixed-point parameters of the FFT block in the diagram above are as follows:

- Round integer calculations toward: Floor
- Saturate on integer overflow - unchecked
- Sine table - Same word length as input
- Product output - Inherit via internal rule
- Accumulator - Inherit via internal rule
- Output - Inherit via internal rule

Refer to the FFT and Matrix Scaling block reference pages for more information.

The dspstsa_win32 demo illustrates how to use the Short-Time FFT and Inverse Short-Time FFT blocks to remove the background noise from a speech signal.

Short-Time FFT

Dialog Box

References

Analysis window length

Enter the frame length of the analysis window.

Overlap between consecutive windows (in samples)

Enter the number of samples of overlap for each frame of the input signal.

FFT length

Enter the length to which the block pads the input signal.
Quatieri, Thomas E. Discrete-Time Speech Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 2001.

Supported Data Types

Port	Supported Data Types
$\mathrm{x}(\mathrm{n})$	- Double-precision floating point
	- Single-precision floating point
	- Fixed point (signed only)
	- 8-, 16-, and 32-bit signed integers
	- Double-precision floating point
$\mathrm{w}(\mathrm{n})$	- Single-precision floating point
	- Fixed point (signed only)
	- 8-, 16-, and 32-bit signed integers
	- Double-precision floating point
	- Single-precision floating point
	- Fixed point (signed only)
	- 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Burg Method
Inverse Short-Time FFT
Magnitude FFT
Periodogram
Spectrum Scope
Window Function
Yule-Walker Method pwelch

Signal Processing Blockset
Signal Processing Toolbox

See "Power Spectrum Estimation" on page 6-5 for related information.

Signal From Workspace

Purpose
Library
Description

Import signal from MATLAB workspace
Signal Processing Sources
The Signal From Workspace block imports a signal from the MATLAB workspace into the Simulink model. The Signal parameter specifies the name of a MATLAB workspace variable containing the signal to import, or any valid MATLAB expression defining a matrix or 3-D array.

When the Signal parameter specifies an M-by-N matrix ($M \neq 1$), each of the N columns is treated as a distinct channel. You specify the frame size in the Samples per frame parameter, M_{0}, and the output is an M_{0}-by-N matrix containing M_{0} consecutive samples from each signal channel. You specify the output sample period in the Sample time parameter, T_{s}, and the output frame period is $M_{0} * T_{s}$. For $M_{0}=1$, the output is sample based; otherwise the output is frame based. For convenience, an imported row vector $(M=1)$ is treated as a single channel, so the output dimension is M_{0}-by- 1 .

When the Signal parameter specifies an M-by-N-by-P array, each of the P pages (an M-by-N matrix) is output in sequence with period T_{s}. The Samples per frame parameter must be set to 1 , and the output is always sample based.

Initial and Final Conditions

Unlike the Simulink From Workspace block, the Signal From Workspace block holds the output value constant between successive output frames (that is, no linear interpolation takes place). Additionally, the initial signal values are always produced immediately at $t=0$.

When the block has output all of the available signal samples, it can start again at the beginning of the signal, or simply repeat the final value or generate zeros until the end of the simulation. (The block does not extrapolate the imported signal beyond the last sample.) The Form output after final data value by parameter controls this behavior:

- When you specify Setting To Zero, the block generates zero-valued outputs for the duration of the simulation after generating the last frame of the signal.

Signal From Workspace

- When you specify Holding Final Value, the block repeats the final sample for the duration of the simulation after generating the last frame of the signal.
- When you specify Cyclic Repetition, the block repeats the signal from the beginning after it reaches the last sample in the signal. If the frame size you specify in the Samples per frame parameter does not evenly divide the input length, a buffer block is inserted into the Signal From Workspace subsystem, and the model becomes multirate. If you do not want your model to become multirate, make sure the frame size evenly divides the input signal length.
Select the Warn when frame size does not evenly divide input length parameter to be alerted when the input length is not an integer multiple of the frame size and your model will become multirate. Use the Model Explorer to turn these warnings on or off model-wide:
a Select Model Explorer from the View menu in your model.
b In the Search bar of the Model Explorer, search by Property Name for the ignoreOrWarnInputAndFrameLengths property. Each block with the Warn when frame size does not evenly divide input length check box appears in the list in the Contents pane.
c Select each of the blocks for which you wish to toggle the warning parameter, and select or deselect the check box in the ignoreOrWarnInputAndFrameLengths column.

Examples Example 1

In the first model below, the Signal From Workspace imports a two-channel signal from the workspace matrix A. The Sample time is set to 1 and the Samples per frame is set to 4 , so the output is frame based with a frame size of 4 and a frame period of 4 seconds. The Form output after final data value by parameter specifies Setting To Zero, so all outputs after the third frame (at $t=8$) are zero.

Signal From Workspace

Example 2

In the second model below, the Signal From Workspace block imports a sample-based matrix signal from the 3-D workspace array A. Again, the Form output after final data value by parameter specifies Setting To Zero, so all outputs after the third (at $t=2$) are zero.

MATLAB Workspace

$$
\begin{aligned}
& A(:,:, 1)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
& A(:,:, 2)=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right] \\
& A(:,:, 3)=\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right]
\end{aligned}
$$

The Samples per frame parameter is set to 1 for 3-D input.

Signal From Workspace

Dialog Box

Signal

The name of the MATLAB workspace variable from which to import the signal, or a valid MATLAB expression specifying the signal.

Sample time

The sample period, T_{S}, of the output. The output frame period is $\mathrm{M}_{\mathrm{o}} * \mathrm{~T}_{\mathrm{s}}$.

Samples per frame

The number of samples, M_{0}, to buffer into each output frame. This value must be 1 when you specify a 3-D array in the Signal parameter.

Form output after final data value by

Specifies the output after all of the specified signal samples have been generated. The block can output zeros for the duration of the simulation (Setting to zero), repeat the final data sample (Holding Final Value) or repeat the entire signal from the beginning (Cyclic Repetition).

Signal From Workspace

Warn when frame size does not evenly divide input length

Select this parameter to be alerted when the input length is not an integer multiple of the frame size and your model will become multirate. For more information, refer to "Initial and Final Conditions" on page 9-858.

This parameter is only visible when Cyclic Repetition is selected for the Form output after final data value by parameter.

Supported Data Types

See Also

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

From Wave Device
From Wave File
Signal From Workspace
From Workspace
To Workspace
Triggered Signal From Workspace

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Simulink
Simulink
Signal Processing Blockset

See the sections below for related information:

- "Creating Sample-Based Signals" on page 1-19
- "Creating Frame-Based Signals" on page 1-26
- "Importing and Exporting Sample-Based Signals" on page 1-57
- "Importing and Exporting Frame-Based Signals" on page 1-69

Signal To Workspace

Purpose
 Write simulation data to array in MATLAB workspace

Library

Description
Signal Processing Sinks
The Signal To Workspace block writes data from your simulation into an array in the MATLAB main workspace. The output array can be 2-D or 3-D, depending on whether the data is 1-D, sample based, or frame based. The Signal To Workspace block and the Simulink To Workspace block can output the same arrays when their parameters are set appropriately.

For more information on the Signal To Workspace block, see the following sections of this reference page:

- "Parameter Descriptions" on page 9-863
- "Output Dimension Summary" on page 9-864
- "Matching the Outputs of Signal To Workspace and To Workspace Blocks" on page 9-865
- "Examples" on page 9-866

Parameter Descriptions

The Variable name parameter is the name of the array in the MATLAB workspace into which the block logs the simulation data. The array is created in the workspace only after the simulation stops running. When you enter the name of an existing workspace variable, the block overwrites the variable with an array of simulation data after the simulation stops running.

When the block input is sample based or 1-D, the Limit data points to last parameter indicates how many samples of data to save. When the block input is frame based, this parameter indicates how many frames of data to save. When the simulation generates more than the specified maximum number of samples or frames, the simulation saves only the most recently generated data. To capture all data, set Limit data points to last to inf.

The Decimation parameter is the decimation factor. It can be set to any positive integer d, and allows you to write data at every d th sample. The default decimation, 1 , writes data at every time step.

Signal To Workspace

The Frames parameter sets the dimension of the output array to 2-D or 3-D for frame-based inputs. The block ignores this parameter for 1-D and sample-based inputs. The Frames parameter has the following two settings:

- Log frames separately (3-D array): Given an M-by-N frame-based input signal, the block outputs an M-by-N-by-K array, where K is the number of frames logged by the end of the simulation. (K is bounded above by the Limit data points to last parameter.) Each input frame is an element of the 3-D array. (See "Example 2: Frame-Based Inputs" on page 9-867.)
- Concatenate frames (2-D array): Given an M-by-N frame-based input signal with frame size f, the block outputs a ($\mathrm{K} * f$)-by-N matrix, where $\mathrm{K} * f$ is the number of samples acquired by the end of the simulation. Each input frame is vertically concatenated to the previous frame to produce the 2-D array output. (See "Example 2: Frame-Based Inputs" on page 9-867.)

Signal to Workspace always logs sample-based input data as 3-D arrays, regardless of the Frame parameter setting. Given an M-by-N sample-based signal, the block outputs an M-by-N-by-L array, where L is the number of samples logged by the end of the simulation (L is bounded above by the Limit data points to last parameter). Each sample-based matrix is an element of the 3-D array. (See "Example 1: Sample-Based Inputs" on page 9-866.)

For 1-D vector inputs, the block outputs a 2-D matrix regardless of the setting of Frame. For a length-N 1-D vector input, the block outputs an L-by-N matrix. Each input vector is a row of the output matrix, vertically concatenated to the previous vector.

Output Dimension Summary

The following table summarizes the output array dimensions for various block inputs. In the table, f is the frame size of the input, K is the number of frames acquired by the end of the simulation, and L is the number of samples acquired by the end of the simulation (K and L are bounded above by the Limit data points to last parameter).

Signal To Workspace

Input Signal Type	Signal To Workspace Output Dimension
Sample-based M-by-N matrix	M-by-N-by-L array
Length-N 1-D vector	L-by-N matrix
Frame-based M-by-N matrix; Frame set to Log frames separately (3-D array)	M-by-N-by-K array
Frame-based M-by-N matrix; Frame set to Concatenate frames (2-D array)	(K*f)-by-N matrix K*f is the number of samples acquired by the end of the simulation.

Matching the Outputs of Signal To Workspace and To Workspace Blocks

The To Workspace block in the Simulink Sinks Library and the Signal To Workspace block can output the same array when they are given the same inputs. To match the blocks' outputs, set their parameters as follows.

Block Parameters	Signal To Workspace	To Workspace
Limit data points to last	x (any positive integer or inf)	x
Decimation	y (any positive integer, not inf)	y
Sample Time	No such parameter	-1
Save format	No such parameter	Array
Frames	Concatenate frames $(2-\mathrm{D}$ array)	No such parameter

Signal To Workspace

Examples

Example 1: Sample-Based Inputs. In the following model, the input to the Signal To Workspace block is a 2 -by-2 sample-based matrix signal with a sample time of 1 (generated by a Signal From Workspace block). The Signal To Workspace block logs 11 samples by the end of the simulation, and creates a 2-by-2-by-11 array, A, in the MATLAB workspace.

The block settings are as follows.

Signal To Workspace Block Parameters

Variable name yout
Limit data points to last inf
Decimation 1
Frames ignored since block input is not frame based

Configuration Dialog Box Parameters

Start time 0
Stop time 10
Signal From Workspace Parameters (provides Signal To Workspace input)
Signal input1 (defined below)
Sample time $\quad 1$
Samples per frame $\quad 1$
Form output after final Setting to zero
data value by

```
input1 = cat(3, [1 1; -1 0], [2 1; -2 0],...,[11 1; -11 0])
```


Signal To Workspace

Example 2: Frame-Based Inputs. In the following model, the input to the Signal To Workspace block is a 2-by-4 frame-based matrix signal with a frame period of 1 (generated by a Signal From Workspace block). The block logs 11 frames (two samples per frame) by the end of the simulation. The frames are concatenated to create a 22 -by- 4 matrix, A, in the MATLAB workspace.

The block settings for the following model are similar to the settings used in Example 1, except Frames is set to Concatenate frames (2-D array) and the Signal From Workspace parameter, Signal, is set to input2, where

In the 2-D output, there is no indication of where one frame ends and another begins. By setting Frames to Log frames separately ($3-\mathrm{D}$ array) in this model, you can easily see each frame in the MATLAB workspace, as illustrated in the following model. Each of the 11 frames is logged separately to create a 2 -by- 4 -by- 11 array, A, in the MATLAB workspace.

Signal To Workspace

Dialog Box

Variable name

The name of the array that holds the input data. Nontunable.

Limit data points to last

The maximum number of input samples (for sample-based inputs) or input frames (for frame-based inputs) to be saved. Nontunable.

Decimation

The decimation factor, d. Data is written at every dth sample. Nontunable.

Signal To Workspace

Frames

The output dimensionality for frame-based inputs. Frames can be set to Concatenate frames (2-D array) or Log frames separately (3-D array). This parameter is ignored when inputs are not frame based. Nontunable.

Log fixed-point data as a fi object

Select to log fixed-point data to the MATLAB workspace as a fi object of the Fixed-Point Toolbox. Otherwise, fixed-point data is logged to the workspace as double.

Supported Data Types

See Also

Triggered To Workspace
To Workspace

Signal Processing Blockset
Simulink

Sine Wave

Purpose Generate continuous or discrete sine wave

Library Signal Processing Sources

Description The Sine Wave block generates a multichannel real or complex sinusoidal signal, with independent amplitude, frequency, and phase in each output channel. A real sinusoidal signal is generated when the Output complexity parameter is set to Real, and is defined by an expression of the type

$$
y=A \sin (2 \pi f t+\phi)
$$

where you specify A in the Amplitude parameter, f in hertz in the Frequency parameter, and ϕ in radians in the Phase offset parameter. A complex exponential signal is generated when the Output complexity parameter is set to Complex, and is defined by an expression of the type

$$
y=A e^{j(2 \pi f t+\phi)}=A\{\cos (2 \pi f t+\phi)+j \sin (2 \pi f t+\phi)\}
$$

Sections of This Reference Page

- "Generating Multichannel Outputs" on page 9-870
- "Output Sample Time and Samples Per Frame" on page 9-871
- "Sample Mode" on page 9-871
- "Discrete Computational Methods" on page 9-872
- "Examples" on page 9-874
- "Dialog Box" on page 9-874
- "Supported Data Types" on page 9-878
- "See Also" on page 9-879

Generating Multichannel Outputs

For both real and complex sinusoids, the Amplitude, Frequency, and Phase offset parameter values (A, f, and ϕ) can be scalars or length-N vectors, where N is the desired number of channels in the output. When you specify at least one of these parameters as a length-N vector, scalar values specified for the other parameters are applied to every channel.

For example, to generate the three-channel output containing the real sinusoids below, set Output complexity to Real and the other parameters as follows:

- Amplitude = $\left.\begin{array}{lll}1 & 2 & 3\end{array}\right]$
- Frequency $=\left[\begin{array}{lll}1000 & 500 & 250\end{array}\right]$
- Phase offset=[0 O pi/2]

$$
y= \begin{cases}\sin (2000 \pi t) & (\text { channel 1) } \\ 2 \sin (1000 \pi t) & (\text { channel 2) } \\ 3 \sin \left(500 \pi t+\frac{\pi}{2}\right) & (\text { channel 3) }\end{cases}
$$

Output Sample Time and Samples Per Frame

In all discrete modes (see below), the block buffers the sampled sinusoids into frames of size M, where you specify M in the Samples per frame parameter. The output is a frame-based M-by-N matrix with frame period $\mathrm{M} * \mathrm{~T}_{\mathrm{s}}$, where you specify T_{s} in the Sample time parameter. For $\mathrm{M}=1$, the output is sample based.

Sample Mode

The Sample mode parameter specifies the block's sampling property, which can be Continuous or Discrete:

- Continuous

In continuous mode, the sinusoid in the i th channel, y_{i}, is computed as a continuous function,

$$
y_{i}=A_{i} \sin \left(2 \pi f_{i} t+\phi_{i}\right) \quad(\text { real })
$$

or

$$
y_{i}=A_{i} e^{j\left(2 \pi f_{i} t+\phi_{i}\right)} \quad(\text { complex })
$$

and the block's output is continuous. In this mode, the block's operation is the same as that of a Simulink Sine Wave block with Sample time set to 0. This

Sine Wave

mode offers high accuracy, but requires trigonometric function evaluations at each simulation step, which is computationally expensive. Additionally, because this method tracks absolute simulation time, a discontinuity will eventually occur when the time value reaches its maximum limit.
Note also that many blocks in the Signal Processing Blockset do not accept continuous-time inputs.

- Discrete

In discrete mode, the block's discrete-time output can be generated by directly evaluating the trigonometric function, by table lookup, or by a differential method. The three options are explained below.

Discrete Computational Methods

When you select Discrete from the Sample mode parameter, the secondary Computation method parameter provides three options for generating the discrete sinusoid:

- Trigonometric Fcn
- Table Lookup
- Differential

Trigonometric Fcn. The trigonometric function method computes the sinusoid in the i th channel, y_{i}, by sampling the continuous function

$$
y_{i}=A_{i} \sin \left(2 \pi f_{i} t+\phi_{i}\right) \quad(\text { real })
$$

or

$$
y_{i}=A_{i} e^{j\left(2 \pi f_{i} t+\phi_{i}\right)} \quad \quad \quad(\text { complex })
$$

with a period of T_{s}, where you specify T_{s} in the Sample time parameter. This mode of operation shares the same benefits and liabilities as the Continuous sample mode described above.

At each sample time, the block evaluates the sine function at the appropriate time value within the first cycle of the sinusoid. By constraining trigonometric evaluations to the first cycle of each sinusoid, the block avoids the imprecision of computing the sine of very large numbers, and eliminates the possibility of discontinuity during extended operations (when an absolute time variable
might overflow). This method therefore avoids the memory demands of the table lookup method at the expense of many more floating-point operations.

Table Lookup. The table lookup method precomputes the unique samples of every output sinusoid at the start of the simulation, and recalls the samples from memory as needed. Because a table of finite length can only be constructed when all output sequences repeat, the method requires that the period of every sinusoid in the output be evenly divisible by the sample period. That is, $1 /\left(f_{i} \mathrm{~T}_{\mathrm{s}}\right)=k_{i}$ must be an integer value for every channel $i=1,2, \ldots, \mathrm{~N}$. When the Optimize table for parameter is set to Speed, the table constructed for each channel contains k_{i} elements. When the Optimize table for parameter is set to Memory, the table constructed for each channel contains $k_{i} / 4$ elements.

For long output sequences, the table lookup method requires far fewer floating-point operations than any of the other methods, but can demand considerably more memory, especially for high sample rates (long tables). This is the recommended method for models that are intended to emulate or generate code for DSP hardware, and that therefore need to be optimized for execution speed.

Differential. The differential method uses an incremental algorithm. This algorithm computes the output samples based on the output values computed at the previous sample time (and precomputed update terms) by making use of the following identities.

$$
\begin{aligned}
& \sin \left(t+T_{s}\right)=\sin (t) \cos \left(T_{s}\right)+\cos (t) \sin \left(T_{s}\right) \\
& \cos \left(t+T_{s}\right)=\cos (t) \cos \left(T_{s}\right)-\sin (t) \sin \left(T_{s}\right)
\end{aligned}
$$

The update equations for the sinusoid in the i th channel, y_{i}, can therefore be written in matrix form as

$$
\left[\begin{array}{c}
\sin \left\{2 \pi f_{i}\left(t+T_{s}\right)+\phi_{i}\right\} \\
\cos \left\{2 \pi f_{i}\left(t+T_{s}\right)+\phi_{i}\right\}
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(2 \pi f_{i} T_{s}\right) & \sin \left(2 \pi f_{i} T_{s}\right) \\
-\sin \left(2 \pi f_{i} T_{s}\right) & \cos \left(2 \pi f_{i} T_{s}\right)
\end{array}\right]\left[\begin{array}{c}
\sin \left(2 \pi f_{i} t+\phi_{i}\right) \\
\cos \left(2 \pi f_{i} t+\phi_{i}\right)
\end{array}\right]
$$

where you specify T_{s} in the Sample time parameter. Since T_{s} is constant, the right-hand matrix is a constant and can be computed once at the start of the simulation. The value of $A_{i} \sin \left[2 \pi f_{i}\left(t+\mathrm{T}_{\mathrm{s}}\right)+\phi_{i}\right]$ is then computed from the values of $\sin \left(2 \pi f_{i} t+\phi_{i}\right)$ and $\cos \left(2 \pi f_{i} t+\phi_{i}\right)$ by a simple matrix multiplication at each time step.

Sine Wave

Examples

Dialog Box

This mode offers reduced computational load, but is subject to drift over time due to cumulative quantization error. Because the method is not contingent on an absolute time value, there is no danger of discontinuity during extended operations (when an absolute time variable might overflow).

The dspsinecomp demo provides a comparison of all the available sine generation methods.

The Main pane of the Sine Wave block dialog appears as follows:

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters" in the online Simulink documentation for details.

Amplitude

A length- N vector containing the amplitudes of the sine waves in each of N output channels, or a scalar to be applied to all N channels. The vector length must be the same as that specified for the Frequency and Phase offset parameters. Tunable (when Computation method is not set to Table lookup); the amplitude values can be altered while a simulation is running, but the vector length must remain the same.

Frequency

A length- N vector containing frequencies, in rad/s, of the sine waves in each of N output channels, or a scalar to be applied to all N channels. The vector length must be the same as that specified for the Amplitude and Phase offset parameters. You can specify positive, zero, or negative frequencies. Tunable (when Computation method is not set to Table lookup); the frequency values can be altered while a simulation is running, but the vector length must remain the same. This parameter is not tunable in the Simulink external mode when using the differential method.

Phase offset

A length- N vector containing the phase offsets, in radians, of the sine waves in each of N output channels, or a scalar to be applied to all N channels. The vector length must be the same as that specified for the Amplitude and Frequency parameters. This parameter is tunable when Computation method is not set to Table lookup; the phase values can be altered while a simulation is running, but the vector length must remain the same. This parameter is not tunable in the Simulink external mode when using the differential method.

Sample mode

The block's sampling behavior, Continuous or Discrete. This parameter is not tunable.

Output complexity

The type of waveform to generate: Real specifies a real sine wave, Complex specifies a complex exponential. This parameter is not tunable.

Computation method

The method by which discrete-time sinusoids are generated: Trigonometric fon, Table lookup, or Differential. This parameter is not tunable. This parameter is disabled when you select Continuous from

Sine Wave

the Sample mode parameter. For details, see "Discrete Computational Methods" on page 9-872.

Optimize table for

Optimizes the table of sine values for Speed or Memory (this parameter is only visible when the Computation method parameter is set to Table lookup). When optimized for speed, the table contains k elements, and when optimized for memory, the table contains $k / 4$ elements, where k is the number of input samples in one full period of the sine wave.

Sample time

The period with which the sine wave is sampled, T_{s}. The block's output frame period is $\mathrm{M} * \mathrm{~T}_{\mathrm{s}}$, where you specify M in the Samples per frame parameter. This parameter is disabled when you select Continuous from the Sample mode parameter. This parameter is not tunable.

Samples per frame

The number of consecutive samples from each sinusoid to buffer into the output frame, M. This parameter is disabled when you select Continuous from the Sample mode parameter. Nontunable.

Resetting states when re-enabled

This parameter only applies when the Sine Wave block is located inside an enabled subsystem and the States when enabling parameter of the Enable block is set to reset. This parameter determines the behavior of the Sine Wave block when the subsystem is re-enabled. The block can either reset itself to its starting state (Restart at time zero), or resume generating the sinusoid based on the current simulation time (Catch up to simulation time). This parameter is disabled when you select Continuous from the Sample mode parameter.

The Data types pane of the Sine Wave block dialog appears as follows:

Output data type

Specify the output data type in out of the following ways:

- Choose one of the built-in data types from the list.
- Choose Fixed-point to specify the output data type and scaling in the Word length, Set fraction length in output to, and Fraction length parameters.
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters.
- Choose Inherit via back propagation to set the output data type and scaling to match the next block downstream.

Sine Wave

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed - point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from Simulink Fixed Point. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible when you select Fixed - point for the Output data type parameter, or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed only)
- 8-, 16-, and 32-bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Chirp
Complex Exponential
Signal From Workspace
Signal Generator
Sine Wave
sin

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Simulink
Simulink
MATLAB

Singular Value Decomposition

Purpose
Library
Description

Factor matrix using singular value decomposition
Math Functions / Matrices and Linear Algebra / Matrix Factorizations
The Singular Value Decomposition block factors the M-by-N input matrix A such that

$$
A=U^{*} \operatorname{diag}(S) \cdot V^{T}
$$

where U is an M -by-P matrix, V is an N -by-P matrix, S is a length- P vector, and P is defined as $\min (M, N)$.

When $\mathrm{M}=\mathrm{N}$, U and V are both M-by-M unitary matrices. When $\mathrm{M}>\mathrm{N}, \mathrm{V}$ is an N -by-N unitary matrix, and U is an M-by-N matrix whose columns are the first N columns of a unitary matrix. When $\mathrm{N}>\mathrm{M}, \mathrm{U}$ is an M-by-M unitary matrix, and V is an M -by- N matrix whose columns are the first N columns of a unitary matrix. In all cases, S is a 1-D vector of positive singular values having length P. The output is always sample based.

Length-N row inputs are treated as length-N columns.

$$
[U, S, V]=\operatorname{svd}(A, 0) \quad \text { \% Equivalent MATLAB code for } M>N
$$

Note that the first (maximum) element of output S is equal to the 2 -norm of the matrix A.

You can enable the U and V output ports by selecting the Output the singular vectors parameter.

Dialog Box

Singular Value Decomposition

Output the singular vectors

Enables the U and V output ports when selected.

References	Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.	
Supported Data Types	• Double-precision floating point	
	• Single-precision floating point	

See "Factoring Matrices" on page 6-8 for related information.

Sort

Purpose \quad Sort input elements by value
Library Statistics
Description

The Sort block ranks the values of the input elements using either a quick sort or an insertion sort algorithm. The quick sort algorithm uses a recursive sort method and is faster at sorting more than 32 elements. The insertion sort algorithm uses a non-recursive method and is faster at sorting less than 32 elements. You should also always use the insertion sort algorithm when you are generating code from the Sort block if you do not want recursive function calls in your code. To specify the sort method, use the Sort algorithm parameter.

The Mode parameter specifies the block's mode of operation, and can be set to Value, Index, or Value and index.

The Sort block supports real and complex floating-point and fixed-point inputs. Signed and unsigned fixed-point signals are supported. The block output has the same signedness as the input.

Value Mode

When Mode is set to Value, the block sorts the elements in each column of the M-by-N input matrix u in order of ascending or descending value, as specified by the Sort order parameter.

```
val = sort(u) % Equivalent MATLAB code (ascending)
val = flipud(sort(u)) % Equivalent MATLAB code (descending)
```

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

The output at each sample time, val, is an M-by-N matrix containing the sorted columns of u. The output has the same frame status as the input.

Complex inputs are sorted by magnitude squared. For complex value $\mathrm{u}=\mathrm{a}+\mathrm{bi}$, the magnitude squared is $\mathrm{a}^{2}+\mathrm{b}^{2}$.

Index Mode

When Mode is set to Index, the block sorts the elements in each column of the M-by-N input matrix u,

```
[val,idx] = sort(u) % Equivalent MATLAB code (ascending)
[val,idx] = flipud(sort(u))% Equivalent MATLAB code (descending)
```

and outputs the sample-based M-by-N index matrix, idx. The jth column of idx is an index vector that permutes the j th column of u to the desired sorting order.

```
val(:,j) = u(idx(:,j),j)
```

The index value outputs are always 32 -bit unsigned integer values.
As in Value mode, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

Value and Index Mode

When Mode is set to Value and index, the block outputs both the sorted matrix, val, and the index matrix, idx.

Fixed-Point Data Types

The parameters on the Fixed-point pane are only used for complex fixed-point inputs. Complex fixed-point inputs are sorted by magnitude squared. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 9-882. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Mode

Specify the block's mode of operation: Output the sorted matrix (Value), the index matrix (Index), or both (Value and index).

Sort order

Specify the order in which to sort the training points, Descending or Ascending. Tunable, except in the Simulink external mode.

Sort algorithm

Specify whether the elements of the input are sorted using a Quick sort or an Insertion sort algorithm.

The Fixed-point pane of the Sort block dialog appears as follows:

Note The parameters on the Fixed-point pane are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 9-882. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block. Refer to "Multiplication Data Types" on page 8-15 for more information:

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Supported Data Types

Port	Supported Data Types
Input	\bullet Double-precision floating point
	\bullet Single-precision floating point
	\bullet Fixed point (signed and unsigned)
	$\bullet 8-, 16-, 32$-, and 128-bit unsigned integers
	$\bullet 8-, 16-, 32$-, and 128-bit signed integers
	• Double-precision floating point
Val	• Single-precision floating point
	\bullet Fixed point (signed and unsigned)
	$\bullet 8-, 16-, 32-$, and 128 -bit unsigned integers
	$\bullet 8-, 16-, 32-$, and 128 -bit signed integers
	$\bullet 32$-bit unsigned integers
Idx	

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Histogram
Median
sort

Signal Processing Blockset
Signal Processing Blockset MATLAB

Spectrum Scope

Compute and display the periodogram of each input signal
Signal Processing Sinks
The Spectrum Scope block computes and displays the periodogram of the input. The input can be a 1-D vector or a 2-D matrix of any frame status.

Scope Properties Pane

When the block input is a 1-by-N sample-based vector or M-by-N sample-based matrix, you must select the Buffer input check box. Each of the N vector elements (or $\mathrm{M} * \mathrm{~N}$ matrix elements) is then treated as an independent channel, and the block buffers and displays the data in each channel independently.

When the input is frame based, you can leave the input as is, or rebuffer data by selecting the Buffer input check box and specifying the new buffer size. In the latter case, you can also specify an optional Buffer overlap parameter.

Buffering 1-D vector inputs is recommended. In this case, the block buffers the inputs into frames (the length of which are specified in the Buffer size parameter), where each 1-D input vector becomes a row in the buffered outcome. If 1-D vector input is left unbuffered, you will get a warning because the block is computing the FFT of a scalar. Though the scope window appears, it is unlikely you will see the plot. The block also displays a warning on the scope itself.

Use the Buffer size parameter, M_{0} to specify the number of input samples that the block buffers before computing and displaying the magnitude FFT. Use the Buffer overlap parameter, L, to specify the number of samples from the previous buffer to include in the current buffer. The number of new input samples the block acquires before computing and displaying the magnitude FFT is the difference between the buffer size and buffer overlap, $M_{0}-L$.

The display update period is $\left(\mathrm{M}_{0}-\mathrm{L}\right) * \mathrm{~T}_{\mathrm{s}}$, where T_{s} is the input sample period. The display update period is equal to the input sample period when the Buffer overlap is $\mathrm{M}_{0}-1$. For negative buffer overlap values, the block discards the appropriate number of input samples after the buffer fills, and updates the scope display at a slower rate than the zero-overlap case.

Spectrum Scope

The Window type and Window sampling parameters apply to the specification of the window function; see the Window Function block reference page for more details on these parameters.

If you clear the Specify FFT length check box and the input is buffered, the block uses the buffer size as the FFT size. If you clear the check box and the input is not buffered, the block uses the input size as the FFT size. When you select the check box, the FFT length parameter, $\mathrm{N}_{\mathrm{fft}}$, appears on the dialog box. Enter the number of samples on which you want the block to perform the FFT. The block zero pads or truncates every channel's buffer to $\mathrm{N}_{\mathrm{fft}}$ before computing the FFT.

The number of spectra to average is set by the Number of spectral averages parameter. Setting this parameter to 1 effectively disables averaging; see the Periodogram block reference page for more information.

Display Properties Pane

For information about these parameters, see "Display Properties Pane" on page 9-1083 of the Vector Scope block reference page.

Axis Properties Pane

The Frequency units parameter specifies whether the frequency axis values should be in units of Hertz or rad/s. When the Frequency units parameter specifies Hertz, the spacing between frequency points is $1 /\left(\mathrm{N}_{\mathrm{fft}} \mathrm{T}_{\mathrm{s}}\right)$. For Frequency units of rad/sec, the spacing between frequency points is $2 \pi /\left(\mathrm{N}_{\mathrm{fft}} \mathrm{T}_{\mathrm{s}}\right)$.

The Frequency range parameter specifies the range of frequencies over which the magnitudes in the input should be plotted. The available options are [0..Fs/2], [-Fs/2..Fs/2], and [0..Fs], where F_{s} is the original time-domain signal's sample frequency.

Note that all of the FFT-based blocks in the Signal Processing Blockset, including those in the Power Spectrum Estimation library, compute the FFT at frequencies in the range [$0, \mathrm{~F}_{\mathrm{s}}$). The Frequency range parameter controls only the displayed range of the signal.

If you select the Inherit sample increment from input check box, the block computes the frequency data from the sample period of the input to the block. This is valid when the following conditions hold:

Spectrum Scope

- The input to the block is the original signal, with no samples added or deleted (by insertion of zeros, for example).
- The sample period of the time-domain signal in the simulation is equal to the period with which the physical signal was originally sampled.

In cases where not all of these conditions hold, you should specify the appropriate value for the Sample time of original time-series parameter.

To correctly scale the horizontal (frequency) axis for frequency-domain signals, the block needs to know the actual sample period of the time-domain input. You specify this in the Sample time of original time series parameter, T_{s}.

The Amplitude scaling parameter allows you to select Magnitude or dB scaling along the y-axis.

Minimum Y-limit and Maximum Y-limit parameters set the range of the vertical axis.

The \mathbf{Y}-axis title is the text to be displayed to the left of the y -axis.

Line Properties Pane

For information about these parameters, see "Line Properties Pane" on page 9-1086 of the Vector Scope block reference page.

Spectrum Scope

Dialog Box Scope Properties Pane

Buffer input

Select this check box to rebuffer the input data.

Buffer size

The number of signal samples to include in each buffer. This parameter is visible if you select the Buffer input check box.

Buffer overlap

The number of samples by which consecutive buffers overlap. This parameter is visible if you select the Buffer input check box.

Window type

Enter the type of window to apply. See the Window Function block reference page for more details. Tunable.

Spectrum Scope

Stopband attenuation in dB

Enter the level, in dB , of stopband attenuation, R_{s}, for the Chebyshev window. This parameter is visible if, for the Window type parameter, you choose Chebyshev. Tunable.

Beta

Enter the β parameter for the Kaiser window. This parameter is visible if, for the Window type parameter, you chose Kaiser. Increasing Beta widens the mainlobe and decreases the amplitude of the window sidelobes in the window's frequency magnitude response. Tunable.

Window sampling

From the list, choose Symmetric or Periodic. This parameter is visible if, for the Window type parameter, you choose Blackman, Hamming, Hann, or Hanning. Tunable.

Specify FFT length

Select this check box to enter the FFT length.

FFT length

The number of samples on which to perform the FFT. When the FFT length differs from the buffer size, the data is zero-padded or truncated as needed. This parameter is visible if you select the Specify FFT length check box.

Number of spectral averages

The number of spectra to average. Setting this parameter to 1 effectively disables averaging. See the Periodogram block reference page for more information.

Spectrum Scope

Display Properties Pane

Show grid

Toggle the scope grid on and off. Tunable.

Persistence

Select this check box to maintain successive displays. That is, the scope does not erase the display after each frame (or collection of frames), but overlays successive input frames in the scope display. Tunable.

Frame number

If you select this check box, the number of the current frame in the input sequence appears in the Vector Scope window. Tunable.

Channel legend

Toggles the legend on and off. Tunable.

Compact display

Resizes the scope to fill the window. Tunable.

Spectrum Scope

Open scope at start of simulation

Select this check box to open the scope at the start of the simulation. When this parameter is cleared, the scope will not open automatically during the simulation. Tunable.

Open scope immediately

If the scope is not open during simulation, select this check box to open it. This parameter is visible only while the simulation is running.

Scope position

A four-element vector of the form [left bottom width height] specifying the position of the scope window. $(0,0)$ is the lower-left corner of the display. Tunable.

Axis Properties Pane

Frequency units

Choose the frequency units for the horizontal axis, Hertz or rad/sec. Tunable.

Spectrum Scope

Frequency range

Specify the frequency range over which to plot the data. Tunable.

Inherit sample increment from input

If you select this check box, the block computes the time-domain sample period from the frame period and frame size of the frequency-domain input. Use this parameter only when the length of each frame of frequency-domain data is the same as the length of the frame of time-domain data from which it was generated. Tunable.

Sample time of original time series

Enter the sample period of the original time-domain signal. Tunable.

Amplitude scaling

Choose the scaling for the y-axis, dB or Magnitude. Tunable.

Minimum Y-limit

The minimum value of the y-axis. Tunable.

Maximum Y-limit

The maximum value of the y-axis. Tunable.

Y-axis title

The text to be displayed to the left of the y-axis. Tunable.

Spectrum Scope

Line Properties Pane

Line visibilities

Enter on or off to specify the visibility of the various channels' scope traces. Separate your choices for each channel with by a pipe (|) symbol. Tunable.

Line styles

Enter the line styles of the various channels' scope traces. Separate your choices for each channel with by a pipe (|) symbol. Tunable.

Line markers

Enter the line markers of the various channels' scope traces. Separate your choices for each channel with by a pipe (|) symbol. Tunable.

Line colors

Enter the colors of the various channels' scope traces using the Colorspec formats. Separate your choices for each channel with by a pipe (|) symbol. Tunable.

Spectrum Scope

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	\bullet Single-precision floating point
	- Fixed point (signed and unsigned)
	\bullet Custom data types
	\bullet Boolean
	$\bullet 8-, 16-$, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also FFT
Periodogram
Short-Time FFT
Vector Scope

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Stack

Purpose

Library

Description

Store inputs into LIFO register.

Signal Management / Buffers

The Stack block stores a sequence of input samples in a last in, first out (LIFO) register. The register capacity is set by the Stack depth parameter, and inputs can be scalars, vectors, or matrices.

The block pushes the input at the In port onto the top of the stack when a trigger event is received at the Push port. When a trigger event is received at the Pop port, the block pops the top element off the stack and holds the Out port at that value. The last input to be pushed onto the stack is always the first to be popped off.

A trigger event at the optional Clr port (enabled by the Clear input check box) empties the stack contents. When you select Clear output port on reset, then a trigger event at the Clr port empties the stack and sets the value at the out port to zero. This setting also applies when a disabled subsystem containing the Stack block is reenabled; the Out port value is only reset to zero in this case when you select Clear output port on reset.

When two or more of the control input ports are triggered at the same time step, the operations are executed in the following order:

1 Cl r
2 Push
3 Pop
The rate of the trigger signal must be the same as the rate of the data signal input. You specify the triggering event for the Push, Pop, and Clr ports in the Trigger type pop-up menu:

- Ris ing edge - Triggers execution of the block when the trigger input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers execution of the block when the trigger input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

Stack

- Either edge - Triggers execution of the block when the trigger input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers execution of the block at each sample time that the trigger input is not zero.

Note When running simulations in the Simulink MultiTasking mode, sample-based trigger signals have a one-sample latency, and frame-based trigger signals have one frame of latency. Thus, there is a one-sample or one-frame delay between the time the block detects a trigger event, and when it applies the trigger. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

The Push full stack parameter specifies the block's behavior when a trigger is received at the Push port but the register is full. The Pop empty stack parameter specifies the block's behavior when a trigger is received at the Pop port but the register is empty. The following options are available for both cases:

- Ignore - Ignore the trigger event, and continue the simulation.
- Warning - Ignore the trigger event, but display a warning message in the MATLAB command window.
- Error - Display an error dialog box and terminate the simulation.

Note The Push full stack and Pop empty stack parameters are diagnostic parameters. Like all diagnostic parameters on the Configuration
Parameters dialog box, they are set to Ignore in the Real-Time Workshop code generated for this block.

The Push full stack parameter additionally offers the Dynamic reallocation option, which dynamically resizes the register to accept as many additional inputs as memory permits. To find out how many elements are on the stack at a given time, enable the Num output port by selecting the Output number of stack entries option.

Examples

Example 1

The table below illustrates the Stack block's operation for a Stack depth of 4, Trigger type of Either edge, and Clear output port on reset enabled. Because the block triggers on both rising and falling edges in this example, each transition from 1 to 0 or 0 to 1 in the Push, Pop, and Clr columns below represents a distinct trigger event. A 1 in the Empty column indicates an empty buffer, while a 1 in the Full column indicates a full buffer.

Stack

In	$\begin{gathered} \text { Pus } \\ \mathrm{h} \end{gathered}$	Pop	Clr	Stack				Out	$\begin{aligned} & \text { Emp } \\ & \text { ty } \end{aligned}$	$\begin{gathered} \text { Ful } \\ 1 \end{gathered}$	Num
7	0	0	0	top	3	2	bottom	4	0	0	2
8	0	1	0	top	2		bottom	3	0	0	1
9	0	0	0	top			bottom	2	1	0	0
10	1	0	0	top	10		bottom	2	0	0	1
11	0	0	0	top	11	10	bottom	2	0	0	2
12	1	0	1	top	12		bottom	0	0	0	1

Note that at the last step shown, the Push and Clr ports are triggered simultaneously. The Clr trigger takes precedence, and the stack is first cleared and then pushed.

Example 2

The dspqdemo demo provides an example of the related Queue block.

Dialog Box

Stack

Stack depth

The number of entries that the LIFO register can hold.

Trigger type

The type of event that triggers the block's execution. The rate of the trigger signal must be the same as the rate of the data signal input. Tunable.

Push full stack

Response to a trigger received at the Push port when the register is full. Inputs to this port must have the same built-in data type as inputs to the Pop and Clr input ports.

Pop empty stack

Response to a trigger received at the Pop port when the register is empty. Inputs to this port must have the same built-in data type as inputs to the Push and Clr input ports. Tunable.

Empty stack output

Enable the Empty output port, which is high (1) when the stack is empty, and low (0) otherwise.

Full stack output

Enable the Full output port, which is high (1) when the stack is full, and low (0) otherwise. The Full port remains low when you select Dynamic reallocation from the Push full stack parameter.

Output number of stack entries

Enable the Num output port, which tracks the number of entries currently on the stack. When inputs to the In port are double-precision values, the outputs from the Num port are double-precision values. Otherwise, the outputs from the Num port are 32 -bit unsigned integer values.

Clear input

Enable the Clr input port, which empties the stack when the trigger specified by the Trigger type is received. Inputs to this port must have the same built-in data type as inputs to the Push and Pop input ports.

Clear output port on reset

Reset the Out port to zero (in addition to clearing the stack) when a trigger is received at the Clr input port. Tunable.

Supported Data Types

Port	Supported Data Types
In	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Push	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers Inputs to this port must have the same built-in data type as inputs to the Pop and Clr input ports
Pop	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers Inputs to this port must have the same built-in data type as inputs to the Push and Clr input ports.

Stack

Port	Supported Data Types
Clr	- Double-precision floating point
	- Single-precision floating point
	- Fixed point (signed and unsigned)
	- Custom data types
	- Boolean
	- 8 -, 16-, and 32-bit signed integers
	- 8-, 16-, and 32-bit unsigned integers
	Inputs to this port must have the same built-in data type as inputs to the Push and Pop input ports.
	- Double-precision floating point
	- Single-precision floating point
	- Fixed point (signed and unsigned)
	- Custom data types
	- Boolean
	- 8-, 16-, and 32-bit signed integers
	- 8-, 16-, and 32-bit unsigned integers

Port	Supported Data Types
Full	- Double-precision floating point - Boolean The block outputs Boolean values at this port when Boolean support is enabled, as described in "Effects of Enabling and Disabling Boolean Support" on page 7-18. To learn how to disable Boolean output support, see "Steps to Disabling Boolean Support" on page 7-19
Num	- Double-precision floating point The block outputs a double-precision floating-point value at this port when the data type of the In port is double-precision floating-point. - 32-bit unsigned integers The block outputs a 32-bit unsigned integer value at this port when the data type of the In port is anything other than double-precision floating-point.

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Buffer
Delay Line
Queue

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Standard Deviation

Purpose
Library
Description

$\ln \mp \mp 7$
$R \rightarrow t$

Find standard deviation of an input or sequence of inputs
Statistics
The Standard Deviation block computes the standard deviation of each column in the input, or tracks the standard deviation of a sequence of inputs over a period of time. The Running standard deviation parameter selects between basic operation and running operation.

Basic Operation

When you do not select the Running standard deviation check box, the block computes the standard deviation of each column in M-by-N input matrix u independently at each sample time.

$$
y=\operatorname{std}(u) \quad \% \text { Equivalent MATLAB code }
$$

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors. (A scalar input generates a zero-valued output.)

The output at each sample time, y , is a 1 -by-N vector containing the standard deviation for each column in u. For purely real or purely imaginary inputs, the standard deviation of the j th column is the square root of the variance

$$
y_{j}=\sigma_{j}=\sqrt{\frac{\sum_{i=1}^{M}\left|u_{i j}-\mu_{j}\right|^{2}}{M-1}} \quad 1 \leq j \leq N
$$

where μ_{j} is the mean of j th column. For complex inputs, the output is the total standard deviation for each column in u, which is the square root of the total variance for that column.

$$
\sigma_{j}=\sqrt{\sigma_{j, R e}^{2}+\sigma_{j, I m}^{2}}
$$

Note that the total standard deviation is not equal to the sum of the real and imaginary standard deviations. The frame status of the output is the same as that of the input.

Running Operation

When you select the Running standard deviation check box, the block tracks the standard deviation of each channel in a time-sequence of M-by-N inputs. For sample-based inputs, the output is a sample-based M-by-N matrix with each element $y_{i j}$ containing the standard deviation of element $u_{i j}$ over all inputs since the last reset. For frame-based inputs, the output is a frame-based M-by-N matrix with each element $y_{i j}$ containing the standard deviation of the j th column over all inputs since the last reset, up to and including element $u_{i j}$ of the current input.

As in basic operation, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running Standard Deviation. The block resets the running standard deviation whenever a reset event is detected at the optional Rst port. The reset signal rate must be a positive integer multiple of the rate of the data signal input.

You specify the reset event in the Reset port parameter:

- None disables the Rst port.
- Ris ing edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero

Standard Deviation

- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above).
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero.

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Example

The Standard Deviation block in the model below calculates the running standard deviation of a frame-based 3-by-2 (two-channel) matrix input, u. The running standard deviation is reset at $t=2$ by an impulse to the block's Rst port.

Standard Deviation

The Standard Deviation block has the following settings:

- Running standard deviation $=\bar{\nabla}$
- Reset port = Non-zero sample

The Signal From Workspace block has the following settings:

- Signal = u
- Sample time $=1 / 3$
- Samples per frame $=3$
where

```
u = [lllllllllllllllllllllllllllllll
```

The Discrete Impulse block has the following settings:

- Delay (samples) $=2$
- Sample time = 1
- Samples per frame $=1$

The block's operation is shown in the figure below.

Standard Deviation

Dialog Box

Running standard deviation

Enables running operation when selected.

Reset port

Determines the reset event that causes the block to reset the running standard deviation. The reset signal rate must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you select Running standard deviation. For more information, see "Resetting the Running Standard Deviation" on page 9-909.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- Boolean - The block accepts Boolean inputs to the Rst port.

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also | Mean | |
| :--- | :--- |
| | RMS |
| | Variance |
| std | |

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
MATLAB

Submatrix

Purpose
Library

Description
[ala
$\begin{array}{lll}9 & 0 & 0 \\ 0 & 0 \\ 0\end{array}$
-ab

Select subset of elements (submatrix) from matrix input

- Math Functions / Matrices and Linear Algebra / Matrix Operations
- Signal Management / Indexing

The Submatrix block extracts a contiguous submatrix from the M-by-N input matrix u. A length-M 1-D vector input is treated as an M-by-1 matrix. The Row span parameter provides three options for specifying the range of rows in u to be retained in submatrix output y :

- All rows

Specifies that y contains all M rows of u.

- One row

Specifies that y contains only one row from u. The Starting row parameter (described below) is enabled to allow selection of the desired row.

- Range of rows

Specifies that y contains one or more rows from u. The Row and Ending row parameters (described below) are enabled to allow selection of the desired range of rows.

The Column span parameter contains a corresponding set of three options for specifying the range of columns in u to be retained in submatrix y : All columns, One column, or Range of columns. The One column option enables the Column parameter, and Range of columns options enable the Starting column and Ending column parameters.

The output has the same frame status as the input.

Range Specification Options

When you select One row or Range of rows from the Row span parameter, you specify the desired row or range of rows in the Row parameter, or the Starting row and Ending row parameters. Similarly, when you select One column or Range of columns from the Column span parameter, you specify the desired column or range of columns in the Column parameter, or the Starting column and Ending column parameters.

The Row, Column, Starting row or Starting column can be specified in six ways:

- First

For rows, this specifies that the first row of u should be used as the first row of y. When all columns are to be included, this is equivalent to $y(1,:)=u(1,:)$.
For columns, this specifies that the first column of u should be used as the first column of y. When all rows are to be included, this is equivalent to $y(:, 1)=u(:, 1)$.

- Index

For rows, this specifies that the row of u, firstrow, forward-indexed by the Row index parameter or the Starting row index parameter, should be used as the first row of y. When all columns are to be included, this is equivalent to $y(1,:)=u(f i r s t r o w,:)$.
For columns, this specifies that the column of u, forward-indexed by the Column index parameter or the Starting column index parameter, firstcol, should be used as the first column of y. When all rows are to be included, this is equivalent to $y(:, 1)=u(:, f i r s t c o l)$.

- Offset from last

For rows, this specifies that the row of u offset from row M by the Row offset or Starting row offset parameter, firstrow, should be used as the first row of y. When all columns are to be included, this is equivalent to $y(1,:)=u(M-$ firstrow,: $)$.
For columns, this specifies that the column of u offset from column N by the Column offset or Starting column offset parameter, firstcol, should be used as the first column of y. When all rows are to be included, this is equivalent to $y(:, 1)=u(:, N$-firstcol $)$.

- Last

For rows, this specifies that the last row of u should be used as the only row of y. When all columns are to be included, this is equivalent to $y=u(M,:)$.
For columns, this specifies that the last column of u should be used as the only column of y . When all rows are to be included, this is equivalent to $y=u(:, N)$.

- Offset from middle

For rows, this specifies that the row of u offset from row $\mathrm{M} / 2$ by the Starting row offset parameter, firstrow, should be used as the first row of y. When

Submatrix

all columns are to be included, this is equivalent to $y(1,:)=u(M / 2-f i r s t r o w,:)$.
For columns, this specifies that the column of u offset from column N/2 by the Starting column offset parameter, firstcol, should be used as the first column of y . When all rows are to be included, this is equivalent to $y(:, 1)=u(:, N / 2-f i r s t c o l)$.

- Middle

For rows, this specifies that the middle row of u should be used as the only row of y. When all columns are to be included, this is equivalent to $y=u(M / 2,:)$.
For columns, this specifies that the middle column of u should be used as the only column of y . When all rows are to be included, this is equivalent to $y=u(:, N / 2)$.

The Ending row or Ending column can similarly be specified in five ways:

- Index

For rows, this specifies that the row of u forward-indexed by the Ending row index parameter, lastrow, should be used as the last row of y. When all columns are to be included, this is equivalent to y (end, :) $=u$ (lastrow,:). For columns, this specifies that the column of u forward-indexed by the Ending column index parameter, lastcol, should be used as the last column of y . When all rows are to be included, this is equivalent to $y(:$, end $)=u(:$, lastcol $)$.

- Offset from last

For rows, this specifies that the row of u offset from row M by the Ending row offset parameter, lastrow, should be used as the last row of y. When all columns are to be included, this is equivalent to $y(e n d,:)=u(M-l a s t r o w,:)$.
For columns, this specifies that the column of u offset from column N by the Ending column offset parameter, lastcol, should be used as the last column of y . When all rows are to be included, this is equivalent to $y(:, e n d)=u(:, N-l a s t c o l)$.

- Last

For rows, this specifies that the last row of u should be used as the last row of y. When all columns are to be included, this is equivalent to $y(e n d,:)=u(M,:)$.
For columns, this specifies that the last column of u should be used as the last column of y. When all rows are to be included, this is equivalent to $y(:, e n d)=u(:, N)$.

- Offset from middle

For rows, this specifies that the row of u offset from row $M / 2$ by the Ending row offset parameter, lastrow, should be used as the last row of y. When all columns are to be included, this is equivalent to $\mathrm{y}(\mathrm{end},:$) $=\mathrm{u}(\mathrm{M} / 2$-lastrow,:).
For columns, this specifies that the column of u offset from column N/2 by the Ending column offset parameter, lastcol, should be used as the last column of y. When all rows are to be included, this is equivalent to $y(:$, end $)=u(:, N / 2-l a s t c o l)$.

- Middle

For rows, this specifies that the middle row of u should be used as the last row of y. When all columns are to be included, this is equivalent to $y(e n d,:)=u(M / 2,:)$.
For columns, this specifies that the middle column of u should be used as the last column of y. When all rows are to be included, this is equivalent to $y(:, e n d)=u(:, N / 2)$.

Example

To extract the lower-right 3-by-2 submatrix from a 5-by-7 input matrix, enter the following set of parameters:

- Row span = Range of rows
- Starting row $=$ Inde x
- Starting row index $=3$
- Ending row $=$ Last
- Column span = Range of columns
- Starting column $=$ Offset from last
- Starting column offset = 1
- Ending column = Last

The figure below shows the operation for a 5 -by- 7 matrix with random integer elements, randint $(5,7,10)$.

There are often several possible parameter combinations that select the same submatrix from the input. For example, instead of specifying Last for Ending column, you could select the same submatrix by specifying

- Ending column = Index
- Ending column index $=7$

Dialog Box

The parameters displayed in the dialog box vary for different menu combinations. Only some of the parameters listed below are visible in the dialog box at any one time.

Row span

The range of input rows to be retained in the output. Options are All rows, One row, or Range of rows.

Row/Starting row

The input row to be used as the first row of the output. Row is enabled when you select One row from Row span, and Starting row when you select Range of rows from Row span.

Submatrix

Row index/Starting row index

The index of the input row to be used as the first row of the output. Row index is enabled when you select Index from Row, and Starting row index when you select Index from Starting row.

Row offset/Starting row offset

The offset of the input row to be used as the first row of the output. Row offset is enabled when you select Offset from middle or Offset from last from Row, and Starting row offset is enabled when you select Offset from middle or Offset from last from Starting row.

Ending row

The input row to be used as the last row of the output. This parameter is enabled when you select Range of rows from Row span and you select any option but Last from Starting row.

Ending row index

The index of the input row to be used as the last row of the output. This parameter is enabled when you select Index from Ending row.

Ending row offset

The offset of the input row to be used as the last row of the output. This parameter is enabled when you select Offset from middle or Offset from last from Ending row.

Column span

The range of input columns to be retained in the output. Options are All columns, One column, or Range of columns.

Column/Starting column

The input column to be used as the first column of the output. Column is enabled when you select One column from Column span, and Starting column is enabled when you select Range of columns from Column span.

Column index/Starting column index

The index of the input column to be used as the first column of the output. Column index is enabled when you select Index from Column, and Starting column index is enabled when you select Index from Starting column.

Column offset/Starting column offset

The offset of the input column to be used as the first column of the output. Column offset is enabled when you select Offset from middle or Offset from last from Column. Starting column offset is enabled when you select Offset from middle or Offset from last from Starting column.

Ending column

The input column to be used as the last column of the output. This parameter is enabled when you select Range of columns from Column span and you select any option but Last from Starting column.

Ending column index

The index of the input column to be used as the last column of the output. This parameter is enabled when you select Index from Ending column.

Ending column offset

The offset of the input column to be used as the last column of the output. This parameter is enabled when you select Offset from middle or Offset from last from Ending column.

Submatrix

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Reshape
Selector
Variable Selector
reshape

Simulink
Simulink
Signal Processing Blockset
MATLAB

See "Splitting Multichannel Sample-Based Signals into Several Multichannel Signals" on page 1-46 for related information.

Purpose
Library
Description

Dialog Box

Supported

 Data TypesSolve AX=B using singular value decomposition
Math Functions / Matrices and Linear Algebra / Linear System Solvers
The SVD Solver block solves the linear system AX=B, which can be matrix, A, at the A port. The input to the B port is the right side M-by-L matrix. the residual). When B is a matrix, this solution minimizes the matrix X_{k} is the kth column of X .

X is known as the minimum-norm-residual solution to $\mathrm{AX}=\mathrm{B}$. The minimum-norm-residual solution is unique for overdetermined and exactly minimized.

- Double-precision floating point
- Single-precision floating point overdetermined, underdetermined, or exactly determined. The system is solved by applying singular value decomposition (SVD) factorization to the M-by-N matrix, B. A length-M 1-D vector input at either port is treated as an M-by-1

The output at the x port is the N -by-L matrix, X . X is always sample based, and is chosen to minimize the sum of the squares of the elements of B-AX. When B is a vector, this solution minimizes the vector 2 -norm of the residual ($\mathrm{B}-\mathrm{AX}$ is Frobenius norm of the residual. In this case, the columns of X are the solutions to the L corresponding systems $\mathrm{AX}_{\mathrm{k}}=\mathrm{B}_{\mathrm{k}}$, where B_{k} is the kth column of B , and determined linear systems, but it is not unique for underdetermined linear systems. Thus when the SVD Solver block is applied to an underdetermined system, the output X is chosen such that the number of nonzero entries in X is

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

SVD Solver

See Also

Autocorrelation LPC	Signal Processing Blockset
Cholesky Solver	Signal Processing Blockset
LDL Solver	Signal Processing Blockset
Levinson-Durbin	Signal Processing Blockset
LU Inverse	Signal Processing Blockset
Pseudoinverse	Signal Processing Blockset
QR Solver	Signal Processing Blockset
Singular Value Decomposition	Signal Processing Blockset

See "Solving Linear Systems" on page 6-6 for related information.

Purpose	Display signals generated during simulation
	The Time Scope block is the same as the Scope block in Simulink. To learn how to use the Time Scope block, see the Scope block reference page in the Simulink documentation.
Library	Signal Processing Sinks
Supported Data Types	
	Port Supported Data Types
	Input - Any data type supported by the Scope block
	To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.
See Also	Scope Simulink

Time-Varying Direct-Form II Transpose Filter

Note The Time-Varying Direct-Form II Transpose Filter block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

Purpose
 Library
 Description

Apply a variable IIR filter to the input.
dspobslib
The Time-Varying Direct-Form II Transpose Filter block is a version of the Direct-Form II Transpose Filter block whose filter coefficients can be updated during the simulation. The block applies a direct-form II transposed IIR filter to the top input (In).

This is a canonical form that has the minimum number of delay elements. The filter order is $\max (m, n)-1$.

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The block's two lower inputs (Num and Den) specify the filter's transfer function,

$$
H(z)=\frac{B(z)}{A(z)}=\frac{b_{1}+b_{2} z^{-1}+\ldots+b_{m+1} z^{-(m-1)}}{a_{1}+a_{2} z^{-1}+\ldots+a_{n+1} z^{-(n-1)}}
$$

By default the filter coefficients are normalized by a_{1}. To prevent normalization by a_{1}, deselect the Support non-normalized filters check box.

Filter Type

The Filter type parameter specifies whether the filter is an all-zero (FIR or MA) filter, all-pole (AR) filter, or pole-zero (IIR or ARMA) filter:

- Pole-zero

The block accepts inputs for both the numerator (Num) and denominator (Den) vectors.

Input Num is a vector of numerator coefficients,
[b(1) b(2) ... b(m)]
and input Den is a vector of denominator coefficients,
[a(1) a(2) ... a(n)]

- All-zero

The block accepts only the numerator vector (Num). The denominator of the all-zero filter is 1 .

- All-pole

The block accepts only the denominator vector (Den). The numerator of the all-pole filter is 1 .
For any of these designs, the coefficient vector inputs can change over time to alter the filter's response characteristics during the simulation.

Initial Conditions

In its default form, the filter initializes the internal filter states to zero, which is equivalent to assuming past inputs and outputs are zero. The block also accepts optional nonzero initial conditions for the filter delays. Note that the number of filter states (delay elements) per input channel is

$$
\max (m, n)-1
$$

The Initial conditions parameter may take one of four forms:

- Empty matrix

The empty matrix, [], causes a zero (0) initial condition to be applied to all delay elements in each filter channel.

Time-Varying Direct-Form II Transpose Filter

- Scalar

The scalar value is copied to all delay elements in each filter channel. Note that a value of zero is equivalent to setting the Initial conditions parameter to the empty matrix, [].

- Vector

The vector has a length equal to the number of delay elements in each filter channel, $\max (m, n)-1$, and specifies a unique initial condition for each delay element in the filter channel. This vector of initial conditions is applied to each filter channel.

- Matrix

The matrix specifies a unique initial condition for each delay element, and can specify different initial conditions for each filter channel. The matrix must have the same number of rows as the number of delay elements in the filter, $\max (m, n)-1$, and must have one column per filter channel.

Filter Update Rate

In frame-based operation, the Filter update rate parameter determines how frequently the block updates the filter coefficients (i.e., how often it checks the Num and Den inputs). There are two available options:

- One filter per sample time

The block updates the filter coefficients (from inputs Num and Den) for each individual scalar sample in the frame-based input. This means that each output sample could potentially be computed by a different filter (assuming that Num and Den inputs are updated frequently enough).

- One filter per frame time

The block updates the filter coefficients (from inputs Num and Den) for each new input frame, rather than at each sample in the frame. This means that each output sample in a given frame is a result of an identical filtering process.

Dialog Box

References
Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Time-Varying Lattice Filter

Note The Time-Varying Lattice Filter block is still supported but is likely to be obsoleted in a future release. We strongly recommend replacing this block with the Digital Filter block.

Purpose	Apply a variable lattice filter to the input.
Library	dspobslib

Description MA XX $/$ Out

The Time-Varying Lattice Filter block applies a moving average (MA) or autoregressive (AR) lattice filter to the top input (In). The filter reflection coefficients are specified by the vector input to the MA or AR port, and can vary with time.

An M-by-N sample-based matrix input to the In port is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

Filter Type

The Filter type parameter specifies whether the filter is an all-zero (FIR or MA) filter or all-pole (AR) filter.

- All-zero

The block constructs an nth order MA filter using the n reflection coefficients contained in the vector input to the MA port.

$$
k=[k(1) k(2) \quad \ldots k(n)]
$$

- All-pole

The block constructs an nth order AR filter using the n reflection coefficients contained in the vector input to the AR port.

$$
k=[k(1) k(2) \quad \ldots k(n)]
$$

For both designs, the coefficient vector inputs can change over time to alter the filter's response characteristics during the simulation.

Time-Varying Lattice Filter

Initial Conditions

In its default form, the filter initializes the internal filter states to zero, which is equivalent to assuming past inputs and outputs are zero. The block also accepts optional nonzero initial conditions for the filter delays. Note that the number of filter states (delay elements) per input channel is

```
length(k)
```

The Initial conditions parameter may take one of four forms:

- Empty matrix

The empty matrix, [], causes a zero (0) initial condition to be applied to all delay elements in each filter channel.

- Scalar

The scalar value is copied to all delay elements in each filter channel. Note that a value of zero is equivalent to setting the Initial conditions parameter to the empty matrix.

- Vector

The vector has a length equal to the number of delay elements in each filter channel, length (k), and specifies a unique initial condition for each delay element in the filter channel. This vector of initial conditions is applied to each filter channel.

- Matrix

The matrix specifies a unique initial condition for each delay element, and can specify different initial conditions for each filter channel. The matrix must have the same number of rows as the number of delay elements in the filter, length (k), and must have one column per filter channel.

Filter Update Rate

In frame-based operation, the Filter update rate parameter determines how frequently the block updates the filter coefficients (i.e., how often it checks the MA or AR input). There are two available options:

- One filter per sample time

The block updates the filter coefficients (from input MA or AR) for each individual scalar sample in the framed input. This means that each output sample could potentially be computed by a different filter (assuming that the MA or AR input is updated frequently enough).

Time-Varying Lattice Filter

- One filter per frame time

The block updates the filter coefficients (from input MA or AR) for each new input frame, rather than at each sample in the frame. This means that each output sample in a given frame is a result of an identical filtering process.

Dialog Box

Filter type

The type of filter to apply: MA or AR. The MA or AR input port is enabled or disabled appropriately.

Initial conditions

The filter's initial conditions.

Filter update rate

The frequency with which the block updates the filter coefficients; once per sample, or once per frame.

References
Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Purpose Generate matrix with Toeplitz symmetry

Library

Math Functions / Matrices and Linear Algebra / Matrix Operations

Description

Toep Col
Toep Rom

The Toeplitz block generates a Toeplitz matrix from inputs defining the first column and first row. The top input (Col) is a vector containing the values to be placed in the first column of the matrix, and the bottom input (Row) is a vector containing the values to be placed in the first row of the matrix.

$$
y=\text { toeplitz (Col,Row) } \quad \text { \% Equivalent MATLAB code }
$$

The other elements of the matrix obey the relationship

$$
y(i, j)=y(i-1, j-1)
$$

and the output has dimension [length(Col) length(Row)]. The y(1,1) element is inherited from the Col input. For example, the following inputs

```
Col = [llllll}
Row =[[lllllllll
```

produce the Toeplitz matrix
$\left[\begin{array}{lllllll}1 & 7 & 3 & 3 & 2 & 1 & 3 \\ 2 & 1 & 7 & 3 & 3 & 2 & 1 \\ 3 & 2 & 1 & 7 & 3 & 3 & 2 \\ 4 & 3 & 2 & 1 & 7 & 3 & 3 \\ 5 & 4 & 3 & 2 & 1 & 7 & 3\end{array}\right]$

When both of the inputs are sample based, the output is sample based. Otherwise, the output is frame based.

When you select the Symmetric check box, the block generates a symmetric (Hermitian) Toeplitz matrix from a single input, u, defining both the first row and first column of the matrix.

$$
y=\text { toeplitz }(u) \quad \% \text { Equivalent MATLAB code }
$$

Toeplitz

The output has dimension [length (u) length (u)]. For example, the Toeplitz matrix generated from the input vector [$\begin{array}{lll}1 & 2 & 3\end{array} 4$] is

1234
2123
3212
4321 1

The output has the same frame status as the input.
The Toeplitz block supports real and complex floating-point and fixed-point inputs.

Dialog Box

Toeplitz (mask) (link) Generate a symmetric or asymmetric Toeplitz matrix. If Symmetric is selected, a symmetric (or Hermitian) Toeplitz matrix is generated. If Symmetric is not selected, an asymmetric Toeplitz matrix is generated. The columns and rows are specified by the first and second inputs, respectively. The first matrix element is inherited from the column.				
Parameters Symmetric Saturate on integer overflow				
OK	Cancel	Help	Apply	

Symmetric

When selected, enables the single-input configuration for symmetric Toeplitz matrix output.

Saturate on integer overflow

When you generate a symmetric Toeplitz matrix with this block, if the input vector is complex, the output is a symmetric Hermitian matrix whose elements satisfy the relationship

$$
y(i, j)=\operatorname{conj}(y(j, i))
$$

For fixed-point signals the conjugate operation could result in an overflow.When you select this parameter, overflows saturate. This
parameter is only visible with the Symmetric parameter is selected. This parameter is ignored for floating-point signals.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8-, 16-, and 32-bit unsigned integers (real signals only)
Toep Col	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

Toeplitz

Port	Supported Data Types
Toep Row	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Constant Diagonal Matrix toeplitz

Signal Processing Blockset MATLAB

> Purpose Write video frames and/or audio samples to multimedia file
> Library Platform-specific I/O / Windows (WIN32)
> The To Multimedia File block writes video frames and/or audio samples to a multimedia (.avi) file. Video processing requires the Video and Image Processing Blockset.
> You can also compress the video frames or audio samples by selecting a compression algorithm. You can connect as many of the input ports as you want. Therefore, you can control what type of video and/or audio is sent to the multimedia file.

Port	Input	Supported Data Types	Supports Complex Values?
R, G, B	Matrix that represents one plane of the RGB video stream. Inputs to the R, G, or B port must have the same dimensions and data type.	- Double-precision floating point - Single-precision floating point - Boolean - 8-, 16-32-bit signed integers - 8-, 16-32-bit unsigned integers	No
Audio	Vector of audio data	- Double-precision floating point - Single-precision floating point - 16-bit signed integers - 8 -bit unsigned integers	No

For the block to display video data properly, double- and single-precision floating-point pixel values must be between 0 and 1 . For any other data type,

To Multimedia File

the pixel values must be between the minimum and maximum values supported by their data type.

Use the Output file name parameter to specify the name of the multimedia file to which to write. This file is saved in your current directory. To specify a different directory, use the Browse button, and then enter the filename, or enter the complete path and filename in the edit box.

Use the Write parameter to specify whether the block writes video frames and/or audio samples to the multimedia file. The choices are Video and audio, Video only, or Audio only.

Use the Video compressor parameter to specify the type of compression algorithm to use to compress the video data. This compression reduces the size of the multimedia file. Choose None (uncompressed) to save uncompressed video data to the multimedia file. The other items available in this parameter list are the video compression algorithms installed on your system. For information about a specific video compressor, refer to its documentation.

Use the Audio compressor parameter to specify the type of compression algorithm to use to compress the audio data. This compression reduces the size of the multimedia file. Choose None (uncompressed) to save uncompressed audio data to the multimedia file. The other items available in this parameter list are the audio compression algorithms installed on your system. For information about a specific audio compressor, refer to its documentation.

Dialog Box

Output file name

Specify the name of the multimedia file to which to write. This file is saved in your current directory. To specify a different directory, use the Browse button, and then enter the filename.

Write

Specify whether the block writes video frames and/or audio samples to the multimedia file. The choices are Video and audio, Video only, or Audio only.

Video compressor

Select the type of compression algorithm to use to compress the video data.

Audio compressor

Select the type of compression algorithm to use to compress the audio data.

To Multimedia File

See Also

From Multimedia File
To Wave File
Frame Rate Display
To Video Display
Video To Workspace
Video Viewer

Signal Processing Blockset
Signal Processing Blockset
Video and Image Processing Blockset
Video and Image Processing Blockset Video and Image Processing Blockset Video and Image Processing Blockset

Purpose

Library
Description

Send audio data to standard audio device in real-time (32-bit Windows operating systems only)

Platform-specific I/O / Windows (WIN32)
The To Wave Device block sends audio data to a standard Windows audio device in real time. It is compatible with most popular Windows hardware, including Sound Blaster cards. (Models that contain both this block and the From Wave Device block require a duplex-capable sound card.) The data is sent to the hardware in uncompressed pulse code modulation (PCM) format, and should typically be sampled at one of the standard Windows audio device rates: $8000,11025,22050$, or 44100 Hz . Some hardware might support other rates in addition to these.

The Use default audio device check box allows the block to detect and use the system's default audio hardware. This option should be selected on systems that have a single sound device installed, or when the default sound device on a multiple-device system is the desired target. In cases when the default sound device is not the desired output device, clear Use default audio device, and set the desired audio device in the Audio device parameter, which lists the names of the installed audio device drivers.

The input to the block, u, can contain audio data from a mono or stereo signal. A mono signal is represented as either a sample-based scalar or frame-based length-M vector, while a stereo signal is represented as a sample-based length-2 vector or frame-based M-by-2 matrix. When the input data type is uint8, the block conveys the signal samples to the audio device using 8 bits. When the input data type is double, single, or int16, the block conveys the signal samples to the audio device using 16 bits by default. For inputs of data type double and single, you can also set the block to convey the signal samples using 24 bits by selecting the Enable 24-bit output for double and single precision input signals check box.

```
sound(u,Fs,bits) % Equivalent MATLAB code
```

Note that the block does not support uint16 or int8 data types. The 16-bit sample width requires more memory but in general yields better fidelity. The amplitude of the input must be in a valid range that depends on the input data

To Wave Device

type (see the following table). Amplitudes outside the valid range are clipped to the nearest allowable value.

Input Data Type	Valid Input Amplitude Range
double	± 1
single	± 1
int16	-32768 to $32767\left(-2^{15}\right.$ to $\left.2^{15}-1\right)$
uint8	0 to 255

Buffering

Because the audio device generates real-time audio output, Simulink must maintain a continuous flow of data to the device throughout the simulation. Delays in passing data to the audio hardware can result in hardware errors or distortion of the output. This means that the To Wave Device block must in principle supply data to the audio hardware as quickly as the hardware reads the data. However, the To Wave Device block often cannot match the throughput rate of the audio hardware, especially when the simulation is running from within Simulink rather than as generated code. (Simulink execution speed routinely varies during the simulation as the host operating system services other processes.) The block must therefore rely on a buffering strategy to ensure that signal data is accessible to the hardware on demand.

At the start of the simulation, the To Wave Device block writes T_{d} seconds worth of signal data to the device (hardware) buffer, where you specify T_{d} in the Initial output delay parameter. When this initial data is loaded into the buffer, the audio device begins processing the buffered data, and continues at a constant rate until the buffer empties. You specify the size of the buffer, T_{b}, in the Queue duration parameter. As the audio device reads data from the front of the buffer, the To Wave Device block continues appending inputs to the back of the buffer at the rate they are received.

The following figure shows an audio signal with eight samples per frame. The buffer of the sound board has a five-frame capacity, not fully used at the instant shown. (If the signal sample rate was 8 kHz , for instance, this small buffer could hold approximately 0.005 second of data.)

Simulink execution rate varies

When the simulation throughput rate is higher than the hardware throughput rate, the buffer remains at a constant level throughout the simulation. If necessary, the To Wave Device block buffers inputs until space becomes available in the hardware buffer (that is, data is not thrown away). More typically, the hardware throughput rate is higher than the simulation throughput rate, and the buffer tends to empty over the duration of the simulation.

Under normal operation, an empty buffer indicates that the simulation is finished, and the entire length of the audio signal has been processed. However, when the buffer size is too small in relation to the simulation throughput rate, the buffer might also empty before the entire length of signal is processed. This usually results in a device error or undesired device output.

When the device fails to process the entire signal length because the buffer prematurely empties, you can choose to either increase the buffer size or the simulation throughput rate.

- Increase the buffer size. The Queue duration parameter specifies the length of signal, T_{b} (in real-time seconds), to buffer to the audio device during the simulation. The number of frames buffered is approximately

$$
\frac{T_{b} F_{s}}{M_{o}}
$$

where F_{s} is the sample rate of the signal and M_{o} is the number of samples per frame. The optimal buffer size for a given signal depends on the signal length, the frame size, and the speed of the simulation. The maximum number of frames that can be buffered is 1024 .

To Wave Device

- Increase the simulation throughput rate. Two useful methods for improving simulation throughput rates are increasing the signal frame size and compiling the simulation into native code.
- Increase frame sizes (and convert sample-based signals to frame-based signals) throughout the model to reduce the amount of block-to-block communication overhead. This can drastically increase throughput rates in many cases. However, larger frame sizes generally result in greater model latency due to initial buffering operations. (Note that increasing the audio signal frame size does not affect the number of samples buffered to the hardware since the Queue duration is specified in seconds.)
- Generate executable code with Real-Time Workshop. Native code runs much faster than Simulink, and should provide rates adequate for real-time audio processing.
Audio problems at startup can often be corrected by entering a larger value for the Initial output delay parameter, which allows a greater portion of the signal to be preloaded into the hardware buffer. A value of 0 for the Initial output delay parameter specifies the smallest possible initial delay, which is one frame.

More general ways to improve throughput rates include simplifying the model, and running the simulation on a faster PC processor. See the Simulink documentation and "Delay and Latency" on page 2-49 for other ideas on improving simulation performance.

Dialog Box

Queue duration (seconds)

The length of signal (in seconds) to buffer to the hardware at the start of the simulation.

Initial output delay (seconds)

The amount of time by which to delay the initial output to the audio device. A value of 0 specifies the smallest possible initial delay, a single frame.

Use default audio device

Directs audio output to the system's default audio device when selected. Clear to enable the Audio device parameter and select a device.

Audio device

The name of the audio device to receive the audio output (lists the names of the installed audio device drivers). Select Use default audio device when the system has only a single audio card installed.

To Wave Device

Enable 24-bit output for double and single precision input signals

Select to output 24 -bit data when inputs are double- or single-precision. Otherwise, the block outputs 16-bit data for double- and single-precision inputs.

Supported Data Types

See Also

From Wave Device	Signal Processing Blockset
To Wave File	Signal Processing Blockset
audioplayer	MATLAB
sound	MATLAB

Purpose

Library
Description
audio.wav

To Wave

Write audio data to file in Microsoft Wave (.wav) format (32-bit Windows operating systems only)

Platform-specific I/O / Windows (WIN32)
The To Wave File block writes audio data to a Microsoft Wave (. wav) file in the uncompressed pulse code modulation (PCM) format. For compatibility reasons, the sample rate of the discrete-time input signal should typically be one of the standard Windows audio device rates ($8000,11025,22050$, or 44100 Hz), although the block supports arbitrary rates.
The input to the block, u, can contain audio data from a mono or stereo signal. A mono signal is represented as either a sample-based scalar or frame-based length-M vector, while a stereo signal is represented as a sample-based length-2 vector or frame-based M-by-2 matrix. The amplitude of the input should be in the range ± 1. Values outside this range are clipped to the nearest allowable value.

```
wavwrite(u,Fs,bits,'filename') % Equivalent MATLAB code
```

The Sample Width (bits) parameter specifies the number of bits used to represent the signal samples in the file. These settings are available:

- 8 - allocates 8 bits to each sample, allowing a resolution of 256 levels
- 16 - allocates 16 bits to each sample, allowing a resolution of 65536 levels
- 24 - allocates 24 bits to each sample, allowing a resolution of 16777216 levels
- 32 - allocates 32 bits to each sample, allowing a resolution of 232 levels ranging from -1 to 1

The higher sample width settings require more memory but yield better fidelity for double- and single-precision inputs.

The File name parameter can specify an absolute or relative path to the file. You do not need to specify the. wav extension. To reduce the required number of file accesses, the block writes L consecutive samples to the file during each access, where you specify L in the Minimum number of samples for each write to file parameter $(\mathrm{L} \geq \mathrm{M})$. For $L<M$, the block instead writes M consecutive samples during each access. Larger values of L result in fewer file accesses, which reduces run-time overhead.

To Wave File

Dialog Box

File name

The path and name of the file to write. Paths can be relative or absolute.

Sample width (bits)

The number of bits used to represent each signal sample.

Minimum number of samples for each write to file

The number of consecutive samples to write with each file access, L.

Supported Data Types

- Double-precision floating point
- Single-precision floating point
- 16-bit signed integer
- 8-bit unsigned integer

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
From Wave File To Wave Device To Workspace wavwrite

Signal Processing Blockset
Signal Processing Blockset Simulink
MATLAB

Transpose

Purpose Compute matrix transpose
Library Math Functions / Matrices and Linear Algebra / Matrix Operations
Description
The Transpose block transposes the M-by-N input matrix to size N-by-M. When you select the Hermitian check box, the block performs the Hermitian
 (complex conjugate) transpose.

$$
y=u^{\prime} \quad \% \text { Equivalent MATLAB code }
$$

$$
\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23}
\end{array}\right] \quad\left[\begin{array}{cc}
u_{11}^{*} & u_{21}^{*} \\
u_{12}^{*} & u_{22}^{*} \\
u_{13}^{*} & u_{23}^{*}
\end{array}\right]
$$

When you do not select the Hermitian check box, the block performs the nonconjugate transpose.

$$
\begin{array}{ll}
\mathrm{y}=\mathrm{u} . & \text { \% Equivalent MATLAB code } \\
{\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} & u_{22} & u_{23}
\end{array}\right] \quad\left[\begin{array}{ll}
u_{11} & u_{21} \\
u_{12} & u_{22} \\
u_{13} & u_{23}
\end{array}\right]}
\end{array}
$$

A length-M 1-D vector input is treated as an M-by-1 matrix. The output is always sample based.

The Transpose block supports real and complex floating-point and fixed-point inputs.

Dialog Box

Hermitian

When selected, specifies the complex conjugate transpose. Tunable.

Saturate on integer overflow

This parameter is only visible when the Hermitian parameter is selected because overflows can occur when computing the complex conjugate of complex fixed-point signals. When you select this parameter, such overflows saturate. This parameter is ignored for floating-point signals and for real-valued fixed-point signals.

Transpose

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8-, 16-, and 32-bit unsigned integers (if Hermitian, real signals only)
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Permute Matrix	Signal Processing Blockset
Reshape	Simulink
Submatrix	Signal Processing Blockset

Purpose
 Library
 Description
 $\stackrel{5}{5}$ Line

Buffer sequence of inputs into frame-based output

Signal Management / Buffers

The Triggered Delay Line block acquires a collection of M_{o} input samples into a frame, where you specify M_{o} in the Delay line size parameter. The block buffers a single sample from input 1 whenever it is triggered by the control signal at input $2(\Im)$. When the next triggering event occurs, the newly acquired input sample is appended to the output frame so that the new output overlaps the previous output by $\mathrm{M}_{0}-1$ samples. Between triggering events the block ignores input 1 and holds the output at its last value.

You specify the triggering event at input 2 in the Trigger type pop-up menu:

- Rising edge triggers execution of the block when the trigger input rises from a negative value to zero or a positive value, or from zero to a positive value.
- Falling edge triggers execution of the block when the trigger input falls from a positive value to zero or a negative value, or from zero to a negative value.
- Either edge triggers execution of the block when either a rising or falling edge (as described above) occurs.

The Triggered Delay Line block has zero latency, so the new input appears at the output in the same simulation time step. The output frame period is the same as the input sample period, $\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{si}}$.

Sample-Based Operation

In sample-based operation, the Triggered Delay Line block buffers a sequence of sample-based length-N vector inputs (1-D, row, or column) into a sequence of overlapping sample-based M_{0}-by-N matrix outputs, where you specify M_{0} in the Delay line size parameter $\left(\mathrm{M}_{0}>1\right)$. That is, each input vector becomes a row in the sample-based output matrix. When $M_{0}=1$, the input is simply passed through to the output, and retains the same dimension. Sample-based full-dimension matrix inputs are not accepted.

Frame-Based Operation

In frame-based operation, the Triggered Delay Line block rebuffers a sequence of frame-based M_{i}-by- N matrix inputs into an sequence of overlapping

Triggered Delay Line

frame-based M_{0}-by-N matrix outputs, where M_{0} is the output frame size specified by the Delay line size parameter (that is, the number of consecutive samples from the input frame to rebuffer into the output frame). M_{0} can be greater or less than the input frame size, M_{i}. Each of the N input channels is rebuffered independently.

Initial Conditions

The Triggered Delay Line block's buffer is initialized to the value specified by the Initial condition parameter. The block always outputs this buffer at the first simulation step $(t=0)$. When the block's output is a vector, the Initial condition can be a vector of the same size, or a scalar value to be repeated across all elements of the initial output. When the block's output is a matrix, the Initial condition can be a matrix of the same size, a vector (of length equal to the number of matrix rows) to be repeated across all columns of the initial output, or a scalar to be repeated across all elements of the initial output.

Examples

In the following three examples, the pulse width of the triggering signal is one sample long, and the delay line size is two. The initial conditions are zero. You can see the difference in results with a rising edge, falling edge, or either edge trigger.

Example 1: Rising Edge Trigger

Open the following model by typing doc_triggereddelay_ref1 at the MATLAB command line.

The following shows the input value and Triggered Delay Line output at each time step:

- At $\mathrm{t}=0$, there are no initial conditions and no trigger.
- At $\mathrm{t}=1$, there is no trigger.
- At $t=2$, there is a rising edge trigger. The output is [00] because there were no initial conditions, and the input value at this time, 3 , is buffered.
- At $\mathrm{t}=3$, there is no trigger.
- At $\mathrm{t}=4$, there is a rising edge trigger. The last buffered value moves into the delay line, which is now [03]. Also, the input value at this time, 5 , is buffered.
- At $\mathrm{t}=5$, there is no trigger.
- At $t=6$, there is a rising edge trigger. The last buffered value moves into the delay line, which is now [35]. Also, the input value at this time, 7, is buffered.
- At $\mathrm{t}=7$, there is no trigger.
- At $t=8$, there is a rising edge trigger. The last buffered value moves into the delay line, which is now [57]. Also, the input value at this time, 9 , is buffered.
- At $\mathrm{t}=9$, there is no trigger.
- At $t=10$, there is a rising edge trigger. The last buffered value moves into the delay line, which is now [79]. Also, the input value at this time, 11 , is buffered.
Run the model and look at the output y 1 at the MATLAB command line to confirm these results. Remember that when there is no block output, Simulink holds the last value on the line.

Triggered Delay Line

Example 2: Falling Edge Trigger

Open the following model by typing doc_triggereddelay_ref2 at the MATLAB command line.

The following shows the input value and Triggered Delay Line output at each time step:

- At $\mathrm{t}=0$, there are no initial conditions and no trigger.
- At $t=1$, there is a falling edge trigger. The output is [00] because there were no initial conditions, and the input value at this time, 2 , is buffered.
- At $\mathrm{t}=2$, there is no trigger.
- At $t=3$, there is a falling edge trigger. The last buffered value moves into the delay line, which is now [0 2]. Also, the input value at this time, 4, is buffered.
- At $\mathrm{t}=4$, there is no trigger.
- At $t=5$, there is a falling edge trigger. The last buffered value moves into the delay line, which is now [24]. Also, the input value at this time, 6 , is buffered.
- At $\mathrm{t}=6$, there is no trigger.
- At $t=7$, there is a falling edge trigger. The last buffered value moves into the delay line, which is now [46]. Also, the input value at this time, 8 , is buffered.
- At $\mathrm{t}=8$, there is no trigger.
- At $\mathrm{t}=9$, there is a falling edge trigger. The last buffered value moves into the delay line, which is now [68]. Also, the input value at this time, 10, is buffered.
- At $\mathrm{t}=10$, there is no trigger.

Run the model and look at the output y2 at the MATLAB command line to confirm these results. Remember that when there is no block output, Simulink holds the last value on the line.

Example 3: Either Edge Trigger

Open the following model by typing doc_triggereddelay_ref3 at the MATLAB command line.

The following shows the input value and Triggered Delay Line output at each time step:

- At $\mathrm{t}=0$, there are no initial conditions and no trigger.
- At $t=1$, there is a falling edge trigger. The output is [00], and the input value at this time, 2 , is buffered.

Triggered Delay Line

- At $t=2$, there is a rising edge trigger. The last buffered value moves into the delay line, which is now [0 2]. Also, the input value at this time, 3 , is buffered.
- At $t=3$, there is a falling edge trigger. The last buffered value moves into the delay line, which is now [23]. Also, the input value at this time, 4, is buffered.
- At $t=4$, there is a rising edge trigger. The last buffered value moves into the delay line, which is now [34]. Also, the input value at this time, 5 , is buffered.
- At $\mathrm{t}=5$, there is a falling edge trigger. The last buffered value moves into the delay line, which is now [45]. Also, the input value at this time, 6 , is buffered.
- At $\mathrm{t}=6$, there is a rising edge trigger. The last buffered value moves into the delay line, which is now [56]. Also, the input value at this time, 7 , is buffered.
- At $\mathrm{t}=7$, there is a falling edge trigger. The last buffered value moves into the delay line, which is now [67]. Also, the input value at this time, 8 , is buffered.
- At $t=8$, there is a rising edge trigger. The last buffered value moves into the delay line, which is now [78]. Also, the input value at this time, 9 , is buffered.
- At $t=9$, there is a falling edge trigger. The last buffered value moves into the delay line, which is now [89]. Also, the input value at this time, 10, is buffered.
- At $\mathrm{t}=10$, there is a rising edge trigger. The last buffered value moves into the delay line, which is now [9 10]. Also, the input value at this time, 11, is buffered.

Run the model and look at the output y3 at the MATLAB command line to confirm these results. Remember that when there is no block output, Simulink holds the last value on the line.

Dialog Box

Trigger type

The type of event that triggers the block's execution.

Delay line size

The length of the output frame (number of rows in output matrix), M_{0}.

Initial condition

The value of the block's initial output, a scalar, vector, or matrix.

Supported Data Types

Port	Supported Data Types
Input	\bullet Double-precision floating point
	\bullet Single-precision floating point
	\bullet Fixed point (signed and unsigned)
	\bullet Custom data types
	\bullet Boolean
	$\bullet 8-, 16-$, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers

Triggered Delay Line

Port	Supported Data Types
Trigger	\bullet Any data type supported by the Trigger block
Output	• Double-precision floating point
	- Single-precision floating point
	\bullet Fixed point (signed and unsigned)
	\bullet Custom data types
	\bullet Boolean
	$\bullet 8-, 16-$, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Buffer
Delay Line
Unbuffer

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Triggered Signal From Workspace

> Purpose Import signal samples from MATLAB workspace when triggered
> Description
> The Triggered Signal From Workspace block imports signal samples from the MATLAB workspace into the Simulink model when triggered by the control signal at the input port (\downarrow). The Signal parameter specifies the name of a MATLAB workspace variable containing the signal to import, or any valid MATLAB expression defining a matrix or 3-D array.
> When the Signal parameter specifies an M-by-N matrix ($M \neq 1$), each of the N columns is treated as a distinct channel. You specify the frame size in the Samples per frame parameter, M_{0}, and the output when triggered is an M_{0}-by-N matrix containing M_{0} consecutive samples from each signal channel. For $M_{0}=1$, the output is sample based; otherwise the output is frame based. For convenience, an imported row vector ($M=1$) is treated as a single channel, so the output dimension is M_{0}-by- 1 .
> When the Signal parameter specifies an M-by-N-by-P array, the block generates a single page of the array (an M-by-N matrix) at each trigger time. The Samples per frame parameter must be set to 1 , and the output is always sample based.

Trigger Event

You specify the triggering event at the input port in the Trigger type pop-up menu:

- Rising edge triggers execution of the block when the trigger input rises from a negative value to zero or a positive value, or from zero to a positive value.
- Falling edge triggers execution of the block when the trigger input falls from a positive value to zero or a negative value, or from zero to a negative value.
- Either edge triggers execution of the block when either a rising or falling edge (as described above) occurs.

Initial and Final Conditions

The Initial output parameter specifies the output of the block from the start of the simulation until the first trigger event arrives. Between trigger events, the block holds the output value constant at its most recent value (that is, no

Triggered Signal From Workspace

linear interpolation takes place). For single-channel signals, the Initial output parameter value can be a vector of length M_{0} or a scalar to repeat across the M_{0} elements of the initial output frames. For matrix outputs (M_{0}-by- N or M-by-N), the Initial output parameter value can be a vector of length N to repeat across all rows of the initial outputs, or a scalar to repeat across all elements of the initial matrix outputs.

When the block has output all of the available signal samples, it can start again at the beginning of the signal, or simply repeat the final value or generate zeros until the end of the simulation. (The block does not extrapolate the imported signal beyond the last sample.) The Form output after final data value by parameter controls this behavior:

- When you specify Setting To Zero, the block generates zero-valued outputs for the duration of the simulation after generating the last frame of the signal.
- When you specify Holding Final Value, the block repeats the final sample for the duration of the simulation after generating the last frame of the signal.
- When you specify Cyclic Repetition, the block repeats the signal from the beginning after generating the last frame. When there are not enough samples at the end of the signal to fill the final frame, the block zero-pads the final frame as necessary to ensure that the output for each cycle is identical (for example, the i th frame of one cycle contains the same samples as the i th frame of any other cycle).

Triggered Signal From Workspace

Dialog Box

Signal

The name of the MATLAB workspace variable from which to import the signal, or a valid MATLAB expression specifying the signal.

Trigger type

The type of event that triggers the block's execution.

Initial output

The value to output until the first trigger event is received.

Samples per frame

The number of samples, M_{0}, to buffer into each output frame. This value must be 1 when you specify a 3-D array in the Signal parameter.

Form output after final data value by

Specifies the output after all of the specified signal samples have been generated. The block can output zeros for the duration of the simulation (Setting to zero), repeat the final data sample (Holding Final Value) or repeat the entire signal from the beginning (Cyclic Repetition).

Triggered Signal From Workspace

Supported
Data Types

See Also

- Double-precision floating point
- Single-precision floating point
- Fixed point (signed and unsigned)
- 8 -, 16 -, and 32 -bit signed integers
- 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

From Wave Device
From Wave File
Signal To Workspace
Signal From Workspace
Triggered To Workspace

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Triggered To Workspace

Purpose

Write input sample to MATLAB workspace when triggered
Signal Processing Sinks
The Triggered To Workspace block creates a matrix or array variable in the MATLAB workspace, where it stores the acquired inputs at the end of a simulation. The block overwrites an existing variable with the same name.

For an M-by-N frame-based input, the block creates an N-column workspace matrix in which each group of M rows represents a single input frame from each of N channels (the most recent frame occupying the last M rows). The maximum size of this workspace variable is limited to P -by- N , where P is the Maximum number of rows parameter. (When the simulation progresses long enough for the block to acquire more than P samples, it stores only the most recent P samples.) The Decimation factor, D, allows you to store only every Dth input frame.

For an M-by-N sample-based input, the block creates a three-dimensional array in which each M-by-N page represents a single sample from each of $M * N$ channels (the most recent input matrix occupying the last page). The maximum size of this variable is limited to M-by-N-by-P, where P is the Maximum number of rows parameter. (When the simulation progresses long enough for the block to acquire more than P inputs, it stores only the last P inputs.) The Decimation factor, D, allows you to store only every Dth input matrix.

The block acquires and buffers a single frame from input 1 whenever it is triggered by the control signal at input 2 (5). At all other times, the block ignores input 1 . You specify the triggering event at input 2 in the Trigger type pop-up menu:

- Rising edge triggers execution of the block when the trigger input rises from a negative value to zero or a positive value, or from zero to a positive value.
- Falling edge triggers execution of the block when the trigger input falls from a positive value to zero or a negative value, or from zero to a negative value.
- Either edge triggers execution of the block when either a rising or falling edge (as described above) occurs.

Triggered To Workspace

To save a record of the sample time corresponding to each sample value, open the Configuration Parameters dialog box. In the Select pane, click Data Import/Export. In the Save to workspace section, select the Time check box.

The nontriggered version of this block is the Simulink To Workspace block.

Dialog Box

Trigger type

The type of event that triggers the block's execution.

Variable name

The name of the workspace matrix in which to store the data.

Maximum number of rows

The maximum number of rows (one row per time step) to be saved, P.

Decimation

The decimation factor, D.

Log fixed-point data as a fi object

Select to log fixed-point data to the MATLAB workspace as a fi object of the Fixed-Point Toolbox. Otherwise, fixed-point data is logged to the workspace as double.

Triggered To Workspace

Supported
 Data Types

Port	Supported Data Types
Input	\bullet Any data type supported by the To Workspace block
Trigger	• Any data type supported by the Trigger block

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Signal From Workspace To Workspace

Signal Processing Blockset
Simulink

Two-Channel Analysis Subband Filter

Purpose
Decompose signal into a high-frequency subband and a low-frequency subband

Library
Description

Filtering / Multirate Filters
The Two-Channel Analysis Subband Filter block decomposes the input into a high-frequency subband and a low-frequency subband, each with half the bandwidth and half the sample rate of the input.

The block filters the input with a pair of highpass and lowpass FIR filters, and then downsamples the results by 2 , as illustrated in the following figure.

Note that the block implements the FIR filtering and downsampling steps together using a polyphase filter structure, which is more efficient than the straightforward filter-then-decimate algorithm illustrated above. Each subband is the first phase of the respective polyphase filter.

You must provide the vector of filter coefficients for the two filters. Each filter should be a half-band filter that passes the frequency band that the other filter stops. For frame-based inputs, you also need to specify whether the change in the sample rate of the output gets reflected by a change in the frame size, or the frame rate.

Note By connecting many copies of this block, you can implement a multilevel dyadic analysis filter bank. In some cases, it is more efficient to use the Dyadic Analysis Filter Bank block instead. For more information, see "Creating Multilevel Dyadic Analysis Filter Banks" on page 9-972.

Two-Channel Analysis Subband Filter

Sections of This Reference Page

- "Specifying the FIR Filters" on page 9-969
- "Sample-Based Operation" on page 9-970
- "Frame-Based Operation" on page 9-970
- "Latency" on page 9-971
- "Creating Multilevel Dyadic Analysis Filter Banks" on page 9-972
- "Fixed-Point Data Types" on page 9-973
- "Examples" on page 9-974
- "Dialog Box" on page 9-974
- "References" on page 9-981
- "Supported Data Types" on page 9-981
- "See Also" on page 9-982

Specifying the FIR Filters

You must provide the vector of numerator coefficients for the lowpass and highpass filters in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.

For example, to specify a filter with the following transfer function, enter the vector $[b(1) b(2) \ldots b(m)]$.

$$
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
$$

Each filter should be a half-band filter that passes the frequency band that the other filter stops. When you plan to use the Two-Channel Synthesis Subband Filter block to reconstruct the input to this block, you will need to design perfect reconstruction filters to use in the synthesis subband filter.

The best way to design perfect reconstruction filters is to use the wfilters function in the Wavelet Toolbox to design both the filters both in this block and in the Two-Channel Synthesis Subband Filter block. You can also use functions from the Filter Design Toolbox and Signal Processing Toolbox. To learn how to design your own perfect reconstruction filters, see "References" on page 9-981.

The block initializes all filter states to zero.

Two-Channel Analysis Subband Filter

Sample-Based Operation

Valid Sample-Based Inputs. The block accepts all M-by-N sample-based matrix inputs. The block treats such inputs as $\mathrm{M} \cdot \mathrm{N}$ independent channels, and decomposes each channel over time.

Sample-Based Outputs. Given a sample-based M-by-N input, the block outputs two M-by-N sample-based matrices whose sample rates are half the input sample rate. Each output matrix element is the high- or low-frequency subband output of the corresponding input matrix element. Depending on the Simulink configuration parameters, some sample-based outputs can have one sample of latency, as described in "Latency" on page 9-971.

Frame-Based Operation

Valid Frame-Based Inputs. The block accepts M-by-N frame-based matrix inputs where M is a multiple of two. The block treats such inputs as N independent channels, and decomposes each channel over time.

Frame-Based Outputs. Given a valid frame-based input, the block outputs two frame-based matrices. Each output column is the high- or low-frequency subband of the corresponding input column.

The sample rate of the outputs are half that of the input. The Framing parameter sets whether the block halves the sample rate by halving the output frame size, or halving the output frame rate:

- Maintain input frame size - The input and output frame sizes are the same, but the frame rate of the outputs are half that of the input. So, the overall sample rate of the output is half that of the input. This setting causes the block to have one frame of latency, as described in "Latency" on page 9-971.
- Maintain input frame rate - The input and output frame rates are the same, but the frame size of the outputs are half that of the input (the input frame size must be a multiple of two). So, the overall sample rate of the output is half that of the input.

Two-Channel Analysis Subband Filter

Latency

In some cases, the block has nonzero tasking latency, which means that there is a constant delay between the time that the block receives an input, and produces the corresponding output, as summarized below and in the following table:

- For sample-based inputs, there are cases where the block exhibits one-sample latency. In such cases, when the block receives the nth input sample, it produces the outputs corresponding to the $n-1$ th input sample. When the block receives the first input sample, the block outputs an initial value of zero in each output channel.
- For frame-based inputs, there are cases where the block exhibits one-frame latency. In such cases, when the block receives the nth input frame, it produces the outputs corresponding to the n - 1 th input frame. When the block receives the first input frame, the block outputs a frame of zeros.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Two-Channel Analysis Subband Filter

Amount of Block Latency for All Possible Block Settings

Input	Latency	No Latency
Sample based	One sample of latency when the Tasking mode for periodic sample times parameter is set to MultiTasking or Auto in the Solver pane of the Configuration Parameters dialog box. The first output sample of each channel is always 0.	The Tasking mode for periodic sample times parameter is set to SingleTasking in the Solver pane of the Configuration Parameters dialog box.
Frame based	One frame of latency when the Framing parameter is set to Maintain input frame size. The first output frame is always all zeros.	The Framing parameter is set to Maintain input frame rate.

Creating Multilevel Dyadic Analysis Filter Banks

The Two-Channel Analysis Subband Filter block is the basic unit of a dyadic analysis filter bank. You can connect several of these blocks to implement an n-level filter bank, as illustrated in the following figure. For a review of dyadic analysis filter banks, see the Dyadic Analysis Filter Bank block reference page.

When you create a filter bank by connecting multiple copies of this block, the output values of the filter bank differ depending on whether there is latency. See the previous table, "Amount of Block Latency for All Possible Block Settings."

For instance, for frame-based inputs, the filter bank output values differ depending on whether you set the Framing parameter to Maintain input frame rate (no latency), or Maintain input frame size (one frame of latency for every block). Though the output values differ, both sets of values are valid; the difference arises from changes in latency.

In some cases, rather than connecting several Two-Channel Analysis Subband Filter blocks, it is faster and requires less memory to use the Dyadic Analysis Filter Bank block. In particular, use the Dyadic Analysis Filter Bank block

Two-Channel Analysis Subband Filter

when you want to decompose a frame-based signal with frame size a multiple of 2^{n} into $n+1$ or 2^{n} subbands. In all other cases, use Two-Channel Analysis Subband Filter blocks to implement your filter banks.

3-Level Dyadic Analysis Filter Banks

Both implementations of the dyadic analysis filter bank decompose a frame-based signal with frame size a multiple of 2^{n} into $n+l$ subbands, where $\mathrm{n}=3$.
In this case, the Dyadic Analysis Filter Bank block's implementation is more efficient.

Use the Two-Channel Analysis Subband Filter block implementation for other
Dyadic Anolysis Filter Bank block implementation
 cases, such as to handle sample-based inputs, or to handle frame-based inputs whose frame size is not a multiple of 2^{n}.

The Dyadic Analysis Filter Bank block allows you to specify the filter bank filters by providing vectors of filter coefficients, just as this block does. The Dyadic Analysis Filter Bank block provides an additional option of using wavelet-based filters that the block designs by using a wavelet you specify.

Fixed-Point Data Types

The Two-Channel Analysis Subband Filter block is comprised of two FIR Decimation blocks as shown in the following diagram.

Two-Channel Analysis Subband Filter

For fixed-point signals, you can set the coefficient, product output, accumulator, and output data types of the FIR Decimation blocks as discussed in "Dialog Box" on page 9-974. For a diagram showing the usage of these data types, refer to the FIR Decimation block reference page.

Examples

Dialog Box

See the following Signal Processing Blockset demos, which use the Two-Channel Analysis Subband Filter block:

- Multilevel PR filter bank

- Denoising
- Wavelet transmultiplexer (WTM)

Note By default, the demos open the versions using the Two-Channel Analysis Subband Filter block. You can also see the version of the demos that use the Dyadic Analysis Filter Bank block by clicking the Frame-Based Demo button in the demos.

The Main pane of the Two-Channel Analysis Subband Filter block dialog appears as follows:

Two-Channel Analysis Subband Filter

Lowpass FIR filter coefficients

Specify a vector of lowpass FIR filter coefficients, in descending powers of z. The lowpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Highpass FIR filter coefficients parameter. The default values of this parameter specify a filter based on a 3rd-order Daubechies wavelet. When you use the Two-Channel Synthesis Subband Filter block to reconstruct the input to this block, you need to design perfect reconstruction filters to use in the synthesis subband filter. For more information, see "Specifying the FIR Filters" on page 9-969.

Two-Channel Analysis Subband Filter

Highpass FIR filter coefficients

Specify a vector of highpass FIR filter coefficients, in descending powers of z. The highpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Lowpass FIR filter coefficients parameter. The default values of this parameter specify a filter based on a 3rd-order Daubechies wavelet. When you use the Two-Channel Synthesis Subband Filter block to reconstruct the input to this block, you need to design perfect reconstruction filters to use in the synthesis subband filter. For more information, see "Specifying the FIR Filters" on page 9-969.

Framing

Specify the method by which to implement the decimation for frame-based inputs:

- Select Maintain input frame size to halve the output frame rate
- Select Maintain input frame rate to halve the output frame size

For more information, see "Frame-Based Operation" on page 9-970. Some settings of this parameter causes the block to have nonzero latency, as described in "Latency" on page 9-971.

The Fixed-point pane of the Two-Channel Analysis Subband Filter block dialog appears as follows:

Two-Channel Analysis Subband Filter

Rounding mode

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

Two-Channel Analysis Subband Filter

Coefficients

Choose how you will specify the word length and the fraction length of the FIR filter coefficients:

- When you select Same word length as input, the word length of the filter coefficients will match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you are able to enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the coefficients, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-403 of the FIR Decimation reference page and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in the FIR Decimation blocks of this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:
ideal product output word length $=$ input word length + FIR coefficients word length
ideal product output fraction length $=$ input fraction length + FIR coefficients fraction length

Two-Channel Analysis Subband Filter

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the FIR Decimation blocks in this block. Refer to "Multiplication Data Types" on page 8-15 for more information:

Two-Channel Analysis Subband Filter

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:

```
ideal accumulator word length = ideal product output word length
    + floor \((\log 2\) (number of accumulations) \()+1\)
ideal accumulator fraction length \(=\)
ideal product output fraction length
```

where the number of accumulations is given by
((number of coefficients / decimation factor) - 1)
if either the coefficients or inputs are real
number of coefficients / decimation factor
if both the coefficients and inputs are complex

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length of the FIR Decimation blocks, as well as of the final overall filter output:

Two-Channel Analysis Subband Filter

- When you select Same as accumulator, these characteristics will match those of the accumulator.

A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are complex. In that case, the output word length will be one less than the accumulator word length.

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

References	Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.
	Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press, 1996.
	Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Supported Pata Types
	• Double-precision floating point
	• Single-precision floating point

Two-Channel Analysis Subband Filter

See Also | Dyadic Analysis Filter Bank | Signal Processing Blockset | |
| :--- | :--- | :--- |
| | FIR Decimation | Signal Processing Blockset |
| | Two-Channel Synthesis Subband Filter | Signal Processing Blockset |
| | fir1 | Signal Processing Toolbox |
| | fir2 | Signal Processing Toolbox |
| | firls | Signal Processing Toolbox |
| | wfilters | Wavelet Toolbox |

For related information, see "Multirate Filters" on page 3-67.

Two-Channel Synthesis Subband Filter

Purpose

Library

Description

\gg| Hi band |
| :--- |
| Lo band |

Reconstruct signal from a high-frequency subband and a low-frequency subband

Filtering / Multirate Filters
The Two-Channel Synthesis Subband Filter block reconstructs a signal from its high-frequency subband and low-frequency subband, each with half the bandwidth and half the sample rate of the original signal. Use this block to reconstruct signals decomposed by the Two-Channel Analysis Subband Filter block.

The block upsamples the high- and low-frequency subbands by 2 , and then filters the results with a pair of highpass and lowpass FIR filters, as illustrated in the following figure.

Note that the block implements the FIR filtering and downsampling steps together using a polyphase filter structure, which is more efficient than the straightforward interpolate-then-filter algorithm illustrated above.

You must provide the vector of filter coefficients for the two filters. Each filter should be a half-band filter that passes the frequency band that the other filter stops. To use this block to reconstruct the output of a Two-Channel Analysis Subband Filter block, the filters in this block must be designed to perfectly reconstruct the outputs of the analysis filters.

Note By connecting many copies of this block, you can implement a multilevel dyadic synthesis filter bank. In some cases, it is more efficient to use the Dyadic Synthesis Filter Bank block instead. For more information, see "Creating Multilevel Dyadic Synthesis Filter Banks" on page 9-987.

Two-Channel Synthesis Subband Filter

Sections of This Reference Page

- "Specifying the FIR Filters" on page 9-984
- "Sample-Based Operation" on page 9-985
- "Frame-Based Operation" on page 9-985
- "Latency" on page 9-986
- "Creating Multilevel Dyadic Synthesis Filter Banks" on page 9-987
- "Fixed-Point Data Types" on page 9-988
- "Examples" on page 9-989
- "Dialog Box" on page 9-990
- "References" on page 9-996
- "Supported Data Types" on page 9-996
- "See Also" on page 9-996

Specifying the FIR Filters

You must provide the vector of numerator coefficients for the lowpass and highpass filters in the Lowpass FIR filter coefficients and Highpass FIR filter coefficients parameters.

For example, to specify a filter with the following transfer function, enter the vector $[b(1) b(2) \ldots b(m)]$.

$$
H(z)=B(z)=b_{1}+b_{2} z^{-1}+\ldots+b_{m} z^{-(m-1)}
$$

Each filter should be a half-band filter that passes the frequency band that the other filter stops. To use this block to reconstruct the output of a Two-Channel Analysis Subband Filter block, the filters in this block must be designed to perfectly reconstruct the outputs of the analysis filters.

The best way to design perfect reconstruction filters is to use the wfilters function in the Wavelet Toolbox for the filters in both this block and in the corresponding Two-Channel Analysis Subband Filter block. You can also use functions from the Filter Design Toolbox and Signal Processing Toolbox. To learn how to design your own perfect reconstruction filters, see "References" on page 9-996.

The block initializes all filter states to zero.

Two-Channel Synthesis Subband Filter

Sample-Based Operation

Valid Sample-Based Inputs. The block accepts any two M-by-N sample-based matrices with the same sample rates. The block treats each M-by-N matrix as MxN independent subbands, where MxN is the product of the matrix dimensions. Each matrix element is the high- or low-frequency subband of the corresponding channel in the output matrix. The input to the topmost input port should contain the high-frequency subbands.

Sample-Based Outputs. Given valid sample-based inputs, the block outputs one sample-based matrix with the same dimensions as the inputs. The output sample rate is twice that of the input. Each element of the output is a single channel, reconstructed from the corresponding elements in each input matrix. Depending on the Simulink configuration parameters, some sample-based outputs can have one sample of latency, as described in "Latency" on page 9-986.

Frame-Based Operation

Valid Frame-Based Inputs. The block accepts any two M-by-N frame-based matrices with the same frame rates. The block treats each input column as the high- or low-frequency subbands of the corresponding output channel. The input to the topmost input port should contain the high-frequency subbands.

Frame-Based Outputs. Given valid frame-based inputs, the block outputs a frame-based matrix. Each output column is a single channel, reconstructed from the corresponding columns in each input matrix.

The sample rate of the output is twice that of the input. The Framing parameter sets whether the block doubles the sample rate by doubling the output frame size, or doubling the output frame rate:

- Maintain input frame size - The input and output frame sizes are the same, but the frame rate of the output is twice that of the input. So, the overall sample rate of the output is twice that of the input. This setting causes the block to have one frame of latency, as described in "Latency" on page 9-971.
- Maintain input frame rate - The input and output frame rates are the same, but the frame size of the output is twice that of the input. So, the overall sample rate of the output is twice that of the input.

Two-Channel Synthesis Subband Filter

Latency

In some cases, the block has nonzero tasking latency, which means that there is a constant delay between the time that the block receives an input, and produces the corresponding output, as summarized below and in the following table:

- For sample-based inputs, there are cases where the block exhibits one-sample latency. In such cases, when the block receives the nth input sample, it produces the outputs corresponding to the $n-1$ th input sample. When the block receives the first input sample, the block outputs an initial value of zero in each output channel.
- For frame-based inputs, there are cases where the block exhibits one-frame latency. In such cases, when the block receives the nth input frame, it produces the outputs corresponding to the n - 1 th input frame. When the block receives the first input frame, the block outputs a frame of zeros.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Two-Channel Synthesis Subband Filter

Amount of Block Latency for All Possible Block Settings		
Input	Latency	No Latency
Sample based	One sample of latency when the Tasking mode for periodic sample times parameter is set to MultiTasking or Auto in the Solver pane of the Configuration Parameters dialog box. The first output sample of each channel is always 0.	The Tasking mode for periodic sample times parameter is set to SingleTasking in the Solver pane of the Configuration Parameters dialog box.
Frame based	One frame of latency when the Framing parameter is set to Maintain input frame size. The first output frame is always all zeros.	The Framing parameter is set to Maintain input frame rate.

Creating Multilevel Dyadic Synthesis Filter Banks

The Two-Channel Synthesis Subband Filter block is the basic unit of a dyadic synthesis filter bank. You can connect several of these blocks to implement an n-level filter bank, as illustrated in the following figure. For a review of dyadic synthesis filter banks, see the Dyadic Synthesis Filter Bank block reference page.

When you create a filter bank by connecting multiple copies of this block, the output values of the filter bank differ depending on whether there is latency. See the previous table, "Amount of Block Latency for All Possible Block Settings."

For instance, for frame-based inputs, the filter bank output values differ depending on whether you set the Framing parameter to Maintain input frame rate (no latency), or Maintain input frame size (one frame of latency for every block). Though the output values differ, both sets of values are valid; the difference arises from changes in latency.

In some cases, rather than connecting several Two-Channel Synthesis Subband Filter blocks, it is faster and requires less memory to use the Dyadic

Two-Channel Synthesis Subband Filter

Synthesis Filter Bank block. In particular, use the Dyadic Synthesis Filter Bank block to reconstruct a frame-based signal (with frame size a multiple of 2^{n}) from 2^{n} or $n+1$ subbands whose properties match those of the Dyadic Analysis Filter Bank block's outputs. These properties are described in the Dyadic Analysis Filter Bank reference page.

3-Level Dyadic Synthesis Filter Banks

Conceptual illustration

Both implementations of the dyadic analysis filter bank reconstruct a frame-based signal from $\mathrm{n}+1$ subbands, where $\mathrm{n}=3$.

In this case, the Dyadic Synthesis Filter Bank block's implementation is more efficient, since the input subbands have the properties of the outputs of a Dyadic Analysis Filter Bank block.
Use the Two-Channel Synthesis Subband Filter block implementation for other cases, such as to handle separate sample-based vectors or matrices of subbands (rather than a single sample-based vector or matrix of concatenated subbands), or to output sample-based signals.

Dyadic Synthesis Filter Bank block implementation

The Dyadic Synthesis Filter Bank block allows you to specify the filter bank filters by providing vectors of filter coefficients, just as this block does. The Dyadic Synthesis Filter Bank block provides an additional option of using wavelet-based filters that the block designs by using a wavelet you specify.

Fixed-Point Data Types

The Two-Channel Synthesis Subband Filter block is comprised of two FIR Interpolation blocks as shown in the following diagram.

For fixed-point signals, you can set the coefficient, product output, accumulator, and output data types used in the FIR Interpolation blocks as discussed in "Dialog Box" on page 9-990 below. For a diagram showing the usage of these data types within the FIR blocks, refer to the FIR Interpolation block reference page.

In addition, the inputs to the Sum block in the diagram above are accumulated using the accumulator data type. The output of the Sum block is then cast from the accumulator data type to the output data type. Therefore the output of the Two-Channel Synthesis Subband Filter block is in the output data type. You also set these data types in the block dialog as discussed in "Dialog Box" on page 9-990 below.

Examples

See the following Signal Processing Blockset demos, which use the Two-Channel Synthesis Subband Filter block:

- Multilevel PR filter bank
- Denoising
- Wavelet transmultiplexer (WTM)

Note By default, the demos open the versions using the Two-Channel Synthesis Subband Filter block. You can also see the version of the demos that use the Dyadic Synthesis Filter Bank block by clicking the Frame-Based Demo button in the demos.

Two-Channel Synthesis Subband Filter

Dialog Box

The Main pane of the Two-Channel Synthesis Subband Filter block dialog appears as follows:

Lowpass FIR filter coefficients

A vector of lowpass FIR filter coefficients, in descending powers of z. The lowpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Highpass FIR filter coefficients parameter. To use this block to reconstruct the output of a Two-Channel Analysis Subband Filter block, you must design the filters in this block to perfectly reconstruct the outputs of the analysis filters. For more information, see "Specifying the FIR Filters" on page 9-984.

Two-Channel Synthesis Subband Filter

Highpass FIR filter coefficients

A vector of highpass FIR filter coefficients, in descending powers of z. The highpass filter should be a half-band filter that passes the frequency band stopped by the filter specified in the Lowpass FIR filter coefficients parameter. To use this block to reconstruct the output of a Two-Channel Analysis Subband Filter block, you must design the filters in this block to perfectly reconstruct the outputs of the analysis filters. For more information, see "Specifying the FIR Filters" on page 9-984.

Framing

Select the method by which to implement the interpolation for frame-based inputs:

- Select Maintain input frame size to double the output frame rate
- Select Maintain input frame rate to double the output frame size

For more information, see "Frame-Based Operation" on page 9-970. Some settings of this parameter causes the block to have nonzero latency, as described in "Latency" on page 9-971.

The Fixed-point pane of the Two-Channel Synthesis Subband Filter block dialog appears as follows:

Two-Channel Synthesis Subband Filter

Round mode

Select the rounding mode for fixed-point operations. The filter coefficients do not obey this parameter; they always round to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations. The filter coefficients do not obey this parameter; they are always saturated.

Coefficients

Choose how you will specify the word length and the fraction length of the FIR filter coefficients:

Two-Channel Synthesis Subband Filter

- When you select Same word length as input, the word length of the filter coefficients will match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you are able to enter the word length of the coefficients, in bits. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the coefficients, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the coefficients. This block requires power-of-two slope and a bias of zero.

The filter coefficients do not obey the Rounding mode and the Overflow mode parameters; they are always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-417 of the FIR Interpolation reference page and "Multiplication Data Types" on page 8-15 for illustrations depicting the use of the product output data type in the FIR Interpolation blocks of this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:
> ideal product output word length = input word length + FIR coefficients word length
> ideal product output fraction length $=$ input fraction length + FIR coefficients fraction length

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on

Two-Channel Synthesis Subband Filter

the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.
You also use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the FIR Interpolation blocks in this block. Refer to "Multiplication Data Types" on page 8-15 for more information:

- When you select Inherit via internal rule, the accumulator word length and fraction length are automatically set according to the following equations:

> ideal accumulator word length $=$ product output word length
> + floor $(\log 2($ number of accumulations $))+1$

Two-Channel Synthesis Subband Filter

ideal accumulator fraction length $=$ product output fraction length where the number of accumulations is given by

$$
((\text { number of coefficients / (interpolation factor }))-1)
$$

if either the coefficients or inputs are real number of coefficients / (interpolation factor)
if both the coefficients and inputs are complex

Note The actual accumulator word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length of the FIR Interpolation blocks, as well as of the final overall filter output:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
A special case occurs when Inherit via internal rule is specified for Accumulator, and block inputs and coefficients are complex. In that case, the output word length will be one less than the accumulator word length.
- When you select Same as product output, these characteristics will match those of the product output

Two-Channel Synthesis Subband Filter

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

References	Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.
	Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press, 1996.
	Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall, 1993.
Supported	- Double-precision floating point
Data Types	- Single-precision floating point
	- Fixed point (signed only)
	- 8-, 16-, and 32-bit signed integers
	To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.
See Also	Dyadic Synthesis Filter Bank Signal Processing Blockset
	FIR Interpolation Signal Processing Blockset
	Two-Channel Analysis Subband Filter Signal Processing Blockset
	fir1 Signal Processing Toolbox
	fir2 Signal Processing Toolbox
	firls Signal Processing Toolbox
	wfilters Wavelet Toolbox
	For related information, see "Multirate Filters" on page 3-67.

Purpose Unbuffer input frame into sequence of scalar outputs

Library

Description

Signal Management / Buffers

The Unbuffer block unbuffers an M_{i}-by-N frame-based input into a 1-by-N sample-based output. That is, inputs are unbuffered row-wise so that each matrix row becomes an independent time-sample in the output. The rate at which the block receives inputs is generally less than the rate at which the block produces outputs.

The block adjusts the output rate so that the sample period is the same at both the input and output, $\mathrm{T}_{\mathrm{s} 0}=\mathrm{T}_{\mathrm{si}}$. Therefore, the output sample period for an input of frame size M_{i} and frame period T_{fi} is $\mathrm{T}_{\mathrm{fi}} / \mathrm{M}_{\mathrm{i}}$, which represents a rate M_{i} times higher than the input frame rate. In the example above, the block receives inputs only once every three sample periods, but produces an output once every sample period. To rebuffer frame-based inputs to a larger or smaller frame size, use the Buffer block.

In the model below, the block unbuffers a four-channel frame-based input with frame size 3. The Initial conditions parameter is set to zero and the tasking mode is set to multitasking, so the first three outputs are zero vectors (see "Latency" below).

Unbuffer

Latency

Zero Latency. The Unbuffer block has zero tasking latency in the Simulink single-tasking mode. Zero tasking latency means that the first input sample (received at $t=0$) appears as the first output sample.

Nonzero Latency. For multitasking operation, the Unbuffer block's buffer is initialized with the value specified by the Initial condition parameter, and the block begins unbuffering this frame at the start of the simulation. Inputs to the block are therefore delayed by one buffer length, or M_{i} samples.

The Initial condition parameter can be one of the following:

- A scalar to be repeated for the first M_{i} output samples of every channel
- A length- M_{i} vector containing the values of the first M_{i} output samples for every channel
- An M_{i}-by- N matrix containing the values of the first M_{i} output samples in each of N channels

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Dialog Box

Initial conditions

The value of the block's initial output for cases of nonzero latency; a scalar, vector, or matrix.

Unbuffer

Supported
 Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also Buffer Signal Processing Blockset
See "Unbuffering Frame-Based Signals into Sample-Based Signals" on page 2-44 for related information.

Uniform Decoder

Purpose Decode integer input into floating-point output

Library

Description

Quantizers
The Uniform Decoder block performs the inverse operation of the Uniform Encoder block, and reconstructs quantized floating-point values from encoded integer input. The block adheres to the definition for uniform decoding specified in ITU-T Recommendation G.701.

Inputs can be real or complex values of the following six integer data types: uint8, uint16, uint32, int8, int16, or int32.

The block first casts the integer input values to floating-point values, and then uniquely maps (decodes) them to one of 2^{B} uniformly spaced floating-point values in the range $\left[-\mathrm{V},\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}\right]$, where you specify B in the Bits parameter (as an integer between 2 and 32) and V is a floating-point value specified by the Peak parameter. The smallest input value representable by B bits (0 for an unsigned input data type; $-2^{\mathrm{B}-1}$ for a signed input data type) is mapped to the value -V. The largest input value representable by B bits ($2^{\mathrm{B}}-1$ for an unsigned input data type; $2^{\mathrm{B}-1}-1$ for a signed input data type) is mapped to the value $\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}$. Intermediate input values are linearly mapped to the intermediate values in the range $\left[-\mathrm{V},\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}\right]$.

To correctly decode values encoded by the Uniform Encoder block, the Bits and Peak parameters of the Uniform Decoder block should be set to the same values as the Bits and Peak parameters of the Uniform Encoder block. The Overflow mode parameter specifies the Uniform Decoder block's behavior when the integer input is outside the range representable by B bits. When you select Saturate, unsigned input values greater than $2^{\mathrm{B}}-1$ saturate at $2^{\mathrm{B}}-1$; signed input values greater than $2^{\mathrm{B}-1}-1$ or less than $-2^{\mathrm{B}-1}$ saturate at those limits. The real and imaginary components of complex inputs saturate independently.
When you select Wrap, unsigned input values, u, greater than $2^{\mathrm{B}}-1$ are wrapped back into the range $\left[0,2^{\mathrm{B}}-1\right]$ using mod- 2^{B} arithmetic.

$$
u=\bmod \left(u, 2^{\wedge} B\right) \quad \text { Equivalent MATLAB code }
$$

Signed input values, u, greater than $2^{\text {B-1 }}-1$ or less than $-2^{\text {B-1 }}$ are wrapped back into that range using mod -2^{B} arithmetic.

Uniform Decoder

$$
u=\left(\bmod \left(u+2^{\wedge} B / 2,2^{\wedge} B\right)-\left(2^{\wedge} B / 2\right)\right) \% \text { Equivalent MATLAB code }
$$

The real and imaginary components of complex inputs wrap independently.
The Output type parameter specifies whether the decoded floating-point output is single or double precision. Either level of output precision can be used with any of the six integer input data types.

Example Consider a Uniform Decoder block with the following parameter settings:

$$
\text { - Peak = } 2
$$

- Bits $=3$

The input to the block is the uint8 output of a Uniform Encoder block with comparable settings: Peak = 2, Bits $=3$, and Output type = Unsigned. (Comparable settings ensure that inputs to the Uniform Decoder block do not saturate or wrap. See the example on the Uniform Encoder block reference page for more about these settings.)

The real and complex components of each input are independently mapped to one of 2^{3} distinct levels in the range $[-2.0,1.5]$.

0 is mapped to -2.0
1 is mapped to -1.5
2 is mapped to -1.0
3 is mapped to -0.5
4 is mapped to 0.0
5 is mapped to 0.5
6 is mapped to 1.0
7 is mapped to 1.5

Uniform Decoder

Dialog Box

$\begin{array}{ll}\text { References } & \text { General Aspects of Digital Transmission Systems: Vocabulary of Digital } \\ \text { Transmission and Multiplexing, and Pulse Code Modulation (PCM) Terms, } \\ \text { International Telecommunication Union, ITU-T Recommendation G.701, } \\ \text { March, } 1993\end{array}$

Uniform Decoder

Supported
Data Types
- Double-precision floating point
- Single-precision floating point page 7-2.
See Also
Data Type Conversion Quantizer
Scalar Quantizer Decoder
Uniform Encoder
udecode
uencode

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on

Simulink
Simulink
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox
Signal Processing Toolbox

Purpose	Quantize and encode floating-point input into integer output
Library	Quantizers
Description	The Uniform Encoder block performs the following two operations on each floating-point sample in the input vector or matrix:
$\checkmark \Rightarrow 010 . . .$	1 Quantizes the value using the same precision 2 Encodes the quantized floating-point value to an integer value

In the first step, the block quantizes an input value to one of 2^{B} uniformly spaced levels in the range $\left[-\mathrm{V},\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}\right]$, where you specify B in the Bits parameter and you specify V in the Peak parameter. The quantization process rounds both positive and negative inputs downward to the nearest quantization level, with the exception of those that fall exactly on a quantization boundary. The real and imaginary components of complex inputs are quantized independently.

The number of bits, B, can be any integer value between 2 and 32, inclusive. Inputs greater than $\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}$ or less than -V saturate at those respective values. The real and imaginary components of complex inputs saturate independently.

In the second step, the quantized floating-point value is uniquely mapped (encoded) to one of 2^{B} integer values. When the Output type is set to Unsigned integer, the smallest quantized floating-point value, -V , is mapped to the integer 0 , and the largest quantized floating-point value, ($\left.1-2^{1-\mathrm{B}}\right) \mathrm{V}$, is mapped to the integer $2^{\mathrm{B}}-1$. Intermediate quantized floating-point values are linearly (uniformly) mapped to the intermediate integers in the range $\left[0,2^{\mathrm{B}}-1\right]$. For efficiency, the block automatically selects an unsigned output data type (uint8, uint16, or uint32) with the minimum number of bits equal to or greater than B.

When the Output type is set to Signed integer, the smallest quantized floating-point value, -V , is mapped to the integer $-2^{\mathrm{B}-1}$, and the largest quantized floating-point value, $\left(1-2^{1-\mathrm{B}}\right) \mathrm{V}$, is mapped to the integer $2^{\mathrm{B}-1}-1$. Intermediate quantized floating-point values are linearly mapped to the intermediate integers in the range $\left[-2^{\mathrm{B}-1}, 2^{\mathrm{B}-1}-1\right]$. The block automatically selects a signed output data type (int8, int16, or int32) with the minimum number of bits equal to or greater than B.

Uniform Encoder

Inputs can be real or complex, double or single precision. The output data types that the block uses are shown in the table below. Note that most of the blocks in the Signal Processing Blockset accept only double-precision inputs. Use the Simulink Data Type Conversion block to convert integer data types to double precision. See "Working with Data Types" in the Simulink documentation for a complete discussion of data types, as well as a list of Simulink blocks capable of reduced-precision operations.

Bits	Unsigned Integer	Signed Integer
2 to 8	uint8	int8
9 to 16	uint16	int16
17 to 32	uint32	int32

The Uniform Encoder block operations adhere to the definition for uniform encoding specified in ITU-T Recommendation G.701.

Examples
The figure below illustrates uniform encoding with the following parameter settings:

- Peak = 2
- Bits = 3
- Output type = Unsigned

Uniform Encoder

The real and complex components of each input (horizontal axis) are independently quantized to one of 2^{3} distinct levels in the range $[-2,1.5]$ and then mapped to one of 2^{3} integer values in the range $[0,7]$.
-2.0 is mapped to 0
-1.5 is mapped to 1
-1.0 is mapped to 2
-0.5 is mapped to 3
0.0 is mapped to 4
0.5 is mapped to 5
1.0 is mapped to 6
1.5 is mapped to 7

The table below shows the results for a few particular inputs.

Input	Quantized Input	Output	Notes
1.6	$1.5+0.0 i$	$7+4 \mathrm{i}$	
-0.4	$-0.5+0.0 \mathrm{i}$	$3+4 \mathrm{i}$	
-3.2	$-2.0+0.0 \mathrm{i}$	4 i	Saturation (real)
$0.4-1.2 \mathrm{i}$	$0.0-1.5 \mathrm{i}$	$4+\mathrm{i}$	
$0.4-6.0 \mathrm{i}$	$0.0-2.0 \mathrm{i}$	4	Saturation (imaginary)
$-4.2+3.5 \mathrm{i}$	$-2.0+2.0 \mathrm{i}$	7 i	Saturation (real and imaginary)

The output data type is automatically set to uint8, the most efficient format for this input range.

Uniform Encoder

Dialog Box

References

Supported
Data Types

Peak

The largest input amplitude to be encoded, V. Real or imaginary input values greater than $\left(1-2^{1-B}\right) \mathrm{V}$ or less than -V saturate (independently for complex inputs) at those limits.

Bits

The number of levels at which to quantize the floating-point input. (Also the number of bits needed to represent the integer output.)

Output type

The data type of the block's output, Unsigned integer or Signed integer. Unsigned outputs are uint8, uint16, or uint32, while signed outputs are int8, int16, or int32.

General Aspects of Digital Transmission Systems: Vocabulary of Digital Transmission and Multiplexing, and Pulse Code Modulation (PCM) Terms, International Telecommunication Union, ITU-T Recommendation G.701, March, 1993

- Double-precision floating point
- Single-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Data Type Conversion
Quantizer
Scalar Quantizer Decoder
Uniform Decoder
udecode
uencode

Simulink
Simulink
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox
Signal Processing Toolbox

Unwrap

Purpose Unwrap signal phase

Library Signal Operations

Description The Unwrap block unwraps each input channel by adding or subtracting appropriate multiples of 2π to each channel element. The input can be any matrix or 1-D vector, and must have radian phase entries. The block recognizes phase discontinuities larger than the Tolerance parameter setting.

The block preserves the input size, dimension, and frame status, and the output port rate equals the input port rate. For a detailed discussion of the Unwrap block, see other sections of this reference page.

Sections of This Reference Page

- "Acceptable Inputs and Corresponding Output Characteristics" on page 9-1010
- "The Two Unwrap Modes" on page 9-1011
- "Unwrap Method" on page 9-1014
- "Definition of Phase Unwrap" on page 9-1014

Acceptable Inputs and Corresponding Output Characteristics

The Unwrap block preserves the input size, dimension, and frame status, and the output port rate equals the input port rate.

Characteristics of Valid Input	Characteristics of Corresponding Output
Input elements must be phase	Output elements are phase values
values in radians.	in radians.
Sample- or frame-based	Same frame status as input
M-by-N 2-D matrix or a 1-D vector	Same size and dimension as input
	Output port rate = input port rate

The Two Unwrap Modes

You must specify the unwrap mode by setting the parameter, Do not unwrap phase discontinuities between successive frames. The unwrap modes are summarized in the next table.

Two Unwrap Modes

In both unwrap modes, the block adds $2 \pi k$ to each input channel's elements, where it updates k at each phase discontinuity. (For more on the updating of k, see "Unwrap Method" on page 9-1014.) The number of times that k is reset to 0 depends on the unwrap mode.

Default Unwrap Mode:	
Initialize \boldsymbol{k} to \mathbf{O} for Only the First Input Frame	Nondefault Unwrap Mode: Set \boldsymbol{k} to \mathbf{O} for Each Successive Input Matrix or Input Vector

Nondefault Unwrap Mode:
 Set \boldsymbol{k} to \mathbf{O} for Each Successive Input Matrix or Input Vector

Do not unwrap phase discontinuities between successive frames
In this mode, k is initialized to 0 for only the first input matrix or input vector. As k gets updated, the value of k is retained between successive input matrices or input vectors. That successive input matrices or input vectors. That
is, the block unwraps each input's channel by considering phase discontinuities in all previous frames and the current frame.

In this mode, the block unwraps the columns or each individual element of the input:

- Frame-based inputs - unwrap columns
- Sample-based inputs - unwrap each element of the input.
- 1-D vector inputs - treat as frame-based column

See the following diagrams.
\square Do not unwrap phase discontinuities between successive frames

Do not unwrap phase discontinuities between successive frames
In this mode, k is reset to 0 for each successive input matrix or input vector. As k gets updated, the value of k is only retained within the current input matrix or vector. That is, the block unwraps each input's channel by considering phase discontinuities in the current input matrix or input vector only, ignoring discontinuities in previous inputs.

In this mode, the block unwraps the columns or rows of the input:

- Frame-based inputs - unwrap columns
- Sample-based nonrow inputs - unwrap columns
- Sample-based row vector inputs - unwrap the row.
- 1-D vector inputs - treat as frame-based column
See the following diagrams.

Unwrap

The following diagrams illustrate how the two unwrap modes operate on various inputs.

Default Unwrap Mode Operation:

Do not unwrap phase discontinuities between successive frames

Frame-Based Inputs

The block treats each input column as an independent channel. It unwraps by treating Channel 1 of Frame 2 as a continuation of Channel 1 of Frame 1.

Sample-Based Inputs
The block treats each element of the input matrix as an independent channel. (The first sample in Channel 1 is in the upper left corner of the Sample 1 matrix. The second sample of Channel 1 is in the corresponding corner of the Sample 2 matrix, and so on.)

Unwrap

Nondefault Unwrap Mode Operation:

Frame-Based Inputs and Sample-Based (Nonrow) Inputs

The block unwraps each column, treating each input matrix as completely unrelated to the other input matrices.

Input $3\left[\begin{array}{cc}0 & 0 \\ \frac{2 \pi}{3} & 0 \\ \frac{-2 \pi}{3} & 0\end{array}\right] \quad\left[\begin{array}{cc}0 & 0 \\ \frac{2 \pi}{3} & 0 \\ \frac{4 \pi}{3} & 0\end{array}\right]$

Do not unwrap phase discontinuities between successive frames

Sample-Based Row Vector Inputs

The block unwraps each row, treating each input row vector as completely independent of the other input row vectors.

Unwrap Method

The Unwrap block unwraps each channel of its input matrix or input vector by adding $2 \pi k$ to each successive channel element, and updating k at each phase jump. See the following steps to the unwrap method for details.

Relevant Unwrap Terms:

- u_{i} - ith element of the input channel on which the algorithm operates
- α - Tolerance parameter value
- Phase jump or phase discontinuity - difference between phase values of two adjacent channel entries that exceeds $|\alpha|$. The diagram in the next section indicates phase jumps with red arrows.

Steps to the Unwrap Method:

1 Set k to 0 (See "The Two Unwrap Modes" on page 9-1011 for more on how often this step occurs.)
2 Check for a phase jump between adjacent channel elements u_{i} and u_{i+1} :

- When there is no phase jump between u_{i} and $u_{i+1}\left(\left|u_{i+1}-u_{i}\right| \leq|\alpha|\right)$, add $2 \pi k$ to u_{i}, and then repeat step 2 to continue checking for phase jumps.
- When there is a phase jump between u_{i} and $u_{i+1}\left(\left|u_{i+1}-u_{i}\right|>|\alpha|\right)$, add $2 \pi k$ to u_{i}, and then go to step 3 to update k.
3 Update k as follows when there is a phase jump between u_{i} and u_{i+1}. Then go back to step 2 to add the updated $2 \pi k$ value to u_{i+1} and succeeding channel elements until the next phase jump:
- When $u_{i+1}<u_{i}$ (phase jump is negative), increment k.
- When $u_{i+1}>u_{i}$ (phase jump is positive), decrement k.

Definition of Phase Unwrap

Algorithms that compute the phase of a signal often only output phases between $-\pi$ and π. For instance, such algorithms compute the phase of $\sin (2 \pi+3)$ to be 3 , since $\sin (3)=\sin (2 \pi+3)$, and since the actual phase, $2 \pi+3$, is not between $-\pi$ and π. Such algorithms compute the phases of $\sin (-4 \pi+3)$ and $\sin (16 \pi+3)$ to be 3 as well.

Phase unwrap or unwrap is a process often used to reconstruct a signal's original phase. Unwrap algorithms add appropriate multiples of 2π to each phase input to restore original phase values, as illustrated in the following
diagram. For more on phase unwrap, see the previous section, "Unwrap Method" on page 9-1014.

Unwrapping Phase Data Ranging Between π and $-\pi$

Signal data with instantaneous phase values that range over all numbers

$$
\left[\sin (0), \sin \left(\frac{2 \pi}{5}\right), \sin \left(\frac{4 \pi}{5}\right), \sin \left(\frac{6 \pi}{5}\right), \ldots, \sin \left(\frac{28 \pi}{5}\right)\right]
$$

Calculate Phases of Signal Data:
Input: $\left[\sin \left(\theta_{0}\right), \sin \left(\theta_{1}\right), \ldots, \sin \left(\theta_{N}\right)\right]$
Output: $\left[\theta_{0}^{\prime}, \theta_{1}^{\prime}, \ldots, \theta_{N}^{\prime}\right]$

$$
\begin{aligned}
& \text { where } \quad \sin \left(\theta_{n}^{\prime}\right)=\sin \left(\theta_{n}\right) \\
& \text { and } \quad-\pi<\theta_{n}^{\prime} \leq \pi \\
& \hline
\end{aligned}
$$

Unwrap Restricted Phases:

Input: $\left[\theta_{0}^{\prime}, \theta_{1}^{\prime}, \ldots, \theta_{N}^{\prime}\right]$
Output: $\left[\theta_{0}, \theta_{1}, \ldots, \theta_{N}\right]$
where $\theta_{n}=\theta_{n}^{\prime}+2 \pi k$
Update the value of k after every large jump in phase value, indicated by

$\left[0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{6 \pi}{5}, \frac{8 \pi}{5}, 2 \pi, \frac{12 \pi}{5}, \frac{14 \pi}{5}, \frac{16 \pi}{5}, \frac{18 \pi}{5}, 4 \pi, \frac{22 \pi}{5}, \frac{24 \pi}{5}, \frac{26 \pi}{5}, \frac{28 \pi}{5}\right]$

Dialog Box
Block Parameters: Unwrap \mathbf{x}

- Unwrap (mask) (link)

Adds or subtracts appropriate multiples of 2pi to each input element to remove phase discontinuities (unwrap). Inputs should be radian phase values.

When the parameter "Do not unwrap phase discontinuities between successive frames" is unchecked, the block unwraps each input channel by considering all phase discontinuities in the channel, including those in previous frames of the channel. (For frame-based inputs, each column is a channel; for sample-based inputs, each element is a channel.]

When the parameter is checked, the block unwraps by considering phase discontinuities in the current frame only; the block unwraps each column of all frame-based inputs, and unwraps each column of sample-based inputs when the inputs are not row vectors. It unwraps each row of sample-based row vectors.

Parameters

- Do not unwrap phase discontinuities between successive frames

Tolerance (radians):
pi

Do not unwrap phase discontinuities between successive frames
When this parameter is cleared, the block unwraps each input's channels (the input channels are the columns of frame-based inputs and each element of sample-based inputs). When you select this parameter, the block unwraps each row of sample-based row vector inputs, and unwraps the columns of all other inputs, where each input matrix or input vector is

Unwrap

Supported Data Types

See Also
treated as completely unrelated to the other input matrices or input vectors. 1-D vector inputs are always treated as frame-based column vectors. See "The Two Unwrap Modes" on page 9-1011.

Tolerance

The jump size that the block recognizes as a true phase discontinuity. The default is set to π (rather than a smaller value) to avoid altering legitimate signal features. To increase the block's sensitivity, set Tolerance to a value slightly less than π.

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.
unwrap MATLAB

Upsample

> Purpose Resample input at higher rate by inserting zeros
> Description
> The Upsample block resamples each channel of the M_{i}-by-N input at a rate L times higher than the input sample rate by inserting L-1 zeros between consecutive samples. You specify the integer L in the Upsample factor parameter. The Sample offset parameter delays the output samples by an integer number of sample periods D , where $0 \leq \mathrm{D}<$ (L-1), so that any of the L possible output phases can be selected.
> This block supports triggered subsystems if, for Frame-based mode, you select Maintain input frame rate.
> When the input is sample based, the block treats each of the $\mathrm{M} * \mathrm{~N}$ matrix elements as an independent channel, and upsamples each channel over time. The Frame-based mode parameter must be set to Maintain input frame size. The output sample rate is L times higher than the input sample rate ($\mathrm{T}_{\mathrm{s} 0}=\mathrm{T}_{\mathrm{si}} / \mathrm{L}$), and the input and output sizes are identical.

Frame-Based Operation

When the input is frame based, the block treats each of the N input columns as a frame containing M_{i} sequential time samples from an independent channel. The block upsamples each channel independently by inserting L-1 rows of zeros between each row in the input matrix. The Frame-based mode parameter determines how the block adjusts the rate at the output to accommodate the added rows. There are two available options:

- Maintain input frame size

The block generates the output at the faster (upsampled) rate by using a proportionally shorter frame period at the output port than at the input port. For upsampling by a factor of L, the output frame period is L times shorter than the input frame period $\left(\mathrm{T}_{\mathrm{fo}}=\mathrm{T}_{\mathrm{fi}} / \mathrm{L}\right)$, but the input and output frame sizes are equal.

The model below shows a single-channel input with a frame period of 1 second being upsampled by a factor of 4 to a frame period of 0.25 second. The input and output frame sizes are identical.

- Maintain input frame rate

The block generates the output at the faster (upsampled) rate by using a proportionally larger frame size than the input. For upsampling by a factor of L, the output frame size is L times larger than the input frame size $\left(\mathrm{M}_{\mathrm{o}}=\mathrm{M}_{\mathrm{i}} * \mathrm{~L}\right)$, but the input and output frame rates are equal.
The model below shows a single-channel input of frame size 16 being upsampled by a factor of 4 to a frame size of 64 . The input and output frame rates are identical.

Upsample

Latency and Initial Conditions

Zero Latency. The Upsample block has zero tasking latency for all single-rate operations. The block is single-rate for the particular combinations of sampling mode and parameter settings shown in the table below.

Sampling Mode	Parameter Settings
Sample based	Upsample factor parameter, L, is 1.
Frame based	Upsample factor parameter, L, is 1, or Frame-based mode parameter is Maintain input frame rate.

The block also has zero latency for all multirate operations in the Simulink single-tasking mode.

Zero tasking latency means that the block propagates the first input (received at $t=0$) immediately following the D consecutive zeros specified by the Sample offset parameter. This output ($\mathrm{D}+1$) is followed in turn by the L- 1 inserted zeros and the next input sample. The Initial condition parameter value is not used.

Nonzero Latency. The Upsample block has tasking latency only for multirate operation in the Simulink multitasking mode:

- In sample-based mode, the initial condition for each channel appears as output sample D+1, and is followed by L- 1 inserted zeros. The channel's first input appears as output sample $\mathrm{D}+\mathrm{L}+1$. The Initial condition value can be an M_{i}-by- N matrix containing one value for each channel, or a scalar to be applied to all signal channels.
- In frame-based mode, the first row of the initial condition matrix appears as output sample D+1, and is followed by L-1 inserted rows of zeros, the second row of the initial condition matrix, and so on. The first row of the first input matrix appears in the output as sample $\mathrm{M}_{\mathrm{i}} \mathrm{L}+\mathrm{D}+1$. The Initial condition value can be an M_{i}-by-N matrix, or a scalar to be repeated across all elements of the M_{i}-by-N matrix. See the example below for an illustration of this case.

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Example Construct the frame-based model shown below.

Adjust the block parameters as follows:

- Configure the Signal From Workspace block to generate a two-channel signal with frame size of 4 and sample period of 0.25 . This represents an output frame period of $1(0.25 * 4)$. The first channel should contain the positive ramp signal $1,2, \ldots, 100$, and the second channel should contain the negative ramp signal $-1,-2, \ldots,-100$.
- Signal $=\left[(1: 100)^{\prime}(-1:-1:-100)^{\prime}\right]$
- Sample time $=0.25$
- Samples per frame $=4$
- Configure the Upsample block to upsample the two-channel input by increasing the output frame rate by a factor of 2 relative to the input frame rate. Set a sample offset of 1 , and an initial condition matrix of
$\left[\begin{array}{ll}11 & -11 \\ 12 & -12 \\ 13 & -13 \\ 14 & -14\end{array}\right]$
- Upsample factor $=2$

Upsample

- Sample offset = 1
- Initial condition $=\left[\begin{array}{llll}11 & -11 ; 12 & -12 ; 13 & -13 ; 14 \\ -14\end{array}\right]$
- Frame-based mode = Maintain input frame size
- Configure the Probe blocks by clearing the Probe width and Probe complex signal check boxes (if desired).

This model is multirate because there are at least two distinct frame rates, as shown by the two Probe blocks. To run this model in the Simulink multitasking mode, open the Configuration Parameters dialog box. In the Select pane, click Solver. From the Type list, select Fixed-step, and from the Solver list, select discrete (no continuous states). From the Tasking mode for periodic sample times list, select MultiTasking. Also set the Stop time to 30.

Run the model and look at the output, yout. The first few samples of each channel are shown below.

yout $=$	
0	0
11	-11
0	0
12	-12
0	0
13	-13
0	0
14	-14
0	0
1	-1
0	0
2	-2
0	0
3	-3
0	0
4	-4
0	0
5	-5
0	0

Since we ran this frame-based multirate model in multitasking mode, the first row of the initial condition matrix appears as output sample 2 (that
is, sample $\mathrm{D}+1$, where D is the Sample offset value). It is followed by the other three initial condition rows, each separated by L-1 inserted rows of zeros, where L is the Upsample factor value of 2. The first row of the first input matrix appears in the output as sample 10 (that is, sample $\mathrm{M}_{\mathrm{i}} \mathrm{L}+\mathrm{D}+1$, where M_{i} is the input frame size).

Dialog Box

Upsample factor

The integer factor, L, by which to increase the input sample rate.

Sample offset

The sample offset, D , which must be an integer in the range $[0, \mathrm{~L}-1]$.

Initial condition

The value with which the block is initialized for cases of nonzero latency, a scalar or matrix. This value (first row in frame-based mode) appears in the output as sample $\mathrm{D}+1$.

Frame-based mode

For frame-based operation, the method by which to implement the upsampling: Maintain input frame size (that is, increase the frame rate), or Maintain input frame rate (that is, increase the frame size). The

Framing parameter must be set to Maintain input frame size for sample-base inputs.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8-, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Downsample
FIR Interpolation
FIR Rate Conversion
Repeat

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

Variable Fractional Delay

Purpose
Delay input by time-varying fractional number of sample periods

Library

Description

Signal Operations
The Variable Fractional Delay block delays each channel of the M_{i}-by-N input matrix, u, by a variable (possibly noninteger) number of sample intervals.

The block computes the value for each channel of the output based on the stored samples in memory most closely indexed by the Delay input, v, and the interpolation method specified by the Mode parameter. In Linear Interpolation mode, the block stores the $\mathrm{D}+1$ most recent samples received at the In port for each channel, where D is the Maximum delay. In FIR
Interpolation mode, the block stores the $\mathrm{D}+\mathrm{P}+1$ most recent samples received at the In port for each channel, where P is the Interpolation filter half-length.

See the Variable Integer Delay block for further discussion of how input samples are stored in the block's memory. The Variable Fractional Delay block differs only in the way that these stored sample are accessed; a fractional delay requires the computation of a value by interpolation from the nearby samples in memory.

Sample-Based Operation

When the input is sample based, the block treats each of the $\mathrm{M}_{\mathrm{i}} * \mathrm{~N}$ matrix elements as an independent channel. The input to the Delay port, v, can be an M_{i}-by-N matrix of floating-point values in the range $0 \leq v \leq \mathrm{D}$ that specifies the number of sample intervals to delay each channel of the input. It can also be a scalar floating-point value, $0 \leq v \leq \mathrm{D}$, by which to equally delay all channels.

A 1-D vector input is treated as an M_{i}-by- 1 matrix, and the output is 1-D.
The Initial conditions parameter specifies the values in the block's memory at the start of the simulation in the same manner as the Variable Integer Delay block. See the Variable Integer Delay block reference page for more information.

Frame-Based Operation

When the input is frame based, the block treats each of the N input columns as a frame containing M_{i} sequential time samples from an independent channel.

Variable Fractional Delay

The input to the Delay port, v, contains floating-point values in the range $0 \leq v \leq \mathrm{D}$ specifying the number of sample intervals to delay the current input. The input to the Delay port can be

- A scalar value by which to equally delay all channels
- An M_{i}-by-N matrix containing the number of sample intervals to delay each sample in each channel of the current input
- An M_{i}-by- 1 matrix containing the number of sample intervals to delay each sample in every channel of the current input
- A 1-by-N matrix containing the number of sample intervals to delay every sample in each channel of the current input

For example, if v is the M_{i}-by- 1 matrix [v (1) $\left.\mathrm{v}(2) \ldots \mathrm{V}(\mathrm{Mi})\right]^{\prime}$, the earliest sample in the current frame is delayed by $\mathrm{v}(1)$ fractional sample intervals, the following sample in the frame is delayed by $v(2)$ fractional sample intervals, and so on. The set of fractional delays contained in v is applied identically to every channel of a multichannel input.

The Initial conditions parameter specifies the values in the block's memory at the start of the simulation in the same manner as the Variable Integer Delay block. See the Variable Integer Delay block reference page for more information.

Interpolation Modes

The delay value specified at the Delay port is used as an index into the block's memory, U, which stores the $\mathrm{D}+1$ most recent samples received at the In port for each channel. For example, an integer delay of 5 on a scalar input sequence retrieves and outputs the fifth most recent input sample from the block's memory, U(6). Fractional delays are computed by interpolating between stored samples; the two available interpolation modes are described below.

Linear Interpolation Mode. For noninteger delays, at each sample time the Linear Interpolation mode uses the two samples in memory nearest to the specified delay to compute a value for the sample at that time. If v is the specified fractional delay for a scalar input, the output sample, y, is computed as follows.

```
vi = floor(v) % vi = integer delay
vf = v-vi % vf = fractional delay
y = (1-vf)*U(vi) + vf*U(vi+1)
```


Variable Fractional Delay

Delay values less than 0 are clipped to 0 , and delay values greater than D are clipped to D, where D is the Maximum delay. Note that a delay value of 0 causes the block to pass through the current input sample, $\mathrm{U}(1)$, in the same simulation step that it is received.

FIR Interpolation Mode. In FIR Interpolation mode, the block computes a value for the sample at the desired delay by applying an FIR filter of order 2P to the stored samples on either side of the desired delay, where P is the Interpolation filter half-length. For periodic signals, a larger value of P (that is, a higher order filter) yields a better estimate of the sample at the specified delay. A value between 4 and 6 for this parameter (that is, a 7th to 11th order filter) is usually adequate.

A vector of 2P filter tap weights is precomputed at the start of the simulation for each of Q-1 discrete points between input samples, where you specify Q in the Interpolation points per input sample parameter. For a delay corresponding to one of the Q interpolation points, the unique filter computed for that interpolation point is applied to obtain a value for the sample at the specified delay. For delay times that fall between interpolation points, the value computed at the nearest interpolation point is used. Since Q controls the number of locations where a unique interpolation filter is designed, a larger value results in a better estimate of the sample at a given delay.

Note that increasing the Interpolation filter half length (P) increases the number of computations performed per input sample, as well as the amount of memory needed to store the filter coefficients. Increasing the Interpolation points per input sample (Q) increases the simulation's memory requirements but does not affect the computational load per sample.

The Normalized input bandwidth parameter allows you to take advantage of the bandlimited frequency content of the input. For example, if you know that the input signal does not have frequency content above $\mathrm{F}_{\mathrm{s}} / 4$, you can specify a value of 0.5 for the Normalized input bandwidth to constrain the frequency content of the output to that range.
(Each of the Q interpolation filters can be considered to correspond to one output phase of an "upsample-by-Q" FIR filter. In this view, the Normalized input bandwidth value is used to improve the stopband in critical regions, and to relax the stopband requirements in frequency regions where there is no signal energy.)

Variable Fractional Delay

For delay values less than $\mathrm{P} / 2-1$, the output is computed using linear interpolation. Delay values greater than D are clipped to D, where D is the Maximum delay.

The block uses the intfilt function in the Signal Processing Toolbox to compute the FIR filters.

Note When the Variable Fractional Delay block is used in a feedback loop, at least one block with nonzero delay (for example, a Delay block with Delay >0) should be included in the loop as well. This prevents the occurrence of an algebraic loop when the delay of the Variable Fractional Delay block is driven to zero.

Examples

Dialog Box

The dspafxf demo illustrates an audio flanger system built around the Variable Fractional Delay block.

Variable Fractional Delay

Mode

The method by which to interpolate between adjacent stored samples to obtain a value for the sample indexed by the input at the Delay port.

Maximum delay

The maximum delay that the block can produce, D. Delay input values exceeding this maximum are clipped at the maximum.

Interpolation filter half-length

Half the number of input samples to use in the FIR interpolation filter.

Interpolation points per input sample

The number of points per input sample, Q, at which a unique FIR interpolation filter is computed.

Normalized input bandwidth

The bandwidth to which the interpolated output samples should be constrained. A value of 1 specifies half the sample frequency.

Initial conditions

The values with which the block's memory is initialized. See the Variable Integer Delay block for more information.
$\begin{array}{ll}\text { Supported } & \text { - Double-precision floating point } \\ \text { Data Types } & \text { - Single-precision floating point }\end{array}$
To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Delay
Unit Delay
Variable Integer Delay

Signal Processing Blockset
Simulink
Signal Processing Blockset

Variable Integer Delay

Purpose
 Delay input by time-varying integer number of sample periods

Library

Description

Signal Operations
The Variable Integer Delay block delays the discrete-time input at the In port by the integer number of sample intervals specified by the input to the Delay port. The sample rate of the input signal at the Delay port must be the same as the sample rate of the input signal at the In port. When these sample rates are not the same, you need to insert a Zero-Order Hold or Rate Transition block in order to make the sample rates identical. The delay for a sample-based input sequence is a scalar value to uniformly delay every channel. The delay for a frame-based input sequence can be a scalar value to uniformly delay every sample in every channel, a vector containing one delay value for each sample in the input frame, or a vector containing one delay value for each channel in the input frame.

The delay values should be in the range of 0 to D , where D is the Maximum delay. Delay values greater than D or less than 0 are clipped to those respective values and noninteger delays are rounded to the nearest integer value.

The Variable Integer Delay block differs from the Delay block in the following ways.

Variable Integer Delay Block	Delay Block
The delay is provided as an input to the Delay port.	You specify the delay as a parameter setting in the dialog box.
Delay can vary with time; for example, for a frame-based input, the nth element's delay in the first input frame can differ from the nth element's delay in the second input frame.	Delay cannot vary with time; for example, for a frame-based input, the nth element's delay is the same for every input frame.

Variable Integer Delay

Sample-Based Operation

When the input is an M-by-N sample-based matrix, the block treats each of the $\mathrm{M} * \mathrm{~N}$ matrix elements as an independent channel, and applies the delay at the Delay port to each channel.

The Variable Integer Delay block stores the D +1 most recent samples received at the In port for each channel. At each sample time the block outputs the stored sample(s) indexed by the input to the Delay port.

For example, when the input to the In port, u, is a scalar signal, the block stores a vector, U , of the $\mathrm{D}+1$ most recent signal samples. When the current input sample is $U(1)$, the previous input sample is $U(2)$, and so on, then the block's output is

$$
y=U(v+1) ; \quad \% \text { Equivalent MATLAB code }
$$

where v is the input to the Delay port. Note that a delay value of $0(v=0)$ causes the block to pass through the sample at the In port in the same simulation step that it is received. The block's memory is initialized to the Initial conditions value at the start of the simulation (see below).

The figure below shows the block output for a scalar ramp sequence at the In port, a Maximum delay of 5, an Initial conditions of 0 , and a variety of different delays at the Delay port.

Variable Integer Delay

Note that the current input at each time-step is immediately stored in memory as $U(1)$. This allows the current input to be available at the output for a delay of $0(v=0)$.

The Initial conditions parameter specifies the values in the block's memory at the start of the simulation. Unlike the Delay block, the Variable Integer Delay block does not have a fixed initial delay period during which the initial conditions appear at the output. Instead, the initial conditions are propagated to the output only when they are indexed in memory by the value at the Delay port. Both fixed and time-varying initial conditions can be specified in a variety of ways to suit the dimensions of the input sequence.

Fixed Initial Conditions. The settings shown below specify fixed initial conditions. For a fixed initial condition, the block initializes each of D samples in memory to the value entered in the Initial conditions parameter. A fixed initial condition in sample-based mode can be specified in one of the following ways:

- Scalar value with which to initialize every sample of every channel in memory. For a general M-by-N input and the parameter settings below,

the block initializes 100 M -by-N matrices in memory with zeros.
- Array of size M-by-N-by-D. In this case, you can specify different fixed initial conditions for each channel. See the Array bullet in "Time-Varying Initial Conditions" below for details.

Initial conditions cannot be specified by full matrices.
Time-Varying Initial Conditions. The following settings specify time-varying initial conditions. For a time-varying initial condition, the block initializes each of D samples in memory to one of the values entered in the Initial conditions parameter. This allows you to specify a unique output value for each sample in memory. A time-varying initial condition in sample-based mode can be specified in one of the following ways:

- Vector containing D elements with which to initialize memory samples $U(2: D+1)$, where D is the Maximum delay. For a scalar input and the

Variable Integer Delay

parameters shown below, the block initializes $U(2: 6)$ with values $[-1,-1,-1,0,1]$.

Manimum deley (zamples)
Intisl condtions:
|-1-1-101]

- Array of dimension M-by-N-by-D with which to initialize memory samples $U(2: D+1)$, where D is the Maximum delay and M and N are the number of rows and columns, respectively, in the input matrix. For a 2 -by- 3 input and the parameters below, the block initializes memory locations $U(2: 5)$ with values

$$
U(2)=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], U(3)=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right], U(4)=\left[\begin{array}{lll}
3 & 3 & 3 \\
3 & 3 & 3
\end{array}\right], U(5)=\left[\begin{array}{lll}
4 & 4 & 4 \\
4 & 4 & 4
\end{array}\right]
$$

An array initial condition can only be used with matrix inputs.
Initial conditions cannot be specified by full matrices.

Frame-Based Operation

When the input is an M-by-N frame-based matrix, the block treats each of the N input columns as a frame containing M sequential time samples from an independent channel.

In frame-based mode, the input at the Delay port can be a scalar value to uniformly delay every sample in every channel. It can also be a length-M vector, $v=[v(1) v(2) \ldots v(M)]$, containing one delay for each sample in the input frame(s). The set of delays contained in vector v is applied identically to every channel of a multichannel input. The Delay port entry can also be a length- N vector, containing one delay for each channel.

Vector v does not specify when the samples in the current input frame will appear in the output. Rather, v indicates which previous input samples (stored

Variable Integer Delay

in memory) should be included in the current output frame. The first sample in the current output frame is the input sample $v(1)$ intervals earlier in the sequence, the second sample in the current output frame is the input sample $\mathrm{v}(2)$ intervals earlier in the sequence, and so on.

The illustration below shows how this works for an input with a sample period of 1 and frame size of 4 . The Maximum delay (Dmax) is 5, and the Initial conditions parameter is set to -1 . The delay input changes from [$\left.\begin{array}{llll}1 & 3 & 0 & 5\end{array}\right]$ to $\left[\begin{array}{llll}2 & 0 & 0 & 2\end{array}\right]$ after the second input frame. Note that the samples in each output frame are the values in memory indexed by the elements of v.

$$
\begin{aligned}
& y(1)=U(v(1)+1) \\
& y(2)=U(v(2)+1) \\
& y(3)=U(v(3)+1) \\
& y(4)=U(v(4)+1)
\end{aligned}
$$

Variable Integer Delay

The Initial conditions parameter specifies the values in the block's memory at the start of the simulation. Both fixed and time-varying initial conditions can be specified.

Fixed Initial Conditions. The settings shown below specify fixed initial conditions. For a fixed initial condition, the block initializes each of D samples in memory to the value entered in the Initial conditions parameter. A fixed initial condition in frame-based mode can be one of the following:

- Scalar value with which to initialize every sample of every channel in memory. For a general M-by-N input with the parameter settings below, the block initializes five samples in memory with zeros.

- Array of size 1-by-N-by-D. In this case, you can specify different fixed initial conditions for each channel. See the Array bullet in "Time-Varying Initial Conditions" below for details.
Initial conditions cannot be specified by full matrices.
Time-Varying Initial Conditions. The following setting specifies a time-varying initial condition. For a time-varying initial condition, the block initializes each of D samples in memory to one of the values entered in the Initial conditions parameter. This allows you to specify a unique output value for each sample in memory. A time-varying initial condition in frame-based mode can be specified in the following ways:
- Vector of dimensions 1-by-D. In this case, all channels have the same set of time-varying initial conditions specified by the entries of the vector. For the ramp input $[100 ; 100]$ ' with a frame size of 4 , delay of 5 , and the parameter
settings below, the block outputs the following sequence of frames at the start of the simulation.

$$
\left[\begin{array}{ll}
-1 & -1 \\
-2 & -2 \\
-3 & -3 \\
-4 & -4
\end{array}\right],\left[\begin{array}{cc}
-5 & -5 \\
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7
\end{array}\right], \ldots
$$

- Array of size 1-by-N-by-D. In this case, you can specify different time-varying initial conditions for each channel. For the ramp input [100; 100] ' with a frame size of 4 , delay of 5 , and the parameter settings below, the block outputs the following sequence of frames at the start of the simulation.

$$
\left[\begin{array}{ll}
-1 & -11 \\
-2 & -22 \\
-3 & -33 \\
-4 & -44
\end{array}\right],\left[\begin{array}{cc}
-5 & -55 \\
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}\right],\left[\begin{array}{ll}
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7
\end{array}\right], \ldots
$$

Note that by specifying a 1-by-N-by-D initial condition array such that each 1-by-N vector entry is identical, you can implement different fixed initial conditions for each channel.
Initial conditions cannot be specified by full matrices.

Variable Integer Delay

Dialog Box

Maximum delay

The maximum delay that the block can produce for any sample. Delay input values exceeding this maximum are clipped at the maximum.

Initial conditions

The values with which the block's memory is initialized.

Supported Data Types

Port	Supported Data Types
In	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Delay	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8-, 16-, and 32 -bit unsigned integers
Out	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Delay
Variable Fractional Delay

Signal Processing Blockset
Signal Processing Blockset

Variable Selector

Select subset of rows or columns from input
Library Signal Management / Indexing

The Variable Selector block extracts a subset of rows or columns from the M-by-N input matrix u at each input port. You specify the number of input and output ports in the Number of input signals parameter.

When the Select parameter is set to Rows, the Variable Selector block extracts rows from each input matrix, while if the Select parameter is set to Columns, the block extracts columns.

When the Selector mode parameter is set to Variable, the length-L vector input to the Idx port selects L rows or columns of each input to pass through to the output. The elements of the indexing vector can be updated at each sample time, but the vector length must remain the same throughout the simulation.

When the Selector mode parameter is set to Fixed, the Idx port is disabled, and the length-L vector specified in the Elements parameter selects L rows or columns of each input to pass through to the output. The Elements parameter is tunable, so you can change the values of the indexing vector elements at any time during the simulation; however, the vector length must remain the same.

For both variable and fixed indexing modes, the row selection operation is equivalent to

$$
y=u(i d x,:) \quad \text { \% Equivalent MATLAB code }
$$

and the column selection operation is equivalent to

$$
y=u(:, i d x) \quad \text { \% Equivalent MATLAB code }
$$

where idx is the length-L indexing vector. The row selection output size is $\mathrm{L}-\mathrm{by}-\mathrm{N}$ and the column selection output size is M-by-L. Input rows or columns can appear any number of times in the output, or not at all.

When the input is a 1-D vector, the Select parameter is ignored; the output is a 1-D vector of length L containing those elements specified by the length- L indexing vector.

When an element of the indexing vector references a nonexistent row or column of the input, the block reacts with the behavior specified by the Invalid index parameter. The following options are available:

- Clip index - Clip the index to the nearest valid value, and do not issue an alert. Example: For a $64-$ by-N input, an index of 72 is clipped to 64 ; an index of -2 is clipped to 1 .
- Clip and warn - Display a warning message in the MATLAB Command Window, and clip as above.
- Generate error - Display an error dialog box and terminate the simulation.

When the indexing vector elements are of Boolean data type, the block performs logical indexing. Select Fill empty spaces in outputs (for logical indexing) to access the Fill values parameter. These values are appended to the output to make it as long as the input elements.

Note The Variable Selector block always copies the selected input rows to a contiguous block of memory (unlike the Simulink Selector block).

Variable Selector

Dialog Box

Number of input signals

Specify the number of input signals. An input port is created on the block for each input signal.

Select

The dimension of the input to select, Rows or Columns.

Selector mode

The type of indexing operation to perform, Variable or Fixed. Variable indexing uses the input at the Idx port to select rows or columns from the input at the In port. Fixed indexing uses the Elements parameter value to select rows from the input at the In port, and disables the Idx port.

Elements

A vector containing the indices of the input rows or columns that will appear in the output matrix. This parameter is only visible when you select Fixed for the Selector mode parameter.

Index mode

When set to One-based, an index value of 1 refers to the first row or column of the input. When set to Zero-based, an index value of 0 refers to the first row or column of the input.

Invalid index

Response to an invalid index value. Tunable.

Fill empty spaces in outputs (for logical indexing)

When the indexing vector elements are of Boolean data type, the block performs logical indexing. This can cause empty spaces in the output. Select this parameter to designate values to be appended to the output in the Fill values parameter.

Fill values

Specify the fill values when the block performs logical indexing. This parameter is only visible when the Fill empty spaces in outputs (for logical indexing) parameter is selected.

Variable Selector

Supported
 Data Types

Port	Supported Data Types
In	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Idx	- Double-precision floating point - Single-precision floating point - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Out	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also	Multiport Selector	Signal Processing Blockset
	Permute Matrix	Signal Processing Blockset
	Selector	Simulink
	Submatrix	Signal Processing Blockset

Purpose Compute variance of an input or sequence of inputs

Library

Description

Statistics

The Variance block computes the variance of each column in the input, or tracks the variance of a sequence of inputs over a period of time. The Running variance parameter selects between basic operation and running operation.

Basic Operation

When you do not select the Running variance check box, the block computes the variance of each column in M-by-N input matrix u independently at each sample time.

```
y = var(u) % Equivalent MATLAB code
```

For convenience, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors. (A scalar input generates a zero-valued output.)

The output at each sample time, y , is a 1-by-N vector containing the variance for each column in u. For purely real or purely imaginary inputs, the variance of the j th column is the square of the standard deviation:

$$
y_{j}=\sigma_{j}^{2}=\frac{\sum_{i=1}^{M}\left|u_{i j}\right|^{2}-\frac{\left|\sum_{i=1}^{M} u_{i j}\right|^{2}}{M}}{M-1} \quad 1 \leq j \leq N
$$

For complex inputs, the output is the total variance for each column in u, which is the sum of the real and imaginary variances for that column:

$$
\sigma_{j}^{2}=\sigma_{j, R e}^{2}+\sigma_{j, I m}^{2}
$$

Running Operation

When you select the Running variance check box, the block tracks the variance of each channel in a time-sequence of M-by-N inputs. For sample-based inputs, the output is a sample-based M-by-N matrix with each
element $y_{i j}$ containing the variance of element $u_{i j}$ over all inputs since the last reset. For frame-based inputs, the output is a frame-based M-by-N matrix with each element $y_{i j}$ containing the variance of the j th column over all inputs since the last reset, up to and including element $u_{i j}$ of the current input.
As in basic operation, length-M 1-D vector inputs and sample-based length-M row vector inputs are both treated as M-by-1 column vectors.

Resetting the Running Variance. The block resets the running variance whenever a reset event is detected at the optional Rst port. The reset signal rate must be a positive integer multiple of the rate of the data signal input.

You specify the reset event in the Reset port parameter:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset. For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Variance

Fixed-Point Data Types

The following diagram shows the data types used within the Variance block for fixed-point signals.

The results of the magnitude squared calculations above are in the product output data type. You can set the accumulator, product output, and output data types in the block dialog as discussed in "Dialog Box" on page 9-1050 below.

Example

The Variance block in the model below calculates the running variance of a frame-based 3-by-2 (two-channel) matrix input, u. The running variance is reset at $t=2$ by an impulse to the block's Rst port.

The Variance block has the following settings:

- Running variance $=\nabla$

- Reset port = Non-zero sample

The Signal From Workspace block has the following settings

- Signal $=u$
- Sample time $=1 / 3$
- Samples per frame $=3$
where

$$
\mathrm{u}=\left[\begin{array}{lllllllllllllllllllllll}
6 & 1 & 3 & -7 & 2 & 5 & 8 & 0 & -1 & -3 & 2 & 1 ; & 1 & 3 & 9 & 2 & 4 & 1 & 6 & 2 & 5 & 0 & 4
\end{array}\right]
$$

The Discrete Impulse block has the following settings:

- Delay (samples) = 2
- Sample time = 1
- Samples per frame $=1$

The block's operation is shown in the figure below.

The statsdem demo illustrates the operation of several blocks from the Statistics library.

Dialog Box

The Main pane of the Variance block dialog appears as follows:

Running variance

Enables running operation when selected.

Reset port

Determines the reset event that causes the block to reset the running variance. The reset signal rate must be a positive integer multiple of the rate of the data signal input. This parameter is enabled only when you select the Running variance check box. For more information, see "Resetting the Running Variance" on page 9-1046.

The Fixed-point pane of the Variance block dialog appears as follows:

Variance

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Note Refer to "Fixed-Point Data Types" on page 9-1048 for more information on how the product output, accumulator, and output data types are used in this block.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths:

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block:

- When you select Same as product output, these characteristics will match those of the product output
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the output word length and fraction length:

- When you select Same as accumulator, these characteristics will match those of the accumulator.
- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point

Variance

Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

| Supported | - Double-precision floating point |
| :--- | :--- | :--- |
| Data Types | - Single-precision floating point |
| | - Fixed point (signed only) |

Vector Quantizer Decoder

Purpose

Library

Description

Find vector quantizer codeword that corresponds to a given, zero-based index value

Quantizers

The Vector Quantizer Decoder block associates each input index value with a codeword, a column vector of quantized output values defined in the Codebook values parameter. When you input multiple index values into this block, the block outputs a matrix of quantized output vectors. This matrix is created by horizontally concatenating the codeword vectors that correspond to each index value.

You can select how you want to enter the codebook values using the Source of codebook parameter. When you select Specify via dialog, you can type the codebook values into the block parameters dialog box. Select Input port and port C appears on the block. The block uses the input to port C as the Codebook values parameter.

The Codebook values parameter is a k-by-N matrix of values, where $k \geq 1$ and $N \geq 1$. Each column of this matrix is a codeword vector, and each codeword vector corresponds to an index value. The index values are zero based; therefore, the first codeword vector corresponds to an index value of 0 , the second codeword vector corresponds to an index value of 1 , and so on.

The input to this block is a vector of index values, where $0 \leq i n d e x<N$ and N is the number of columns of the codebook matrix. Use the Action for out of range index value parameter to determine how the block behaves when an input index value is out of this range. When you want any index values less than 0 to be set to 0 and any index values greater than or equal to N to be set to $\mathrm{N}-1$, select Clip. When you want to be warned when any index values less than 0 are set to 0 and any index values greater than or equal to N are set to $\mathrm{N}-1$, select Clip and warn. When you want the simulation to stop and display an error when the index values are out of range, select Error.

Data Type Support

The input to the block can be the index values and the codebook values. The data type of the index input to the block at port I can be uint8, uint16, uint32, int8, int16, or int32. The data type of the codebook values can be double, single, or Fixed-point.

Vector Quantizer Decoder

The output of the block is the quantized output values. These quantized output values always have the same data type as the codebook values. When the codebook values are specified via an input port, the block assigns the same data type to the $\mathrm{Q}(\mathrm{U})$ output port. When the codebook values are specified via the dialog, use the Codebook and output data type parameter to specify the data type of the $Q(U)$ output port. The data type of the codebook and quantized output can be Same as input, double, single, Fixed-point, or User-defined.

Dialog Box

Source of codebook

Choose Specify via dialog to type the codebook values into the block parameters dialog box. Select Input port to specify the codebook values using the block's input port, C.

Vector Quantizer Decoder

Action for out of range index value

Choose the behavior of the block when an input index value is out of range, where $0 \leq$ index $<N$ and N is the length of the codebook vector. Select Clip when you want any index values less than 0 to be set to 0 and any index values greater than or equal to N to be set to $\mathrm{N}-1$. Select Clip and warn when you want to be warned when any index values less than 0 are set to 0 and any index values greater than or equal to N are set to $\mathrm{N}-1$. Select Error when you want the simulation to stop and display an error when the index values are out of range.

Codebook values

Enter a k-by-N matrix of quantized output values, where $1 \leq k$ and $1 \leq N$. Each column of your matrix corresponds to an index value. This parameter is visible if, from the Source of codebook list, you select Specify via dialog.

Codebook and output data type

Use this parameter to specify the data type of the codebook and quantized output values. The data type can be Same as input, double, single, Fixed-point, or User-defined. This parameter becomes visible when you select Specify via dialog for the Source of codebook parameter. Nontunable.

Vector Quantizer Decoder

Signed

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned. This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.

Vector Quantizer Decoder

- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible if, from the Codebook and output data type list, you select Fixed-point or when you select User-defined and the specified output data type is a fixed-point data type.

Fraction length

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Codebook and output data type parameter and User-defined for the Set fraction length in output to parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions

Vector Quantizer Decoder

from Simulink Fixed Point. This parameter is only visible when you select User-defined for the Codebook and output data type parameter.

References

Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.

Supported

 Data Types| Port | Supported Data Types |
| :---: | :---: |
| I | - 8 -, 16 -, and 32 -bit signed integers
 - 8 -, 16 -, and 32 -bit unsigned integers |
| C | - Double-precision floating point
 - Single-precision floating point
 - Fixed point
 - 8 -, 16 -, and 32 -bit signed integers |
| Q(U) | - Double-precision floating point
 - Single-precision floating point
 - Fixed point
 - 8 -, 16 -, and 32 -bit signed integers
 - 8 -, 16 -, and 32 -bit unsigned integers |

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Quantizer
Scalar Quantizer Decoder
Scalar Quantizer Design
Uniform Encoder
Uniform Decoder
Vector Quantizer Encoder

Simulink
Signal Processing Blockset

Vector Quantizer Design

Purpose

Design vector quantizer using Vector Quantizer Design Tool (VQDTool)

Library

Description

Quantizers
Double-click on the Vector Quantizer Design block to start VQDTool, a GUI that allows you to design and implement a vector quantizer. You can also start VQDTool by typing vqdtool at the MATLAB command prompt. Based on your specifications, VQDTool iteratively calculates the codebook values that minimize the mean squared error between the training set and the codebook until the stopping criteria for the design process is satisfied. The block uses the resulting codebook values to implement your vector quantizer.

For the Training Set parameter, enter a k-by-M matrix of values you want to use to train the quantizer codebook. The variable k, where $k \geq 1$, is the length of each training vector. It also represents the dimension of your quantizer. The variable M, where $M \geq 2$, is the number of training vectors. This data can be created using a MATLAB function, such as the default value randn $(10,1000)$, or it can be any variable defined in the MATLAB workspace.

You have two choices for the Source of initial codebook parameter. Select Auto-generate to have the block choose the values of the initial codebook. In this case, the block picks N random training vectors as the initial codebook, where N is the Number of levels parameter and $\mathrm{N} \geq 2$. When you select User defined, enter the initial codebook values in the Initial codebook field. The initial codebook matrix must have the same number of rows as the training set. Each column of the codebook is a codeword, and your codebook must have at least two codewords.

For the given training set and initial codebook, the block performs an iterative process, using the Generalized Lloyd Algorithm (GLA), to design a final codebook. For each iteration of the GLA, the block first associates each training vector with its nearest codeword by calculating the distortion. You can specify one of the two possible methods for calculating distortion using the Distortion measure parameter.

When you select Squared error for the Distortion measure parameter, the block finds the nearest codeword by calculating the squared error
(unweighted). Consider the codebook, $C B=\left[\begin{array}{llll}C W_{1} & C W_{2} & \ldots C W_{N}\end{array}\right]$. This codebook has N codewords; each codeword has k elements. The i-th codeword

Vector Quantizer Design

is defined as $C W_{i}=\left[\begin{array}{llll}a_{1 i} & a_{2 i} & \ldots & a_{k i}\end{array}\right]^{\prime}$. The training set has M columns and is defined as $U=\left[\begin{array}{llll}U_{1} & U_{2} & \ldots & U_{M}\end{array}\right]$, where the p-th training vector is $U_{p}=\left[\begin{array}{llll}u_{1 p} & u_{2 p} & \ldots & u_{k p}\end{array}\right]^{\prime}$. The squared error (unweighted) is calculated using k the following equation, $D=\sum_{j=1}\left(a_{j i}-u_{j p}\right)^{2}$. When you select Weighted squared error for the Distortion measure parameter, enter a vector or matrix for the Weighting factor parameter. When the weighting factor is a vector, its length must be equal to the number of rows in the training set. This weighting factor is used for each training vector. When the weighting factor is a matrix, it must be the same size as the training set matrix. The block finds the nearest codeword by calculating the weighted squared error. If the weighting factor for the p-th column of the training vector, U_{p}, is defined as $W_{p}=\left[\begin{array}{llll}w_{1 p} & w_{2 p} & \ldots & w_{k p}\end{array}\right]^{\prime}$, then the weighted squared error is defined by the k
following equation $D=\sum_{j=1} w_{j p}\left(a_{j i}-u_{j p}\right)^{2}$.
Once the block has associated all the training vectors with their nearest codeword vectors, the block calculates the mean squared error for the codebook and checks to see if the stopping criteria for the process has been satisfied.

The two possible options for the Stopping criteria parameter are Relative threshold and Maximum iteration. When you want the design process to stop when the fractional drop in the squared error is below a certain value, select Relative threshold. Then, type the maximum acceptable fractional drop in the Relative threshold field. The fraction drop in the squared error is defined as $\frac{\text { error at previous iteration - error at current iteration }}{\text { error at previous iteration }}$. When you want the design process to stop after a certain number of iterations, choose Maximum iteration. Then, enter the maximum number of iterations you want the block to perform in the Maximum iteration field. For Stopping criteria, you can also choose Whichever comes first and enter Relative threshold and

Vector Quantizer Design

Maximum iteration values. The block stops iterating as soon as one of these conditions is satisfied.

When a training vector has the same distortion for two different codeword vectors, the algorithm uses the Tie-breaking rule parameter to determine which codeword vector the training vector is associated with. When you want the training vector to be associated with the lower indexed codeword, select Lower indexed codeword. To associate the training vector with the higher indexed codeword, select Higher indexed codeword.

With each iteration, the block updates the codeword values in order to minimize the distortion. The Codebook update method parameter defines the way the block calculates these new codebook values.

Note If, for the Distortion measure parameter, you choose Squared error, the Codebook update method parameter is set to Mean.

If, for the Distortion measure parameter, you choose Weighted squared error and you choose Mean for the Codebook update method parameter, the new codeword vector is found as follows. Suppose there are three training vectors associated with one codeword vector. The training vectors are
$\mathrm{TS}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathrm{TS}_{3}=\left[\begin{array}{c}10 \\ 12\end{array}\right]$, and $\mathrm{TS}_{7}=\left[\begin{array}{l}11 \\ 12\end{array}\right]$. The new codeword vector is
calculated as $\mathrm{CW}_{\text {new }}=\left[\begin{array}{l}\frac{1+10+11}{3} \\ \frac{2+12+12}{3}\end{array}\right]$, where the denominator is the number of
training vectors associated with this codeword. If, for the Codebook update method parameter, you choose Centroid and you specify the following

Vector Quantizer Design

weighting factors $W_{1}=\left[\begin{array}{l}0.1 \\ 0.2\end{array}\right], W_{3}=\left[\begin{array}{c}1 \\ 0.6\end{array}\right]$, and $W_{7}=\left[\begin{array}{l}0.3 \\ 0.4\end{array}\right]$, the new
codeword vector is calculated as $\mathrm{CW}_{\text {new }}=\left[\begin{array}{l}\frac{(0.1)(1)+(1)(10)+(0.3)(11)}{0.1+1+0.3} \\ \frac{(0.2)(2)+(0.6)(12)+(0.4)(12)}{0.2+0.6+0.4}\end{array}\right]$.
Click Design and Plot to design the quantizer with the parameter values specified on the left side of the GUI. The performance curve and the entropy of the quantizer are updated and displayed in the figures on the right side of the GUI.

Note You must click Design and Plot to apply any changes you make to the parameter values in the VQDTool dialog box.

The following is an example of how the block calculates the entropy of the quantizer at each iteration. Suppose you have a codebook with four codewords and a training set with 200 training vectors. Also suppose that, at the i-th iteration, 40 training vectors are associated with the first codeword, 60 training vectors are associated with the second codeword, 20 training vectors are associated with the third codeword, and 80 training vectors are associated with the fourth codeword. The probability that a training vector is associated with the first codeword is $\frac{40}{200}$. The probabilities that training vectors are associated with the second, third, and fourth codewords are $\frac{60}{200}, \frac{20}{200}$, and $\frac{80}{200}$, respectively. The GUI uses these probabilities to calculate the entropy according to the following equation

$$
H=\sum_{i=1}^{N}-p_{i} \log _{2} p_{i}
$$

Vector Quantizer Design

where N is the number of codewords. Based on these probabilities, the GUI calculates the entropy of the quantizer at the i-th iteration as

$$
H=-\left(\frac{40}{200} \log _{2} \frac{40}{200}+\frac{60}{200} \log _{2} \frac{60}{200}+\frac{20}{200} \log _{2} \frac{20}{200}+\frac{80}{200} \log _{2} \frac{20}{200}\right)=1.8464
$$

VQDTool can export parameter values that correspond to the figures displayed in the GUI. Click the Export Outputs button, or press Ctrl+E, to export the Final Codebook, Mean Square Error, and Entropy values to the workspace, a text file, or a MAT-file.

In the Model section of the GUI, specify the destination of the block that will contain the parameters of your quantizer. For Destination, select Current model to create a block with your parameters in the model you most recently selected. Type gos in the MATLAB Command Window to display the name of your current model. Select New model to create a block in a new model file.

From the Block type list, select Encoder to design a Vector Quantizer Encoder block. Select Decoder to design a Vector Quantizer Decoder block. Select Both to design a Vector Quantizer Encoder block and a Vector Quantizer Decoder block.

In the Encoder block name field, enter a name for the Vector Quantizer Encoder block. In the Decoder block name field, enter a name for the Vector Quantizer Decoder block. When you have a Vector Quantizer Encoder and/or Decoder block in your destination model with the same name, select the Overwrite target block check box to replace the block's parameters with the current parameters. When you do not select this check box, a new Vector Quantizer Encoder and/or Decoder block is created in your destination model.

Click Generate Model. VQDTool uses the parameters that correspond to the current plots to set the parameters of the Vector Quantizer Encoder and/or Decoder blocks.

Vector Quantizer Design

Dialog Box

Training Set

Enter the samples of the signal you would like to quantize. This data set can be a MATLAB function or a variable defined in the MATLAB workspace. The typical length of this data vector is $1 e 5$.

Vector Quantizer Design

Source of initial codebook

Select Auto-generate to have the block choose the initial codebook values. Choose User defined to enter your own initial codebook values.

Number of levels

Enter the number of codeword vectors, N, in your codebook matrix, where $\mathrm{N} \geq 2$.

Initial codebook

Enter your initial codebook values. From the Source of initial codebook list, select User defined in order to activate this parameter. The codebook must have the same number of rows as the training set. You must provide at least two codeword vectors.

Distortion measure

When you select Squared error, the block finds the nearest codeword by calculating the squared error (unweighted). When you select Weighted squared error, the block finds the nearest codeword by calculating the weighted squared error.

Weighting factor

Enter a vector or matrix. The block uses these values to compute the weighted squared error. When the weighting factor is a vector, its length must be equal to the number of rows in the training set. This weighting factor is used for each training vector. When the weighting factor is a matrix, it must be the same size as the training set matrix. The individual weighting factors cannot be negative. The weighting factor vector or matrix cannot contain all zeros.

Stopping criteria

Choose Relative threshold to enter the maximum acceptable fractional drop in the squared quantization error. Choose Maximum iteration to specify the number of iterations at which to stop. Choose Whichever comes first and the block stops the iteration process as soon as the relative threshold or maximum iteration value is attained.

Relative threshold

This parameter is available when you choose Relative threshold or Whichever comes first for the Stopping criteria parameter. Enter the

Vector Quantizer Design

value that is the maximum acceptable fractional drop in the squared quantization error.

Maximum iteration

This parameter is available when you choose Maximum iteration or Whichever comes first for the Stopping criteria parameter. Enter the maximum number of iterations you want the block to perform.

Tie-breaking rules

When a training vector has the same distortion for two different codeword vectors, select Lower indexed codeword to associate the training vector with the lower indexed codeword. Select Higher indexed codeword to associate the training vector with the lower indexed codeword.

Codebook update method

When you choose Mean, the new codeword vector is calculated by taking the average of all the training vector values that were associated with the original codeword vector. When you choose Centroid, the block calculates the new codeword vector by taking the weighted average of all the training vector values that were associated with the original codeword vector Note that if, for the Distortion measure parameter, you choose Squared error, the Codebook update method parameter is set to Mean.

Destination

Choose Current model to create a Vector Quantizer block in the model you most recently selected. Type gcs in the MATLAB Command Window to display the name of your current model. Choose New model to create a block in a new model file.

Block type

Select Encoder to design a Vector Quantizer Encoder block. Select Decoder to design a Vector Quantizer Decoder block. Select Both to design a Vector Quantizer Encoder block and a Vector Quantizer Decoder block.

Encoder block name

Enter a name for the Vector Quantizer Encoder block.

Decoder block name

Enter a name for the Vector Quantizer Decoder block.

Vector Quantizer Design

Overwrite target block

When you do not select this check box and a Vector Quantizer Encoder and/or Decoder block with the same block name exists in the destination model, a new Vector Quantizer Encoder and/or Decoder block is created in the destination model. When you select this check box and a Vector Quantizer Encoder and/or Decoder block with the same block name exists in the destination model, the parameters of these blocks are overwritten by new parameters.

Generate Model

Click this button and VQDTool uses the parameters that correspond to the current plots to set the parameters of the Vector Quantizer Encoder and/or Decoder blocks.

Design and Plot

Click this button to design a quantizer using the parameters on the left side of the GUI and to update the performance curve and entropy plots on the right side of the GUI.

You must click Design and Plot to apply any changes you make to the parameter values in the VQDTool GUI.

Export Outputs

Click this button, or press Ctrl+E, to export the Final Codebook, Mean Squared Error, and Entropy values to the workspace, a text file, or a MAT-file.

References

Supported Data Types

Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.

- Double-precision floating point

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Vector Quantizer Design

See Also
Quantizer
Scalar Quantizer Decoder
Scalar Quantizer Design
Uniform Encoder
Uniform Decoder
Vector Quantizer Decoder
Vector Quantizer Encoder

Simulink
Signal Processing Blockset

Vector Quantizer Encoder

Purpose

Library

Description

For a given input, find index of nearest codeword based on Euclidean or weighted Euclidean distance measure

Quantizers

The Vector Quantizer Encoder block compares each input column vector to the codeword vectors in the codebook matrix. Each column of this codebook matrix is a codeword. The block finds the codeword vector nearest to the input column vector and returns its zero-based index. This block supports real floating-point and fixed-point signals on all input ports.

The block finds the nearest codeword by calculating the distortion. The block uses two methods for calculating distortion: Euclidean squared error (unweighted) and weighted Euclidean squared error. Consider the codebook, $C B=\left[C W_{1} C W_{2} \ldots C W_{N}\right]$. This codebook has N codewords; each codeword has k elements. The i-th codeword is defined as a column vector, $C W_{i}=\left[\begin{array}{llll}a_{1 i} & a_{2 i} & \ldots & a_{k i}\end{array}\right]^{\prime}$. The multichannel input has M columns and is defined as $U=\left[\begin{array}{llll}U_{1} & U_{2} & \ldots & U_{M}\end{array}\right]$, where the p-th input column vector is $U_{p}=\left[\begin{array}{llll}u_{1 p} & u_{2 p} & \ldots & u_{k p}\end{array}\right]^{\prime}$. The squared error (unweighted) is calculated using k
the following equation, $D=\sum_{j=1}\left(a_{j i}-u_{j p}\right)^{2}$. The weighted squared error is k
calculated using this equation, $D=\sum_{j=1} w_{j}\left(a_{j i}-u_{j p}\right)^{2}$, where the weighting factor is defined as $W=\left[w_{1} w_{2} \ldots w_{k}\right]$. The index of the codeword that is associated with the minimum distortion is assigned to the input column vector.

You can select how you want to enter the codebook values using the Source of codebook parameter. When you select Specify via dialog, you can type the codebook values into the block parameters dialog box. Select Input port and

Vector Quantizer Encoder

port C appears on the block. The block uses the input to port C as the Codebook parameter.

The Codebook parameter is an k-by-N matrix of values, where $k \geq 1$ and $N \geq 1$. Each input column vector is compared to this codebook. Each column of the codebook matrix is a codeword, and each codeword has an index value. The first codeword vector corresponds to an index value of 0 , the second codeword vector corresponds to an index value of 1 , and so on. The codeword vectors must have the same number of rows as the input, U .

For the Distortion measure parameter, select Squared error when you want the block to calculate the distortion by evaluating the Euclidean distance between the input column vector and each codeword in the codebook. Select Weighted squared error when you want to use a weighting factor to emphasize or deemphasize certain input values.

For the Source of weighting factor parameter, select Specify via dialog to enter a weighting factor vector in the dialog box. Choose Input port to specify the weighting factor using port W .

Use the Weighting factor parameter to emphasize or deemphasize certain input values when calculating the distortion measure. For example, consider the p-th input column vector, U_{p}, as previously defined. When you want to neglect the effect of the first element of this vector, enter [$\left.\begin{array}{llll}0 & 1 & 1\end{array}\right]$ 1] as the Weighting factor parameter. This weighting factor is used to calculate the

$$
\text { weighted squared error using the following equation, } D=\sum_{j=1} w_{j}\left(a_{j i}-u_{j p}\right)^{2} \text {. }
$$

Because of the weighting factor used in this example, the weighted squared error is not affected by the first element of the input matrix. Therefore, the first element of the input column vector no longer impacts the choice of index value output by the Vector Quantizer Encoder block.

Use the Index output data type parameter to specify the data type of the index values output at port I. The data type of the index values can be int8, uint8, int16, uint16, int32, or uint32.

When an input vector is equidistant from two codewords, the block uses the Tie-breaking rule parameter to determine which index value the block chooses. When you want the input vector to be represented by the lower index

Vector Quantizer Encoder

valued codeword, select Choose the lower index. To represent the input column vector by the higher index valued codeword, select Choose the higher index.

Select the Output codeword check box to output at port Q(U) the codeword vectors that correspond to each index value. When the input is a matrix, the corresponding codeword vectors are horizontally concatenated into a matrix.

Select the Output quantization error check box to output at port D the quantization error that results when the block represents the input column vector by its nearest codeword. When the input is a matrix, the quantization error values are horizontally concatenated.

The Vector Quantizer Encoder block accepts real floating-point and fixed-point inputs. For more information on the data types accepted by each port, see "Data Type Support" on page 9-1073 or "Supported Data Types" on page 9-1079.

Data Type Support

The input data values, codebook values, and weighting factor values are input to the block at ports U, C, and W, respectively. The data type of the input data values, codebook values, and weighting factor values can be double, single, or Fixed-point. The input data, codebook values, and weighting factor must be the same data type.

The outputs of the block are the index values, output codewords, and quantization error. Use the Index output data type parameter to specify the data type of the index output from the block at port I. The data type of the index can be int8, uint8, int16, uint16, int32, or uint32. The data type of the output codewords and the quantization error can be double, single, or Fixed-point. The block assigns the data type of the output codewords and the quantization error based on the data type of the input data.

Fixed-Point Data Types

The following diagram shows the data types used within the Vector Quantizer Encoder block for fixed-point signals.

Vector Quantizer Encoder

You can set the product output, accumulator, and index output data types in the block dialog as discussed below.

Dialog Box

Source of codebook

Choose Specify via dialog to type the codebook values into the block parameters dialog box. Select Input port to specify the codebook values using the block's input port, C.

Codebook

Enter a k-by-N matrix of values, where $1 \leq k$ and $1 \leq N$, to which your input column vector or matrix is compared. This parameter is visible if, from the Source of codebook list, you select Specify via dialog.

Distortion measure

Select Squared error when you want the block to calculate the distortion by evaluating the Euclidean distance between the input column vector and each codeword in the codebook. Select Weighted squared error when you want the block to calculate the distortion by evaluating a weighted Euclidean distance using a weighting factor to emphasize or deemphasize certain input values.

Source of weighting factor

Select Specify via dialog to enter a value for the weighting factor in the dialog box. Choose Input port and specify the weighting factor using port W on the block. This parameter is visible if, for the Distortion measure parameter, you select Weighted squared error.

Weighting factor

Enter a vector of values. This vector must have length equal to the number of rows of the input, U . This parameter is visible if, for the Source of weighting factor parameter, you select Specify via dialog.

Tie-breaking rule

Set this parameter to determine the behavior of the block when an input column vector is equidistant from two codewords. When you want the input column vector to be represented by the lower index valued codeword, select Choose the lower index. To represent the input column vector by the higher index valued codeword, select Choose the higher index.

Output codeword

Select this check box to output the codeword vectors nearest to the input column vectors.

Vector Quantizer Encoder

Output quantization error

Select this check box to output the quantization error value that results when the block represents the input column vector by the nearest codeword.

Vector Quantizer Encoder

Index output data type

Select int8, uint8, int16, uint16, int32, or uint32 as the data type of the index output at port I.

Fixed-point accumulator attributes

As depicted above, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how you would like to designate this accumulator word and fraction lengths.

When you select Same as input, the accumulator word and fraction lengths are the same as those of the input of the block. When you select User-defined, the Accumulator word length and Accumulator fraction length parameters become visible.

Accumulator word length

Specify the word length, in bits, of the accumulator. This parameter is only visible when you specify User-defined for the Fixed-point accumulator attributes parameter.

Accumulator fraction length

Specify the fraction length, in bits, of the accumulator. This parameter is only visible when you specify User-defined for the Fixed-point accumulator attributes parameter.

Vector Quantizer Encoder

Fixed-point product output attributes

As depicted above, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how you would like to designate this product output word and fraction lengths.

When you select Same as accumulator, the product output word and fraction lengths are the same as those of the accumulator of the block. When you select Same as input, they are the same as those of the input of the block. When you select User-defined, the Product output word length and Product output fraction length parameters become visible.

Product output word length

Specify the word length, in bits, of the product output. This parameter is only visible when you specify User-defined for the Fixed-point product output attributes parameter.

Product output fraction length

Specify the fraction length, in bits, of the product output. This parameter is only visible when you specify User-defined for the Fixed-point product output attributes parameter.

Round integer calculations toward

Select the rounding mode for fixed-point operations. This parameter is visible when you select the Show additional parameters check box.

Saturate on integer overflow

When selected, overflows saturate. This parameter is visible when you select the Show additional parameters check box.
$\begin{array}{ll}\text { References } \quad \text { Gersho, A. and R. Gray. Vector Quantization and Signal Compression. Boston: } \\ & \text { Kluwer Academic Publishers, } 1992 .\end{array}$

Vector Quantizer Encoder

Supported Data Types

Port	Supported Data Types
U	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
C	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
W	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers
I	- 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Q(U)	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16-, and 32 -bit signed integers
D	- Double-precision floating point - Single-precision floating point - Fixed point (signed only) - 8 -, 16 -, and 32 -bit signed integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

Vector Quantizer Encoder

See Also
Quantizer
Scalar Quantizer Decoder
Scalar Quantizer Design
Uniform Encoder
Uniform Decoder
Vector Quantizer Decoder

Simulink
Signal Processing Blockset

Vector Scope

Purpose	Display vector or matrix of time-domain, frequency-domain, or user-defined data
Sibrary	The Vector Scope block is a comprehensive display tool similar to a digital oscilloscope. The block can display time-domain, frequency-domain, or user-defined signals. You can use the Vector Scope block to plot consecutive time samples from a frame-based vector, or to plot vectors containing data such as filter coefficients or spectral magnitudes. To compute and plot the periodogram of a signal with a single block, use the Spectrum Scope block.
The input to the Vector Scope block can be any real-valued M-by-N matrix, column or row vector, or 1-D (unoriented) vector, where 1-D vectors are treated as column vectors. Regardless of the input frame status, the block treats each column of an M-by-N input as an independent channel of data with M consecutive samples.	
The block plots each sample of each input channel sequentially across the horizontal axis of the plot.	
Scope Properties Pane The Scope Properties pane enables you to plot time-domain, frequency-domain, or user-defined data, and adjust the horizontal display span of the plot. The scope displays frames of data, and updates the display for each new input frame.	
The Input domain parameter specifies the domain of the input data, If you select Time, for M-by-N inputs containing time-domain data, the block treats each of the N input frames (columns) as a succession of M consecutive samples taken from a time series. That is, each data point in the input frame is assumed to correspond to a unique time value.	
If, for the Input domain parameter, you select Frequency, for M-by-N inputs	
containing frequency-domain data, the block treats each of the N input frames	
(columns) as a vector of spectral magnitude data corresponding to M	
consecutive ascending frequency indices. That is, when the input is a single	
column vector, u, each value in the input frame, u (i), is assumed to correspond	
to a unique frequency value, f (i), where f (i+1)>f (i).	

If, for the Input domain parameter, you select User-defined, the block does not assume that the input frame data is time-domain or frequency-domain data. You can plot the data in the appropriate manner. Also, the Horizontal display span (number of frames) parameter appears on the pane. Enter a scalar value greater than or equal to one that corresponds to the number of frames to be displayed across the width of the scope window.

If, for the Input domain parameter you choose Time, the Time display span (number of frames) parameter appears on the pane. Enter a scalar value greater than or equal to one that corresponds to the number of frames to be displayed across the width of the scope window.

Time-Domain Scaling. The block scales the horizontal (time) axis of time-domain signals automatically. The range of the time axis is $\left[0, \mathrm{~S} * \mathrm{~T}_{\mathrm{fi}}\right]$, where T_{fi} is the input frame period, and S is the Time display span (number of frames) parameter. The spacing between time points is $\mathrm{T}_{\mathrm{fi}} /(\mathrm{M}-1)$, where M is the number of samples in each consecutive input frame. Frequency-domain and user-defined data need additional information to scale the horizontal axis. For more information see, "Frequency-Domain Scaling" on page 9-1085 and "User-Defined Domain Scaling" on page 9-1086.

Vector Scope

Display Properties Pane

The Display Properties pane enables you to control how the block displays your data.

The Show grid parameter toggles the background grid on and off.
If you select the Persistence check box, the window maintains successive displays. That is, the scope does not erase the display after each frame (or collection of frames), but overlays successive input frames in the scope display.

If you select the Frame number check box, the block displays the number of the current frame in the input sequence on the scope window, and the block increments the count as each new input is received. Counting starts at 1 with the first input frame, and continues until the simulation stops.

If you select the Channel legend check box, a legend indicating the line color, style, and marker of each channel's data is added. When the input signal is labeled, that label is displayed in the channel legend. When the input signal is not labeled, but comes from a Matrix Concatenation block with labeled inputs, those labels are displayed in the channel legend. Otherwise, each channel in the legend is labeled with the channel number (CH 1, CH 2, etc.). Click-and-drag the legend to reposition it in the scope window; double-click on the line label to edit the text. If you rerun the simulation, the labels revert to the defaults.

If you select the Compact display check box, the scope completely fills the figure window. The scope does not display menus and axis titles, and it shows the numerical axis labels within the axes. If you clear the Compact display check box, the scope displays the axis labels and titles in a gray border surrounding the scope axes, and the window's menus and toolbar are visible.

If you select the Open scope at start of simulation check box, the scope opens at the start of the simulation. If you clear this parameter, the scope does not open automatically during the simulation. To view the scope, double-click the Vector Scope block, which brings up the scope as well as the block parameter dialog box. Use this feature when you have several scope blocks in a model and you do not want to view all the associated scopes during the simulation.

If the scope is not open during the simulation and you select the Open scope immediately check box, the block opens the scope and clears the check box.

The Scope position parameter specifies a four-element vector of the form

```
[left bottom width height]
```

specifying the position of the scope window on the screen, where $(0,0)$ is the lower-left corner of the display. See the MATLAB figure function for more information.

Axis Properties Pane

The parameters on the Axis Properties pane vary based on the value of the Input domain parameter on the Scope Properties pane.

The following text describes the parameters available for time domain inputs.
Minimum Y-limit and Maximum Y-limit parameters set the range of the vertical axis.

The \mathbf{Y}-axis title is the text to be displayed to the left of the y -axis.
The following text describes the parameters available for frequency domain inputs.

The Frequency units parameter specifies whether the frequency axis values should be in units of Hertz or rad/sec, When the Frequency units parameter is set to Hertz, the spacing between frequency points is $1 /\left(\mathrm{M} * \mathrm{~T}_{\mathrm{s}}\right)$, where T_{s} is the sample time of the original time-domain signal. When the Frequency units parameter is set to rad/sec, the spacing between frequency points is $2 \pi /\left(\mathrm{M} * \mathrm{~T}_{\mathrm{s}}\right)$.

The Frequency range parameter specifies the range of frequencies over which the magnitudes in the input should be plotted. The available options are [$0 . . \mathrm{Fs} / 2$], [$\mathrm{Fs} / 2 . \mathrm{Fs} / 2$], and [$0 . . \mathrm{Fs}$], where Fs is the original time-domain signal's sample frequency. The Vector Scope block assumes that the input data spans the range $\left[0, \mathrm{~F}_{\mathrm{s}}\right.$), which is the same as the output from an FFT. To plot over the range [$0 . . \mathrm{Fs} / 2$] the scope truncates the input vector leaving only the first half of the data, then plots these remaining samples over half the frequency range. To plot over the range [-Fs/2..Fs/2], the scope reorders the input vector elements such that the last half of the data becomes the first half, and vice versa; then it relabels the x-axis accordingly.

If, for frequency domain inputs, you select the Inherit sample time from input check box, the block scales the frequency axis by reconstructing the frequency data from the frame-period of the frequency-domain input. This is valid when the following conditions hold:

Vector Scope

- Each frame of frequency-domain data shares the same length as the frame of time-domain data from which it was generated; for example, when the FFT is computed on the same number of points as are contained in the time-domain input.
- The sample period of the time-domain signal in the simulation is equal to the period with which the physical signal was originally sampled.
- Consecutive frames containing the time-domain signal do not overlap each other; that is, a particular signal sample does not appear in more than one sequential frame.

In cases where not all of these conditions hold, you should specify the appropriate value for the Sample time of original time series parameter.

The Amplitude scaling parameter allows you to select Magnitude or dB scaling along the y-axis.

Minimum Y-limit and Maximum Y-limit parameters set the range of the vertical axis.

The \mathbf{Y}-axis title is the text to be displayed to the left of the y-axis.
Frequency-Domain Scaling. To correctly scale the horizontal (frequency) axis for frequency-domain signals, the Vector Scope block needs to know the sample period of the original time-domain sequence represented by the frequency-domain data. You specify this period by entering a value for the Sample time of original time series parameter. For additional information, see "Time-Domain Scaling" on page 9-1082 and "User-Defined Domain Scaling" on page 9-1086.

The following text describes the parameters available for user-defined domain inputs.

If, for user-defined input domains, you select the Inherit sample increment from input check box, the block scales the horizontal axis by computing the horizontal interval between samples in the input frame from the frame period of the input. For example, when the input frame period is 1 , and there are 64 samples per input frame, the interval between samples is computed to be $1 / 64$. Computing the interval this way is usually only valid when the following conditions hold:

- The input is a nonoverlapping time series; the x-axis on the scope represents time.
- The input's sample period ($1 / 64$ in the above example) is equal to the period with which the physical signal was originally sampled.

In cases where not all of these conditions hold, you should use the Increment per sample in input frame parameter.

The Scope position parameter specifies a four-element vector of the form
[left bottom width height]
specifying the position of the scope window on the screen, where $(0,0)$ is the lower-left corner of the display. See the MATLAB figure function for more information.

Minimum Y-limit and Maximum Y-limit parameters set the range of the vertical axis.

The \mathbf{Y}-axis title is the text to be displayed to the left of the y-axis.
User-Defined Domain Scaling. To correctly scale the horizontal axis for user-defined input domains, the block needs to know the spacing of the input data. You specify this spacing using the Increment per sample in input frame parameter, I_{s}. This parameter represents the numerical interval between adjacent x-axis points corresponding to the input data. The range of the horizontal axis is $\left[0, \mathrm{M} * I_{s} * S\right]$, where M is the number of samples in each consecutive input frame, and S is the Horizontal display span (number of frames) parameter you specify in the Scope Properties pane. For additional information, see "Time-Domain Scaling" on page 9-1082 and "Frequency-Domain Scaling" on page 9-1085.

Line Properties Pane

Use the parameters on the Line Properties pane to help you distinguish between two or more independent channels of data on the scope.

The Line visibilities parameter specifies which channel's data is displayed on the scope, and which is hidden. The syntax specifies the visibilities in list form, where the term on or off as a list entry specifies the visibility of the corresponding channel's data. The list entries are separated by the pipe symbol, |.

Vector Scope

For example, a five-channel signal would ordinarily generate five distinct plots on the scope. To disable plotting of the third and fifth lines, enter the following visibility specification in the Line visibilities parameter.

```
    on | on | off | on | off
ch 1 ch 2 ch 3 ch 4 ch 5
```

Note that the first (leftmost) list item corresponds to the first signal channel (leftmost column of the input matrix).

The Line styles parameter specifies the line style with which each channel's data is displayed on the scope. The syntax specifies the channel line styles in list form, with each list entry specifying a style for the corresponding channel's data. The list entries are separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate all five plots with a solid line style. To plot each line with a different style, enter

```
    - | -- | : | -. | -
ch 1 ch 2 ch 3 ch 4 ch 5
```

These settings plot the signal channels with the following styles.

Line Style	Command to Type in Line Style Parameter	Appearance
Solid	-	-
Dashed	--	$-\cdots-\cdots \cdots \cdots$
Dotted	$:$	$\cdots \cdots \cdots \cdots \cdots \cdots \cdots$
Dash-dot	.-	$-\cdots \cdots \cdots$
No line	none	No line appears

Note that the first (leftmost) list item, ' - ' , corresponds to the first signal channel (leftmost column of the input matrix). See the LineStyle property of the MATLAB line function for more information about the style syntax.

Vector Scope

The Line markers parameter specifies the marker style with which each channel's samples are represented on the scope. The syntax specifies the channels' marker styles in list form, with each list entry specifying a marker for the corresponding channel's data. The list entries are separated by the pipe symbol, |.

For example, a five-channel signal would ordinarily generate all five plots with no marker symbol (that is, the individual sample points are not marked on the scope). To instead plot each line with a different marker style, you could enter

```
* | . | x | s | d
ch 1 ch 2 ch 3 ch 4 ch 5
```

These settings plot the signal channels with the following styles.

Marker Style	Command to Type in Marker Style Parameter	Appearance
Asterisk	$*$	$*$
Point	\cdot	\bullet
Cross	x	
Square	s	
Diamond	d	

Note that the leftmost list item, ' *' , corresponds to the first signal channel or leftmost column of the input matrix. See the Marker property of the MATLAB line function for more information about the available markers.

To produce a stem plot for the data in a particular channel, type the word stem instead of one of the basic marker shapes.

The Line colors parameter specifies the color in which each channel's data is displayed on the scope. The syntax specifies the channel colors in list form, with each list entry specifying a color (in one of the MATLAB ColorSpec formats) for the corresponding channel's data. The list entries are separated by the pipe symbol, |.

Vector Scope

For example, a five-channel signal would ordinarily generate all five plots in the color black. To instead plot the lines with the color order below, enter

or

These settings plot the signal channels in the following colors (8-bit RGB equivalents shown in the center column).

Color	RGB Equivalent	Appearance
Black	$(0,0,0)$	
Blue	$(0,0,255)$	
Red	$(255,0,0)$	
Green	$(0,255,0)$	-
Dark purple	$(192,0,192)$	-

Note that the leftmost list item, ' k ', corresponds to the first signal channel or leftmost column of the input matrix. See ColorSpec in the MATLAB documentation for more information about the color syntax.

Vector Scope Window

The title in the window title bar is the same as the block title. In addition to the standard MATLAB figure window menus such as File, Window, and Help, the Vector Scope window contains Axes and Channels menus.

The parameters that you set using the Axes menu apply to all channels. Many of the parameters in this menu are also accessible through the block parameters dialog box. For descriptions of these parameters, see "Display Properties Pane" on page 9-1083. Below are descriptions of other parameters in the Axes menu:

Vector Scope

- Refresh erases all data on the scope display, except for the most recent trace. This command is useful in conjunction with the Persistence setting.
- Autoscale resizes the y-axis to best fit the vertical range of the data. The numerical limits selected by the autoscale feature are displayed in the Minimum Y-limit and Maximum Y-limit parameters in the parameter dialog box. You can edit these values.
- Save position automatically updates the Scope position parameter in the Axis properties field to reflect the scope window's current position and size. To make the scope window open at a particular location on the screen when the simulation runs, drag the window to the desired location, resize it, and select Save position. Note that the parameter dialog box must be closed when you select Save position in order for the Scope position parameter to be updated.

The properties listed in the Channels menu apply to a particular channel. All of the parameters in this menu are also accessible through the block parameters dialog box. For descriptions of these parameters, see "Line Properties Pane" on page 9-1086.

Many of these options can also be accessed by right-clicking with the mouse anywhere on the scope display. The menu that is displayed contains a combination of the options available in both the Axes and Channels menus.

Note When you select Compact display from the Axes menu, the Axes and Channels menus are no longer visible. Right-click in the Vector Scope window and click Compact display in order to make the menus reappear.

Vector Scope

Dialog Box Scope Properties Pane

Input domain

Select the domain of the input. Your choices are Time, Frequency, or User-defined. Tunable.

Time display span (number of frames)

The number of consecutive frames to display (horizontally) on the scope at any one time. This parameter is visible when the Input domain parameter is set to Time.

Horizontal display span (number of frames)

The number of consecutive frames to display (horizontally) on the scope at any one time. This parameter is visible when the Input domain parameter is set to User-defined.

Display Properties Pane

Show grid

Toggle the scope grid on and off. Tunable.

Persistence

Select this check box to maintain successive displays. That is, the scope does not erase the display after each frame (or collection of frames), but overlays successive input frames in the scope display. Tunable.

Frame number

If you select this check box, the number of the current frame in the input sequence appears in the Vector Scope window. Tunable.

Channel legend

Toggles the legend on and off. Tunable.

Compact display

Resizes the scope to fill the window. Tunable.

Vector Scope

Open scope at start of simulation

Select this check box to open the scope at the start of the simulation. When this parameter is cleared, the scope will not open automatically during the simulation. Tunable.

Open scope immediately

If the scope is not open during simulation, select this check box to open it. This parameter is visible only while the simulation is running.

Scope position

A four-element vector of the form [left bottom width height] specifying the position of the scope window. $(0,0)$ is the lower-left corner of the display. Tunable.

Axis Properties Pane

Minimum Y-limit

The minimum value of the y-axis. Tunable.

Maximum Y-limit

The maximum value of the y-axis. Tunable.

\mathbf{Y}-axis title

The text to be displayed to the left of the y-axis. Tunable.

Frequency units

Choose the frequency units for the x-axis, Hertz or rad/sec. This parameter is visible when, in the Scope Properties pane, for the Input domain parameter, you select Frequency. Tunable.

Frequency range

Specify the frequency range over which to plot the data. This parameter is visible when, in the Scope Properties pane, for Input domain parameter, you select Frequency. Tunable.

Inherit sample time from input

If you select this check box, the block computes the time-domain sample period from the frame period and frame size of the frequency-domain input. Use this parameter only when the length of the each frame of frequency-domain data is the same as the length of the frame of time-domain data from which it was generated. This parameter is visible when, in the Scope Properties pane, for Input domain parameter, you select Frequency. Tunable.

Sample time of original time series

Enter the sample period, T_{s}, of the original time-domain signal. This parameter is available when, in the Scope Properties pane, for Input domain parameter, you select Frequency. Then, in the Axis Properties pane, you clear the Inherit sample time from input check box. Tunable.

Amplitude scaling

Choose the scaling for the y-axis, dB or Magnitude. This parameter is visible when, in the Scope Properties pane, for Input domain parameter, you select Frequency. Tunable.

Inherit sample increment from input

If you select this check box, the block scales the horizontal axis by computing the horizontal interval between samples in the input frame from the frame period of the input. Use this parameter only when the
input's sample period is equal to the period with which the physical signal was originally sampled. This parameter is visible when, in the Scope Properties pane, for Input domain parameter, you select User-defined. Tunable.

Increment per sample in input frame

Enter the numerical interval between adjacent x-axis points corresponding to the user-defined input data. This parameter is available when, in the Scope properties pane, for Input domain parameter, you select User-defined. Then, in the Axis Properties pane you clear the Inherit sample increment from input check box. Tunable.

\mathbf{X}-axis title

Enter the text to be displayed below the x-axis. This parameter is visible when, in the Scope properties pane, for Input domain parameter, you select User-defined. Tunable.

Vector Scope

Line visibilities

Enter on or off to specify the visibility of the various channels' scope traces. Separate your choices for each channel with by a pipe (|) symbol. Tunable.

Line styles

Enter the line styles of the various channels' scope traces. Separate your choices for each channel with by a pipe (|) symbol. Tunable.

Line markers

Enter the line markers of the various channels' scope traces. Separate your choices for each channel with by a pipe (|) symbol. Tunable.

Line colors

Enter the colors of the various channels' scope traces using the Colorspec formats. Separate your choices for each channel with by a pipe (|) symbol. Tunable.

Supported Data Types

Port	Supported Data Types
Input	• Double-precision floating point
	\bullet Single-precision floating point
	\bullet Fixed point (signed and unsigned)
	\bullet Custom data types
	\bullet Boolean
	$\bullet 8-, 16-$, and 32-bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also
Matrix Viewer
Spectrum Scope
Signal Processing Blockset
Signal Processing Blockset

Waterfall

Purpose View vectors of data over time

Library Signal Processing Sinks

Description

Whaterfall

fluaterfall

The Waterfall block displays multiple vectors of data at one time. These vectors represent the input data at consecutive sample times. The input to the block can be real or complex-valued data vectors of any data type including fixed-point data types. However, the input is converted to double-precision before the block processes the data. The Waterfall block displays only real-valued, double-precision vectors of data.

The data is displayed in a three-dimensional axis in the Waterfall window. By default, the x-axis represents amplitude, the y-axis represents samples, and the z-axis represents time. You can adjust the number of sample vectors that the block displays, move and resize the Waterfall window, and modify block parameter values during the simulation. The Waterfall window has toolbar buttons that enable you to zoom in on displayed data, suspend data capture, freeze the scope's display, save the scope position, and export data to the workspace. The toolbar buttons are labeled in the following figure, which shows the Waterfall window as it appears when you double-click a Waterfall block.

Sections of This Reference Page

- "Waterfall Parameters" on page 9-1100
- "Display Parameters" on page 9-1101
- "Axes Parameters" on page 9-1102
- "Data History Parameters" on page 9-1103
- "Triggering Parameters" on page 9-1104
- "Scope Trigger Function" on page 9-1107
- "Transform Parameters" on page 9-1109
- "Scope Transform Function" on page 9-1112
- "Examples" on page 9-1112

Waterfall Parameters

You can control the display and behavior of the Waterfall window using the Parameters dialog box.

Note You can alter the Waterfall parameters while the simulation is running. However, when you make changes to values in text boxes, you must click Enter or click outside the text box before the block accepts your changes.

1 To open the Parameters dialog box, click the Scope parameters button.

The Parameters dialog box appears.

2 Click on the different panes to enter parameter settings.

Display Parameters

The following parameters control the Waterfall window's display.

Display traces

Enter the number of vectors of data to be displayed in the Waterfall window.

Update interval

Waterfall

Enter the number of vectors the block should store before it displays them to the window.

Colormap

Choose a colormap for the displayed data.

Transparency

Specify the transparency of the newest and oldest data vectors. Placing the slider in the left-most position tells the block to make the data vector transparent. Placing the slider in the right-most position tells the block to make the data vector opaque. The intermediate data vectors transition between the two chosen transparency values.

Axes Parameters

The following parameters control the axes in the Waterfall window.

Y Min

Enter the minimum value of the y-axis.

Y Max

Enter the maximum value of the y-axis.

Axis color

Enter a background color for the axes. Specify the color using a character string. For example, to specify black, enter ' k '.

X Axis

Enter the x-axis label.

Y Axis

Enter the y-axis label.

Z Axis

Enter the z-axis label.

Data History Parameters

The following parameters control how many input data vectors the Waterfall block stores. They also control how the data is exported to the MATLAB workspace or SPTool.

History traces

Enter the number of vectors (traces) that you want the block to store.

When the buffer is full

Use this parameter to control the behavior of the block when the buffer is filled:

- Overwrite - The old data is replaced with the new data.
- Suspend - The block stops storing data in the buffer; however, the simulation continues to run.
- Extend - The block extends the buffer so that it can continue to store all the input data.

Data logging

Use this parameter to control which data is exported from the block:

- Selected - The selected data vector is exported.
- All visible - All of the data vectors displayed in the Waterfall window are exported.
- All history - All of the data vectors stored in the block's history buffer are exported.

Export variable

Enter the name of the variable that represents your data in the MATLAB workspace or SPTool. The default variable name is ExportData.

Export at end of simulation

Select this check box to automatically export the data to the MATLAB workspace when the simulation stops.

Triggering Parameters

The following parameters control when the Waterfall block starts and stops capturing data.

Begin recording

This parameter controls when the Waterfall block starts capturing data:

- Immediately - The Waterfall window captures the input data as soon as the simulation starts.
- After T seconds - The Time, T parameter appears in the dialog box. Enter the number of seconds the block should wait before it begins capturing data.
- After N inputs - The Count, \mathbf{N} parameter appears in the dialog box. Enter the number of inputs the block should receive before it begins capturing data.
- User-defined - The Function name parameter appears in the dialog box. Enter the name of a MATLAB function that defines when the block should begin capturing data. For more information about how you define this function, see "Scope Trigger Function" on page 9-1107.

Stop recording

This parameter controls when the Waterfall block stops capturing data:

- Never - The block captures the input data as long as the simulation is running.
- After T seconds - The Time, T parameter appears in the dialog box. Enter the number of seconds the block should wait before it stops capturing data.
- After N inputs - The Count, \mathbf{N} parameter appears in the dialog box. Enter the number of inputs the block should receive before it stops capturing data.
- User-defined - The Function name parameter appears in the dialog box. Enter the name of a MATLAB function that defines when the block should stop capturing data. For more information about how you define this function, see "Scope Trigger Function" on page 9-1107.

Re-arm trigger

This parameter controls when the Waterfall block begins waiting to capture data. It is available only when you select After T seconds, After N inputs, or User-defined for the Stop recording parameter:

Waterfall

- Never - The Waterfall Scope block starts and stops capturing data as defined by the Begin recording and Stop recording parameters.
- After T seconds - The Time, T parameter appears in the dialog box. Enter the number of seconds the block should wait before it begins waiting to capture data.
- After N inputs - The Count, \mathbf{N} parameter appears in the dialog box. Enter the number of inputs the block should receive before it begins waiting to capture data.
- User-defined - The Function name parameter appears in the dialog box. Enter the name of a MATLAB function that defines when the block should begin waiting to capture data. For more information about how you define this function, see "Scope Trigger Function" on page 9-1107.
The triggering process is illustrated in the state diagram below.

Scope Trigger Function

You can create custom scope trigger functions to control when the scope starts, stops, or begins waiting to capture data.

Waterfall

These functions must be valid MATLAB functions and be located either in the current directory or on the MATLAB path.

Each scope trigger function must have the following form
$y=$ functionname (blk, t, u),
where functionname refers to the name you give your scope trigger function. The variable blk is the Simulink block handle. When the scope trigger function is called by the block, Simulink automatically populates this variable with the handle of the Waterfall block. The variable t is the current simulation time, represented by a real, double-precision, scalar value. The variable u is the vector input to the block. The output of the scope trigger function, y, is interpreted as a logical signal. It is either true or false:

- Begin recording scope trigger function
- When the output of this scope trigger function is true, the Waterfall block starts capturing data.
- When the output is false, the block remains in its current state.
- Stop recording scope trigger function
- When the output of this scope trigger function is true, the block stops capturing data.
- When the output is false, the block remains in its current state.
- Re-arm trigger scope trigger function
- When the output of this scope trigger function is true, the block waits for a begin recording event.
- When the output is false, the block remains in its current state.

Note The Waterfall block passes its input data directly to the scope trigger functions. These functions do not use the transformed data defined by the Transform parameters.

The following is an example of a scope trigger function. This function, called trigPower detects when the energy in u exceeds a certain threshold.

```
function y = trigPower(blk, t, u)
y = (u'*u > 2300);
```

The following is another example of a scope trigger function. This function, called count3, triggers the scope once three vectors with positive means are input to the block. Then, the function resets itself and begins searching for the next three input vectors with positive means. This scope trigger function is valid only when one Waterfall block is present in your model.

```
function y = count3(blk, t, u)
persistent state;
if isempty(state); state = 0; end
if mean(u)>0; state = state+1; end
y = (state>=3);
if y; state = 0; end
```


Transform Parameters

The following parameters transform the input data to the Waterfall block. The result of the transform is displayed in the Waterfall window.

Waterfall

Note The block assumes that the input to the block corresponds to the Transform parameter you select. For example, when you choose Complex-> Angle, the block assumes that the input is complex. The block does not produce an error when the input is not complex. Therefore, you must verify the format of your input data to guarantee that a meaningful result is displayed in the Waterfall window.

Transform

Choose a transform that you would like to apply to the input of the Waterfall block:

- None - The input is displayed as it is received by the block.
- Amplitude-> dB - The block converts the input amplitude into decibels.
- Complex-> Mag Lin - The block converts the complex input into linear magnitude.
- Complex-> Mag dB - The block converts the complex input into magnitude in decibels.
- Complex-> Angle - The block converts the complex input into phase.

Warerfall

- FFT-> Mag Lin Fs/2 - The block takes the linear magnitude of the FFT input and plots it from 0 to the Nyquist frequency.
- FFT-> Mag dB Fs/2 - The block takes the magnitude of the FFT input, converts it to decibels, and plots it from 0 to the Nyquist frequency.
- FFT-> Angle Fs/2 - The block converts the FFT input into phase and plots it from 0 to the Nyquist frequency.
- Power -> dB - The block converts the input power into decibels.

Function

This parameter is only available when you select User-defined fon for the Transform parameter. Enter a function that you would like to apply to the input of the Waterfall block. For more information about how you define this function, see "Scope Transform Function" on page 9-1112.

Expression

This parameter is only available when you select User-defined expr for the Transform parameter. Enter an expression that you would like to apply to the input of the Waterfall block. The result of this expression must be real-valued. When you write the expression, be sure to include only one unknown variable. The block assumes this unknown variable represents the input to the block. When the block believes your expression is invalid, the following window appears.

Waterfall

When you click No, your expression is not applied to the input. When you click Yes and your expression is invalid, your simulation stops and Simulink displays an error.

Scope Transform Function

You can create a scope transform function to control how the Waterfall block transforms your input data. This function must have a valid MATLAB function name and be located either in the current directory or on the MATLAB path.

Your scope transform function must have the following form

```
y = functionname(u),
```

where functionname refers to the name you give your function. The variable u is the real or complex vector input to the block. The output of the scope transform function, y, must be a double-precision, real-valued vector. When it is not, the simulation stops and Simulink displays an error. Note that the output vector does not need to be the same size as the input vector.

Examples

The following examples illustrate some capabilities of the Waterfall block.

- "Exporting Data" on page 9-1112
- "Capturing Data" on page 9-1113
- "Linking Scopes" on page 9-1114
- "Selecting Data" on page 9-1115
- "Zooming" on page 9-1117
- "Rotating the Display" on page 9-1117
- "Scaling the Axes" on page 9-1117
- "Saving Scope Settings" on page 9-1117

Exporting Data

You can use the Waterfall block to export data to the MATLAB workspace or to SPTool:

1 Open and run the dspanc demo.
1 While the simulation is running, click the Export to Workspace button.

2 At the MATLAB command line, type whos.
The variable ExportData appears in your MATLAB workspace. ExportData is a 40-by-6 matrix. This matrix represents the six data vectors that were present in the Waterfall window at the time you clicked the Export to Workspace button. Each column of this matrix contains 40 filter coefficients. The columns of data were captured at six consecutive instants in time.
You can control what data is exported using the Data logging parameter in Data history pane of the Parameters dialog box. For more information, see "Data History Parameters" on page 9-1103.
3 While the simulation is running, click the Export to SPTool button. The SPTool GUI opens and the variable ExportData is displayed in the Signals list.
For more information about SPTool, see the Signal Processing Toolbox documentation.

Capturing Data

You can use the Waterfall block to interact with your data while it is being captured:

1 Open and run the dspanc demo.
2 While the simulation is running, click the Suspend data capture button.
The Waterfall block no longer captures or displays the data coming from the Downsample block.
3 To continue capturing data, click the Resume data capture button.
4 To freeze the data display while continuing to capture data, click the Snapshot display button.
5 To view the Waterfall block that the data is coming from, click the Go to scope block button.
In the Simulink model window, the Waterfall block that corresponds to the active Waterfall window flashes. This feature is helpful when you have more than one Waterfall block in a model and you want to clarify which data is being displayed.

Waterfall

Linking Scopes

You can link several Waterfall blocks together in order to capture the effect of a model event in all of the Waterfall windows in the model:

1 Open the dspanc demo.
2 Drag a second Waterfall block into the demo model.
3 Connect this block to the Output port of the LMS Filter block as shown in the figure below.

4 Run the model and view the model behavior in both Waterfall windows.
5 In the dspanc/Waterfall window, click the Link scopes button.
6 In the same window, click the Suspend data capture button.
The data capture is suspended in both scope windows.
7 Click the Resume data capture button.
The data capture resumes in both scope windows.

8 In the dspanc/Waterfall window, click the Snapshot display button.
In both scope windows, the data display freezes while the block continues to capture data.
9 To continue displaying the captured data, click the Resume display button.

Selecting Data

The following figure shows the Waterfall window displaying the output of the dspanc demo:

1 To select a particular set of data, click the Select button.
2 Click on the Time Bar at the bottom right of the axes to select a vector of data.
The Waterfall block highlights the selected trace.

Waterfall

While the simulation is running, in the bottom right corner, the Waterfall window displays the relative index of the selected trace. For example, in the previous figure, the selected vector is two sample times away from the most current data vector. When the simulation is stopped, the Waterfall window displays both the relative index and the simulation time associated with the selected trace.
3 To deselect the data vector, click it again.
4 Click-and-drag along the Time Bar.
Your selection follows the movement of the pointer.
You can use this feature to choose a particular vector to export to the MATLAB workspace or SPTool. For more information, see "Data History Parameters" on page 9-1103.

Zooming

You can use the Waterfall window to zoom in on data:
1 Click the Zoom camera button.
2 In the Waterfall window, click and hold down the left mouse button.
3 Move the mouse up and down and side-to-side to move closer and farther away from the axes.
4 To resize the axes to fit the Waterfall window, click the Fit to view button.

Rotating the Display

You can rotate the data displayed in the Waterfall window:
1 Click on the Orbit camera button.
2 In the Waterfall window, click and hold down the left mouse button.
3 Move the mouse in a circular motion to rotate the axes.
4 To return to the position of the original axes, click the Restore scope position and view button.

Scaling the Axes

You can use the Waterfall window to rescale the y-axis values:
1 Open and run the dspanc demo.

2 Click the Rescale amplitude button.

The y-axis changes so that its minimum value is zero. The maximum value is scaled to fit the data displayed.
Alternatively, you can scale the y-axis using the \mathbf{Y} Min and \mathbf{Y} Max parameters in the Axes pane of the Parameters dialog box. This is helpful when you want to undo the effects of rescaling the amplitude. For more information, see "Axes Parameters" on page 9-1102.

Saving Scope Settings

The Waterfall block can save the screen position and viewpoint of the Waterfall window:

1 Click the Save scope position and view button.
2 Close the Waterfall window.

Waterfall

3 Reopen the Waterfall window.
It reopens at the same place on your screen. The viewpoint of the axes also remains the same.

Supported

 Data Types| See Also | Scope | Simulink |
| :--- | :--- | :--- |
| | Time Scope | Signal Processing Blockset |
| | Vector Scope | Signal Processing Blockset |
| | Spectrum Scope | Signal Processing Blockset |
| | Matrix Viewer | Signal Processing Blockset |
| | Signal To Workspace | Signal Processing Blockset |
| | Triggered To Workspace | Signal Processing Blockset |

Wavelet Analysis

Note The Wavelet Analysis block is still supported but is likely to be obsoleted in a future release. We recommend replacing this block with the DWT block.

Purpose

Library
Description

Decompose a signal into components of logarithmically decreasing frequency intervals and sample rates (requires the Wavelet Toolbox).
dspobslib
The Wavelet Analysis block uses the wfilters function from the Wavelet Toolbox to construct a dyadic analysis filter bank that decomposes a broadband signal into a collection of successively more bandlimited components. An n-level filter bank structure is shown below, where n is specified by the Number of levels parameter.

Wavelet Analysis Filter Bank, n Levels

At each level, the low-frequency output of the previous level is decomposed into adjacent high- and low-frequency subbands by a highpass (HP) and lowpass (LP) filter pair. Each of the two output subbands is half the bandwidth of the input to that level. The bandlimited output of each filter is maximally decimated by a factor of 2 to preserve the bit rate of the original signal.

Filter Coefficients

The filter coefficients for the highpass and lowpass filters are computed by the Wavelet Toolbox function wfilters, based on the wavelet specified in the Wavelet name parameter. The table below lists the available options.

Wavelet Name	Sample Wavelet Function Syntax
Haar	wfilters('haar')
Daubechies	wfilters('db4')
Symlets	wfilters('sym3')
Coiflets	wfilters('coif1')
Biorthogonal	wfilters('bior3.1')
Reverse Biorthogonal	wfilters('rbio3.1')
Discrete Meyer	wfilters('dmey')

The Daubechies, Symlets, and Coiflets options enable a secondary Wavelet order parameter that allows you to specify the wavelet order. For example, if you specify a Daubechies wavelet with Wavelet order equal to 6 , the Wavelet Analysis block calls the wfilters function with input argument 'db6'.

The Biorthogonal and Reverse Biorthogonal options enable a secondary Filter order [synthesis / analysis] parameter that allows you to independently specify the wavelet order for the analysis and synthesis filter stages. For example, if you specify a Biorthogonal wavelet with Filter order [synthesis / analysis] equal to [2 / 6], the Wavelet Analysis block calls the wfilters function with input argument 'bior2.6'.

See the Wavelet Toolbox documentation for more information about the wfilters function. If you want to explicitly specify the FIR coefficients for the analysis filter bank, use the Dyadic Analysis Filter Bank block.

Tree Strucłure

The wavelet tree structure has $n+1$ outputs, where n is the number of levels. The sample rate and bandwidth of the top output are half the input sample rate and bandwidth. The sample rate and bandwidth of each additional output
(except the last) are half that of the output from the previous level. In general, for an input with sample period $\mathrm{T}_{\mathrm{si}}=\mathrm{T}_{\mathrm{s}}$, and bandwidth BW , output y_{k} has sample period $\mathrm{T}_{\mathrm{so}, k}$ and bandwidth BW_{k}.

$$
\begin{aligned}
& T_{s o, k}= \begin{cases}\left(2^{k}\right) T_{s} & (1 \leq k \leq n) \\
\left(2^{n}\right) T_{s} & (k=n+1)\end{cases} \\
& B W_{k}= \begin{cases}\frac{B W}{2^{k}} & (1 \leq k \leq n) \\
\frac{B W}{2^{n}} & (k=n+1)\end{cases}
\end{aligned}
$$

Note that in frame-based mode, the change in the sample period of output y_{k} is reflected by its frame size, $\mathrm{M}_{\mathrm{o}, k}$, rather than by its frame rate.

$$
M_{o, k}= \begin{cases}\frac{M_{i}}{2^{k}} & (1 \leq k \leq n) \\ \frac{M_{i}}{2^{n}} & (k=n+1)\end{cases}
$$

The bottom two outputs (y_{n} and y_{n+1}) share the same sample period, bandwidth, and frame size because they originate at the same tree level.

Sample-Based Operation

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and the block filters each channel independently over time. The output at each port is the same size as the input, one output channel for each input channel. As described earlier, each output port has a different sample period.

The figure below shows the input and output sample periods for a 64-channel sample-based input to a three-level filter bank. The input has a period of 1 , so the fastest output has a period of 2 .

Frame-Based Operation

An M_{i}-by-N frame-based matrix input is treated as N independent channels, and the block filters each channel independently over time. The input frame size M_{i} must be a multiple of 2^{n}, and n is the number of filter bank levels. For example, a frame size of 8 would be appropriate for a three-level tree $\left(2^{3}=8\right)$. The number of columns in each output is the same as the number of columns in the input.

Each output port has the same frame period as the input. The reduction in the output sample rates results from the smaller output frame sizes, as shown in the example below for a four-channel input to a three-level filter bank.

Latency

Zero Latency. The Wavelet Analysis block has no tasking latency for frame-based operation, which is always single-rate. The block therefore analyzes the first input sample (received at $t=0$) to produce the first output sample at each port.

Nonzero Latency. For sample-based operation, the Wavelet Analysis block is multirate and has 2^{n-1} samples of latency in both Simulink tasking modes. As a result, the block repeats a zero initial condition in each channel for the first

Wavelet Analysis

2^{n-1} output samples, before propagating the first analyzed input sample (computed from the input received at $t=0$).

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Dialog Box

The parameters displayed in the dialog box vary for different wavelet types. Only some of the parameters listed below are visible in the dialog box at any one time.

Wavelet name

The wavelet used in the analysis.

Wavelet order

The order for the Daubechies, Symlets, and Coiflets wavelets. This parameter is available only when one of these wavelets is selected in the Wavelet name menu.

Filter order [synthesis / analysis]

The filter orders for the synthesis and analysis stages of the Biorthogonal and Reverse Biorthogonal wavelets. For example, [2 / 6] selects a second-order synthesis stage and a sixth-order analysis stage. The Filter order parameter is available only when one of the above wavelets is selected in the Wavelet name menu.

Number of levels

Wavelet Analysis

The number of filter bank levels. An n-level structure has $n+1$ outputs.

References	Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994. Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Vellesley-Cambridge Press, 1996. Prentice Hall, 1993.

Supported • Double-precision floating point
Data Types
See Also

Dyadic Analysis Filter Bank Wavelet Synthesis wfilters

DSP Blockset
DSP Blockset
Wavelet Toolbox

Wavelet Synthesis

Note The Wavelet Synthesis block is still supported but is likely to be obsoleted in a future release. We recommend replacing this block with the IDWT block.

Purpose

Library

Description

Reconstruct a signal from its multirate bandlimited components (requires the Wavelet Toolbox).
dspobslib
The Wavelet Synthesis block uses the wfilters function from the Wavelet Toolbox to reconstruct a signal that was decomposed by the Wavelet Analysis block. The reconstruction or synthesis process is the inverse of the analysis process, and restores the original signal by upsampling, filtering, and summing the bandlimited inputs in stages corresponding to the analysis process. An n-level synthesis filter bank structure is shown below, where n is specified by the Number of levels parameter.

Wavelet Synthesis Filter Bank, n Levels

At each level, the two bandlimited inputs (one low-frequency, one high-frequency, both with the same sample rate) are upsampled by a factor of 2 to match the sample rate of the input to the next stage. They are then filtered
by a highpass (HP) and lowpass (LP) filter pair with coefficients calculated to cancel (in the subsequent summation) the aliasing introduced in the corresponding analysis filter stage. The output from each (upsample-filter-sum) level has twice the bandwidth and twice the sample rate of the input to that level.

For perfect reconstruction, the Wavelet Synthesis and Wavelet Analysis blocks must have the same parameter settings.

Filter Coefficients

The filter coefficients for the highpass and lowpass filters are computed by the Wavelet Toolbox function wfilters, based on the wavelet specified in the Wavelet name parameter. The table below lists the available options.

Wavelet Name	Sample Wavelet Function Syntax
Haar	wfilters ('haar')
Daubechies	wfilters ('db4')
Symlets	wfilters ('sym3')
Coiflets	wfilters ('coif1')
Biorthogonal	wfilters ('bior3.1')
Reverse Biorthogonal	wfilters ('rbio3.1')
Discrete Meyer	wfilters ('dmey')

The Daubechies, Symlets, and Coiflets options enable a secondary Wavelet order parameter that allows you to specify the wavelet order. For example, if you specify a Daubechies wavelet with Wavelet order equal to 6, the Wavelet Synthesis block calls the wfilters function with input argument 'db6'.

The Biorthogonal and Reverse Biorthogonal options enable a secondary Filter order [synthesis / analysis] parameter that allows you to independently specify the wavelet order for the analysis and synthesis filter stages. For example, if you specify a Biorthogonal wavelet with Filter order [synthesis / analysis] equal to [2 / 6], the Wavelet Synthesis block calls the wfilters function with input argument 'bior2.6'.

Wavelet Synthesis

See the Wavelet Toolbox documentation for more information about the wfilters function. If you want to explicitly specify the FIR coefficients for the synthesis filter bank, use the Dyadic Synthesis Filter Bank block.

Tree Structure

The wavelet tree structure has $n+1$ inputs, where n is the number of levels. The sample rate and bandwidth of the output are twice the sample rate and bandwidth of the top input. The sample rate and bandwidth of each additional input (except the last) are half that of the input to the previous level.

$$
\begin{array}{ll}
T_{s i, k+1}=2 T_{s i, k} & 1 \leq k<n \\
B W_{k+1}=\frac{B W_{k}}{2} & 1 \leq k<n
\end{array}
$$

The bottom two inputs (u_{n} and u_{n+1}) should have the same sample rate and bandwidth since they are processed by the same level.

$$
\begin{aligned}
& T_{s i, n+1}=T_{s i, n} \\
& B W_{n+1}=B W_{n}
\end{aligned}
$$

Note that in frame-based mode, the sample period of input u_{k} is reflected by its frame size, $\mathrm{M}_{\mathrm{i}, k}$, rather than by its frame rate.

$$
\begin{array}{ll}
M_{i, k+1} & =\frac{M_{i, k}}{2} \\
M_{i, n+1} & =M_{i, n}
\end{array}
$$

Sample-Based Operation

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and the block filters each channel independently over time. The output is the same size as the input at each port, one output channel for each input channel. As described earlier, each input port has a different sample period.

The figure below shows the input and output sample periods for the four 64 -channel sample-based inputs to a three-level filter bank. The fastest input has a period of 2 , so the output period is 1 .

Frame-Based Operation

An M_{i}-by-N frame-based matrix input is treated as N independent channels, and the block filters each channel independently over time. The number of columns in the output is the same as the number of columns in the input.
All inputs must have the same frame period, which is also the output frame period. The different input sample rates should be represented by the input frame sizes: If the input to the top port has frame size M_{i}, the input to the second-from-top port should have frame size $M_{i} / 2$, the input to the third-from-top port should have frame size $\mathrm{M}_{\mathrm{i}} / 4$, and so on. The input to the bottom port should have the same frame size as the second-from-bottom port. The increase in the sample rate of the output is also represented by its frame size, which is twice the largest input frame size.

The relationship between sample periods, frame periods, and frame sizes is shown below for a four-channel frame-based input to a 3-level filter bank.

Wavelet Synthesis

Latency

Zero Latency. The Wavelet Synthesis block has no tasking latency for frame-based operation, which is always single-rate. The block therefore uses the first input samples (received at $t=0$) to synthesize the first output sample.

Nonzero Latency. For sample-based operation, the Wavelet Synthesis block is multirate and has the following tasking latencies:

- 2^{n}-2 samples in Simulink's single-tasking mode
- 2^{n} samples in Simulink's multitasking mode

In the above cases, the block repeats a zero initial condition in each channel for the first D output samples, where D is the latency shown above. For example, in single-tasking mode the block generates $2^{n}-2$ zero-valued output samples in each channel before propagating the first synthesized output sample (computed from the inputs received at $t=0$).

Note For more information on latency and the Simulink tasking modes, see "Excess Algorithmic Delay (Tasking Latency)" on page 2-58 and the topic on models with multiple sample rates in the Real-Time Workshop documentation.

Dialog Box

The parameters displayed in the dialog box vary for different wavelet types. Only some of the parameters listed below are visible in the dialog box at any one time.

Wavelet Synthesis

Wavelet name

The wavelet used in the synthesis.

Wavelet order

The order for the Daubechies, Symlets, and Coiflets wavelets. This parameter is available only when one of these wavelets is selected in the Wavelet name menu.

Filter order [synthesis / analysis]

The filter orders for the synthesis and analysis stages of the Biorthogonal and Reverse Biorthogonal wavelets. For example, [2 / 6] selects a second-order synthesis stage and a sixth-order analysis stage. The Filter order parameter is available only when one of the above wavelets is selected in the Wavelet name menu.

Number of levels

The number of filter bank levels. An n-level structure has $n+1$ outputs.

References	Fliege, N. J. Multirate Digital Signal Processing: Multirate Systems, Filter
	Banks, Wavelets. West Sussex, England: John Wiley \& Sons, 1994.
	Strang, G. and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA:
	Wellesley-Cambridge Press, 1996.
	Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ:
	Prentice Hall, 1993.

Supported

- Double-precision floating point Data Types

See Also

Dyadic Synthesis Filter Bank Wavelet Analysis
wfilters

DSP Blockset
DSP Blockset
Wavelet Toolbox

Purpose	Compute and/or apply window to input signal
Library	Signal Operations The Window Function block computes a window, and/or applies a window to an input signal. This block supports real and complex floating-point and fixed-point inputs.
Operation Modes	

In this mode, a length-M 1-D vector input is treated as an M-by-1 matrix. The output y always has the same dimension as the input. When the input is frame based, the output is frame based; otherwise, the output is sample based.

- Generate window

In this mode the block generates a sample-based 1-D window vector w with length M specified by the Window length parameter. The In port is disabled for this mode.

- Generate and apply window

In this mode, the block computes an M-by-1 window vector w and multiplies it element-wise with each of the N channels in the M-by-N input matrix u. This is equivalent to the following MATLAB code.

```
y = repmat (w,1,N) .* u % Equivalent MATLAB code
```

In this mode, a length-M 1-D vector input is treated as an M-by-1 matrix. The block produces two outputs:

- At the Out port, the block produces the result of the multiplication y, which has the same dimension as the input. When the input is frame

Window Function

based, the output y is frame based; otherwise, the output y is sample based.

- At the Win port, the block produces the M-by-1 window vector w. Output w is always sample based.

Window Type

The available window types are shown in the table below. For complete information about the window functions, consult the Signal Processing Toolbox documentation.

Window Type	Description
Bartlett	Computes a Bartlett window. w = bartlett (M)
Blackman	Computes a Blackman window. w = blackman (M)
Boxcar	Computes a rectangular window. w = rectwin (M)
Chebyshev	Computes a Chebyshev window with stopband ripple R. w = chebwin (M, R)
Hamming	Computes a Hamming window. w = hamming (M)
Hann	Computes a Hann window (also known as a Hanning window). w = hann (M)
Hanning	Obsolete. This window option is included only for compatibility with older models. Use the Hann option instead of Hanning whenever possible.
Kaiser	Computes a Kaiser window with Kaiser parameter beta. w = kaiser (M, beta)

Window Type Description

Triang Computes a triangular window.

$$
\text { w = triang }(M)
$$

User Defined Computes the user-defined window function specified by the entry in the Window function name parameter, usrwin.

```
w = usrwin(M) % Window takes no extra parameters
w = usrwin(M, \mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}) % Window takes extra
parameters {}\mp@subsup{x}{1}{
```


Window Sampling

For the generalized-cosine windows (Blackman, Hamming, Hann, and Hanning), the Sampling parameter determines whether the window samples are computed in a periodic or a symmetric manner. For example, when Sampling is set to Symmetric, a Hamming window of length M is computed as

```
w = hamming(M) % Symmetric (aperiodic) window
```

When Sampling is set to Periodic, the same window is computed as

```
w = hamming(M+1) % Periodic (asymmetric) window
w = w(1:M)
```


Fixed-Point Data Types

The following diagram shows the data types used within the Window block for fixed-point signals for each of the three operating modes.

Window Function

Apply window to input

The input data type comes from the driving block. You can set the window, product output, and output data types in the block dialog. In this mode, the window vector is not output from the block.

Generate window

In this mode, the block acts as a source. The window vector is output in the window data type you specify in the block dialog.

Generate and apply window

The input data type comes from the driving block. You can set the window, product output, and output data types in the block dialog. In this mode, the window vector is output from the block.

You can set the window, product output, and output data types in the block dialog as discussed below.

Window Function

Dialog Box

The Main pane of the Window Function block dialog appears as follows:

Operation

Specify the block's operation as discussed in "Operation Modes" on page 9-1131. The port configuration of the block is updated to match the setting of this parameter.

Window type

Specify the type of window to apply as listed in "Window Type" on page 9-1132. Tunable.

Sample Mode

Specify the sample mode for the block, Continuous or Discrete, when it is in Generate Window mode. In the Apply window to output and Generate and apply window modes, the block inherits the sample time from its driving block. Therefore, this parameter is only visible when you select Generate window for the Operation parameter.

Window Function

Sample time

Specify the sample time for the block when it is in Generate window and Discrete modes. In Apply window to output and Generate and apply window modes, the block inherits the sample time from its driving block. This parameter is only visible when you select Discrete for the Sample Mode parameter.

Window length

Specify the length of the window to apply. This parameter is only visible when you select Generate window for the Operation parameter.
Otherwise, the window vector length is computed to match the input frame size, M.

Sampling

Specify the window sampling for generalized-cosine windows. This parameter is only visible when you select Blackman, Hamming, Hann, or Hanning for the Window type parameter. Tunable.

Stopband attenuation in dB

Specify the level of stopband attenuation, R_{s}, in decibels. This parameter is only visible when you select Chebyshev for the Window type parameter. Tunable.

Beta

Specify the Kaiser window β parameter. Increasing β widens the mainlobe and decreases the amplitude of the window sidelobes in the window's frequency magnitude response. This parameter is only visible when you select Kaiser for the Window type parameter. Tunable.

Window function name

Specify the name of the user-defined window function to be calculated by the block. This parameter is only visible when you select User defined for the Window type parameter.

Specify additional arguments to the hamming function

Select to enable the Cell array of additional arguments parameter, when the user-defined window requires parameters other than the window length. This parameter is only visible when you select User defined for the Window type parameter.

Cell array of additional arguments

Specify the extra parameters required by the user-defined window function, besides the window length. This parameter is only available when you select the Specify additional arguments to the hamming function parameter. The entry must be a cell array.
The Data types pane of the Window block dialog is discussed in the following sections:

- "Parameters for Generate Window Only Mode" on page 9-1137
- "Parameters for Apply Window Modes" on page 9-1139

Parameters for Generate Window Only Mode

The following parameters are available when the Operation parameter is set to Generate window:

Window Function

Output data type

Specify the output data type in one of the following ways:

- Choose double or single from the list
- Choose Fixed-point to specify the output data type and scaling in the Signed, Word length, Set fraction length in output to, and Fraction length parameters
- Choose User-defined to specify the output data type and scaling in the User-defined data type, Set fraction length in output to, and Fraction length parameters
- Choose Inherit via back propagation to set the output data type and scaling to match the following block

Signed

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned.

Word length

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed - point for the Output data type parameter.

User-defined data type

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from Simulink Fixed Point. This parameter is only visible when you select User-defined for the Output data type parameter.

Set fraction length in output to

Specify the scaling of the fixed-point output by either of the following two methods:

- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

Window Function

This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter, and when the specified output data type is a fixed-point data type.

Fraction length

Specify the fraction length, in bits, of the fixed-point output data type. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

Parameters for Apply Window Modes

The following parameters are available on the Fixed-Point pane when the Operation parameter is set to either Apply window to input or Generate and apply window.

Window Function

Rounding mode

Select the rounding mode for fixed-point operations.
The window vector w does not obey this parameter; it always rounds to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations.
The window vector w does not obey this parameter; it is always saturated.

Window

Choose how you will specify the word length and fraction length of the window vector w.

- When you select Same word length as input, the word length of the window vector elements is the same as the word length of the input. The fraction length is automatically set to the best precision possible.
- When you select Specify word length, you are able to enter the word length of the window vector elements in bits. The fraction length is automatically set to the best precision possible.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the window vector elements in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the window vector elements. This block requires power-of-two slope and a bias of zero.

The window vector does not obey the Rounding mode and Overflow mode parameters; it is always saturated and rounded to Nearest.

Product output

Use this parameter to specify how you would like to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 9-1048 for illustrations depicting the use of the product output data type in this block:

- When you select Inherit via internal rule, the product output word length and fraction length are automatically set according to the following equations:
> ideal product output word length = input word length + window coefficients word length
> ideal product output fraction length $=$ input fraction length + window coefficients fraction length

Note The actual product output word length may be equal to or greater than the calculated ideal product output word length, depending on the settings on the Hardware Implementation pane of the Configuration Parameters dialog box.

- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the product output. This block requires power-of-two slope and a bias of zero.

Output

Choose how you will specify the word length and fraction length of the output of the block:

- When you select Same as product output, these characteristics will match those of the product output.
- When you select Same as input, these characteristics will match those of the input to the block.
- When you select Binary point scaling, you are able to enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you are able to enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of zero.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overriden by the autoscaling tool in the Fixed-Point

Window Function

Settings interface. For more information about the autoscaling tool, refer to "Fixed-Point Settings Interface" in Chapter 8.

Supported Data Types

See Also

FFT
bartlett
blackman
rectwin
chebwin
hamming
hann
kaiser
triang

Signal Processing Blockset
Signal Processing Toolbox

Purpose

Library
Description

Yule AR Estimator ${ }_{\mathrm{G}}$

Compute estimate of autoregressive (AR) model parameters using Yule-Walker method

Estimation / Parametric Estimation

The Yule-Walker AR Estimator block uses the Yule-Walker AR method, also called the autocorrelation method, to fit an autoregressive (AR) model to the windowed input data by minimizing the forward prediction error in the least squares sense. This formulation leads to the Yule-Walker equations, which are solved by the Levinson-Durbin recursion. Block outputs are always nonsingular.

The Yule-Walker AR Estimator block can output the AR model coefficients as polynomial coefficients, reflection coefficients, or both. The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only) representing a frame of consecutive time samples from a single-channel signal, which is assumed to be the output of an AR system driven by white noise. The block computes the normalized estimate of the AR system parameters, $A(z)$, independently for each successive input frame.

$$
H(z)=\frac{\sqrt{G}}{A(z)}=\frac{\sqrt{G}}{1+a(2) z^{-1}+\ldots+a(p+1) z^{-p}}
$$

When you select Inherit estimation order from input dimensions, the order, p, of the all-pole model is one less than the length of the input vector. Otherwise, the order is the value specified by the Estimation order parameter. To guarantee a valid output, you must set the Estimation order parameter to be less than or equal to half the input vector length. The Yule-Walker AR Estimator and Burg AR Estimator blocks return similar results for large frame sizes.

When Output(s) is set to A, port A is enabled. Port A outputs a column vector of length $p+1$ that contains the normalized estimate of the AR model coefficients in descending powers of z

$$
\left[\begin{array}{llll}
1 & a(2) & \ldots & a(p+1)
\end{array}\right]
$$

When Output(s) is set to K , port K is enabled. Port K outputs a length- p column vector whose elements are the AR model reflection coefficients. When Output(s) is set to A and K , both port A and K are enabled, and each port

Yule-Walker AR Estimator

outputs its respective column vector of AR model coefficients. The outputs at both ports A and K are always 1-D vectors.

The square of the model gain, G (a scalar), is provided at port G.
See the Burg AR Estimator block reference page for a comparison of the Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR Estimator, and Yule-Walker AR Estimator blocks.

Dialog Box

Output(s)

The type of AR model coefficients output by the block. The block can output polynomial coefficients (A), reflection coefficients (K), or both (A and K). Nontunable.

Inherit estimation order from input dimensions

When selected, sets the estimation order p to one less than the length of the input vector. Nontunable.

Estimation order

The order of the AR model, p. This parameter is enabled when you do not select Inherit estimation order from input dimensions. Nontunable.

Yule-Walker AR Estimator

References
 Supported Data Types

Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point
A	- Double-precision floating point - Single-precision floating point
K	- Double-precision floating point - Single-precision floating point
G	- Double-precision floating point - Single-precision floating point

The output data type is the same as the input data type. To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Burg AR Estimator
Covariance AR Estimator
Modified Covariance AR Estimator
Yule-Walker Method
aryule

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

Yule-Walker IIR Filter Design

Purpose	Design and apply an IIR filter.
Library	dspobslib
Description	The Yule-Walker IIR Filter Design block designs a recursive (ARMA) digital filter with arbitrary multiband magnitude response, and applies it to a discrete-time input using the Direct-Form II Transpose Filter block. The filter design, which uses the yulewalk function in the Signal Processing Toolbox, performs a least-squares fit to the specified frequency response.

An M-by-N sample-based matrix input is treated as $\mathrm{M} * \mathrm{~N}$ independent channels, and an M-by-N frame-based matrix input is treated as N independent channels. In both cases, the block filters each channel independently over time, and the output has the same size and frame status as the input.

The Band-edge frequency vector parameter is a vector of frequency points in the range 0 to 1 , where 1 corresponds to half the sample frequency. The first element of this vector must be 0 and the last element 1 , and intermediate points must appear in ascending order. The Magnitudes at these frequencies parameter is a vector containing the desired magnitude response at the points specified in the Band-edge frequency vector.

Note that, unlike the Remez FIR Filter Design block, each frequency-magnitude pair specifies the junction of two adjacent frequency bands, so there are no "don't care" regions.

When specifying the Band-edge frequency vector and Magnitudes at these frequencies vectors, avoid excessively sharp transitions from passband to stopband. You may need to experiment with the slope of the transition region to get the best filter design.

For more details on the Yule-Walker filter design algorithm, see the description of the yulewalk function in the Signal Processing Toolbox documentation.

Dialog Box

Function Block Parameters: Yule-Walker IIR Filter Design
Yule-Walker IIR Filter Design (mask) (link) - Yule-Walker IIR filter design. Parameters Filter order: d Band-edge frequency vector (including 0 and 1): $[0.4 .61]$ Magnitudes at these frequencies: $[1100]$ CKancel Help

Yule-Walker IIR Filter Design

Filter order

The order of the filter.

Band-edge frequency vector

A vector of frequency points. The value 1 corresponds to half the sample frequency. The first element of this vector must be 0 and the last element 1. Tunable.

Magnitudes at these frequencies

A vector of frequency response magnitudes corresponding to the points in the Band-edge frequency vector. This vector must be the same length as the Band-edge frequency vector. Tunable.

References Oppenheim, A. V. and R. W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Purpose

Library
Description

Compute parametric estimate of the spectrum using Yule-Walker autoregressive (AR) method

Estimation / Power Spectrum Estimation
The Yule-Walker Method block estimates the power spectral density (PSD) of the input using the Yule-Walker AR method. This method, also called the autocorrelation method, fits an autoregressive (AR) model to the windowed input data by minimizing the forward prediction error in the least squares sense. This formulation leads to the Yule-Walker equations, which are solved by Levinson-Durbin recursion. Block outputs are always nonsingular.

The input is a sample-based vector (row, column, or 1-D) or frame-based vector (column only) representing a frame of consecutive time samples from a single-channel signal. The block's output (a column vector) is the estimate of the signal's power spectral density at $\mathrm{N}_{\mathrm{fft}}$ equally spaced frequency points in the range $\left[0, \mathrm{~F}_{\mathrm{s}}\right.$), where F_{s} is the signal's sample frequency.

When you select Inherit estimation order from input dimensions, the order of the all-pole model is one less that the input frame size. Otherwise, the order is the value specified by the Estimation order parameter. To guarantee a valid output, you must set the Estimation order parameter to be less than or equal to half the input vector length. The spectrum is computed from the FFT of the estimated AR model parameters.

When you select Inherit FFT length from estimation order, $\mathrm{N}_{\mathrm{fft}}$ is specified by (estimation order +1), which must be a power of 2 . When you do not select Inherit FFT length from estimation order, $\mathrm{N}_{\mathrm{fft}}$ is specified as a power of 2 by the FFT length parameter, and the block zero pads or truncates the input to $\mathrm{N}_{\mathrm{fft}}$ before computing the FFT. The output is always sample based.

See the Burg Method block reference for a comparison of the Burg Method, Covariance Method, Modified Covariance Method, and Yule-Walker AR Estimator blocks. The Yule-Walker AR Estimator and Burg Method blocks return similar results for large buffer lengths.

Yule-Walker Method

Dialog Box

Inherit estimation order from input dimensions

When selected, sets the estimation order to one less than the length of the input vector.

Estimation order

The order of the AR model. This parameter is enabled when you do not select Inherit estimation order from input dimensions.

Inherit FFT length from estimation order

When selected, uses the estimation order to determine the number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT. Sets $\mathrm{N}_{\mathrm{fft}}$ equal to (estimation order +1). Note that $\mathrm{N}_{\mathrm{fft}}$ must be a power of 2, so (estimation order +1) must be a power of 2 .

FFT length

The number of data points, $\mathrm{N}_{\mathrm{fft}}$, on which to perform the FFT. When $\mathrm{N}_{\mathrm{fft}}$ exceeds the input frame size, the frame is zero-padded as needed. This parameter is enabled when you do not select Inherit FFT length from estimation order.

References
Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Marple, S. L., Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice-Hall, 1987.

Supported Data Types

See Also

Burg Method
Covariance Method
Levinson-Durbin
Autocorrelation LPC
Short-Time FFT
Yule-Walker AR Estimator pyulear
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Toolbox

See "Power Spectrum Estimation" on page 6-5 for related information.

Zero Crossing

Purpose \quad Count number of times signal crosses zero in a single time step

Library
Description

Signal Operations
The Zero Crossing block concludes that a signal has passed through zero if it meets any of the following criteria, where x_{i} is the current signal value, x_{i-1} is the previous signal value, and so on:

- $x_{i}<0$ and $x_{i-1}>0$
- $x_{i}>0$ and $x_{i-1}<0$
- For some positive integer $L, x_{i}<0, x_{i-l}=0$, and $x_{i-L-1}>0$, where $0 \leq l \leq L$
- For some positive integer $L, x_{i}>0, x_{i-l}=0$, and $x_{i-L-1}<0$, where $0 \leq l \leq L$.

For the first input value, x_{i-1} and x_{i-2} are zero. The block outputs the number of times the signal crosses zero in a single time step at the Cnt port.

The input to this block must be a real-valued, fixed-point or floating-point, single-channel signal. This means that sample-based signals must be scalars and frame-based signals must be vectors. The block produces an error if the input signal is multichannel.

Example

1 Create the following Simulink model.

Zero Crossing

2 Use the Signal From Workspace block to create a frame-based signal. Set the parameters as follows:

- Signal = [-3:3]'
- Sample time = $1 / 7$
- Samples per frame $=7$
- Form output after final data value by = Cyclic repetition

The block outputs a single frame of the frame-based signal at the first time step, and identical frames at each additional time step.

3 Use the Zero Crossing block to detect the number of zero crossing in each time step. Use the default parameters.

4 Use the Display block to view the number of zero crossings.
5 To run the model for one time step, set the configuration parameters. Open the Configuration Parameters dialog box by selecting Configuration Parameters from the Simulation menu. In the Solver pane, set the parameters as follows:

- Stop time $=0$
- Type = Fixed-step
- Solver = discrete (no continuous states)

Zero Crossing

6 Run the model.
Because the signal passes through zero once during the first time step, the Zero Crossing block finds one zero crossing as shown in the figure below.

7 To run the model for two time steps, change the simulation Stop time to 1 .
8 Run the model.
The Zero Crossing block remembers that the last value of the last frame was 3. Therefore, the signal passes through zero twice during the second time step. It passes through zero while going from 3 to -3 , and it passes through zero again while going from -3 to 3 . The Zero Crossing block finds two zero crossings in the second time step as shown in the figure below.

Dialog Box

Supported Data Types

Port	Supported Data Types
Input	\bullet Double-precision floating-point
	\bullet Single-precision floating-point
	\bullet Fixed point (signed and unsigned)
	$\bullet 8-, 16-$, and 32 -bit signed integers
	$\bullet 8-, 16-$, and 32 -bit unsigned integers
Cnt	$\bullet 32$-bit unsigned integers

Zero Crossing

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also Hit Crossing Simulink

Purpose Library

Description

Alter input dimensions by zero-padding (or truncating) rows and/or columns

Signal Operations

The Zero Pad block changes the dimensions of the input matrix from $\mathrm{M}_{\mathrm{i}}-$ by $-\mathrm{N}_{\mathrm{i}}$ to M_{o}-by- N_{o} by zero-padding or truncating along the columns, rows, or columns and rows. Use the Pad along parameter to specify the dimensions to change.

Using the Pad signal at parameter, you can choose to pad your input matrix at the end or the beginning of a row and/or column.

The Number of output rows and/or Number of output columns parameters refer to the dimensions of the output, M_{o} and N_{o}. You can set these parameters to User-specified or Next power of two. When you choose User-specified, enter a scalar value in the Specified number of output rows and/or Specified number of output columns parameters. When you choose Next power of two, the block pads the input matrix along the columns and/or rows until the length of the columns and/or rows is equal to a power of two. When the length of the input matrix's columns and/or rows is already equal to a power of two, the block does not pad the input matrix.

When you choose User-specified for the Number of output rows and/or Number of output columns parameters, you can specify a scalar value in the Specified number of output rows and/or Specified number of output columns parameters that truncates the size of your input matrix. The following options are available for the Action when truncation occurs parameter:

- None - Select this option when you do not want to be notified that the input matrix is truncated.
- Warning - Choose this option when you want a warning to be displayed in the MATLAB Command Window when the input matrix is truncated.
- Error - Click this option when you want an error dialog box to be displayed and the simulation terminated when the input matrix is truncated.

The behavior of the Pad block and Zero Pad block is identical, with the exception that the Pad block can pad the input matrix with values other than zero. See the Pad block reference page for more information on the behavior of the Pad block.

Zero Pad

Example

In the model below, the 3-by-3 input is zero-padded along the column dimension to 5-by-3. The parameter settings in the Zero Pad block are

- Pad signal at: End
- Pad along: Columns
- Number of output rows: User - specified
- Specified number of output rows $=5$
- Action when truncation occurs: None

The following figure shows the result of running the model.

Dialog Box

Pad signal at

The input matrix can be padded at the beginning of the rows and/or columns or at the end of the rows and/or columns.

Pad along

The direction along which to pad or truncate. Columns specifies that the row dimension should be changed to M_{0}. Rows specifies that the column dimension should be changed to N_{o}. Columns and rows specifies that both column and row dimensions should be changed. None disables padding and truncation and passes the input through to the output unchanged.

Number of output rows

The total number of output rows can be User-specified or Next power of two. When you select User-specified, type a scalar value in the Specified Number of output rows parameter. When you select Next power of two, the block pads the columns of the input matrix until the number of rows is

Zero Pad

equal to a power of two. When the number of rows is already equal to a power of two, the block does not pad the input matrix.

Specified number of output rows

The desired number of rows in the output, M_{0}. This parameter is enabled when you select Columns or Columns and rows in the Pad along menu and User-specified is chosen in the Number of output rows parameter.

Number of output columns

The total number of output columns. This parameter is enabled when you select Rows or Columns and rows in the Pad along menu. When you select User-specified, type a scalar value in the Specified Number of output columns parameter. When you select Next power of two, the block pads the rows of the input matrix until the number of columns is equal to a power of two. When the number of columns is already equal to a power of two, the block does not pad the input matrix.

Specified number of output columns

The desired number of columns in the output, N_{0}. This parameter is enabled when you select Rows or Columns and rows in the Pad along menu and User-specified is chosen in the Number of output columns parameter.

Action when truncation occurs

Choose None when you do not want to be notified that the input matrix is truncated. Select Warning to display a warning when the input matrix is truncated. Choose Error when you want an error dialog box to be displayed and the simulation terminated when the input matrix is truncated.

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating-point - Single-precision floating-point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Output	- Double-precision floating-point - Single-precision floating-point - Fixed point (signed only) - Custom data types - Boolean - 8 -, 16 -, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers

To learn how to convert your data types to the above data types in MATLAB and Simulink, see "Supported Data Types and How to Convert to Them" on page 7-2.

See Also

Matrix Concatenation
Pad
Repeat
Submatrix
Upsample
Variable Selector

Simulink
Signal Processing Blockset

Zero Pad

Function Reference

Functions—Alphabetical List (p. 10-2) Alphabetical list of Signal Processing Blockset functions

Functions-Alphabetical List

This section contains function reference pages listed alphabetically.

Purpose	Display library link information for blocks linked to the Signal Processing Blockset
Syntax	dsp_links () dsp_links (sys)
Description	The dsp_links function displays and returns library link information for blocks linked to the Signal Processing Blockset libraries.
Signal Processing Blockset blocks can be obsolete, deprecated, or current. Obsolete blocks are blocks that are no longer supported. They might or might not work properly. Deprecated blocks are still supported but are likely to become obsolete in a future release. Current blocks are supported and represent the latest block functionality.	
dsp_links() returns a structure with three elements for the current model. Each element represents one of the three block categories and contains a cell array of strings. Each string is the name of a library block in the current model.	
See Also	dsp_links (sys) returns a structure with three elements for the named system.
liblinks	

dsplib

Purpose Open the main Signal Processing Blockset library

Syntax dsplib

Description dsplib opens the current version of the main Signal Processing Blockset library.

Purpose

Syntax dspstartup

Description

Configure the Simulink environment for signal processing systems
dspstartup configures a number of Simulink environment parameters with settings appropriate for a typical DSP project. When the Simulink environment has successfully been configured, the function displays the following message in the command window.

Changed default Simulink settings for DSP systems (dspstartup.m).
To automatically configure the Simulink environment at startup, add a call to dspstartup.m from your startup.m file. If you do not have a startup.m file on your path, you can create one from the startupsav.m template in the toolbox/local directory.

To edit startupsav.m, simply replace the load matlab.mat command with a call to dspstartup.m, and save the file as startup.m. The result should look like this.

```
%STARTUP Startup file
% This file is executed when MATLAB starts up,
% if it exists anywhere on the path.
dspstartup;
```

For more information, see the description for the startup command in the MATLAB documentation and "Configuring Simulink for Signal Processing Models" in Getting Started with the Signal Processing Blockset.
The dspstartup.m script sets the following Simulink environment parameters. See Appendix A, "Model and Block Parameters," in the Simulink documentation for complete information about a particular setting.

Parameter	Setting
SingleTaskRate TransMsg	error
Solver	fixedstepdiscrete
SolverMode	SingleTasking

Parameter	Setting
StartTime	0.0
StopTime	inf
FixedStep	auto
SaveTime	off
SaveOutput	off
AlgebraicLoopMsg	error
InvariantConstants	on

Purpose	Display library link information for blocks linked to the Signal Processing Blockset
Syntax	liblinks liblinks (sys) liblinks (sys, lib) liblinks (sys, lib, clrs) blks $=$ liblinks (...)
Description	Please see the command line help for liblinks. Type help liblinks
in the MATLAB command window.	

rebuffer_delay

Purpose

Syntax

Description

Compute the number of samples of delay introduced by buffering and unbuffering operations
d = rebuffer_delay(f, n, m)
d = rebuffer_delay(f,n,m,'singletasking')
d = rebuffer_delay (f, n, m) returns the delay (in samples) introduced by the buffering and unbuffering blocks in multitasking operations, where f is the input frame size, n is the Output buffer size parameter setting, and m is the Buffer overlap parameter setting.

The blocks whose delay can be computed by rebuffer_delay are

- Buffer
- Unbuffer
d = rebuffer_delay (f, n, m, 'singletasking') returns the delay (in samples) introduced by these blocks in single-tasking operations.

The table below shows the appropriate rebuffer_delay parameter values to use in computing delay for the two blocks.

Block	Parameter Values
Buffer	$f=$ input frame size $(f=1$ for sample-based mode $)$
	$n=$ Output buffer size
	$m=$ Buffer overlap
Unbuffer	$f=$ input frame size
	$n=1$
	$m=0$

See Also
Buffer
Unbuffer

Signal Processing Blockset
Signal Processing Blockset
arithmetic shift
bias
binary number Value represented in a system of numbers that has two as its base and that uses 1's and 0's (bits) for its notation.

See also bit

Symbol in the shape of a period that separates the integer and fractional parts of a binary number. Bits to the left of the binary point are integer bits and/or sign bits, and bits to the right of the binary point are fractional bits.

See also binary number, bit, fraction, integer, radix point
Scaling of a binary number that results from shifting the binary point of the number right or left, and which therefore can only occur by powers of two.
See also binary number, binary point, scaling
Fixed-length sequence of bits (1's and 0's). In digital hardware, numbers are stored in binary words. The way in which hardware components or software functions interpret this sequence of 1's and 0's is described by a data type.
See also bit, data type, word

bit	Smallest unit of information in computer software or hardware. A bit can have the value 0 or 1 .
ceiling (round toward)	Rounding mode that rounds to the closest representable number in the direction of positive infinity. This is equivalent to the ceil mode in Fixed-Point Toolbox.
	See also convergent rounding, floor (round toward), nearest (round toward), rounding, truncation, zero (round toward)
contiguous binary point	Binary point that occurs within the word length of a data type. For example, if a data type has four bits, its contiguous binary point must be understood to occur at one of the following five positions:
	. 0000
	0.000
	00.00
	000.0
	0000.
	See also data type, noncontiguous binary point, word length
convergent rounding	Rounding mode that rounds to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 0 .
	See also ceiling (round toward), floor (round toward), nearest (round toward), rounding, truncation, zero (round toward)
data type	Set of characteristics that define a group of values. A fixed-point data type is defined by its word length, its fraction length, and whether it is signed or unsigned. A floating-point data type is defined by its word length and whether it is signed or unsigned.
	See also fixed-point representation, floating-point representation, fraction length, word length
data type override	Parameter in the Fixed-Point Settings interface that allows you to set the output data type and scaling of fixed-point blocks on a system or subsystem level.
	See also data type, scaling

Glossary-2

[^6]| | real-world value $=$ mantissa $\times 2^{\text {exponent }}$ |
| :---: | :---: |
| | 2. Floating-point data types are defined by their word length. |
| | See also data type, exponent, mantissa, precision, range, word length |
| floor (round toward) | Rounding mode that rounds to the closest representable number in the direction of negative infinity. |
| | See also ceiling (round toward), convergent rounding, nearest (round toward), rounding, truncation, zero (round toward) |
| fraction | Part of a fixed-point number represented by the bits to the right of the binary point. The fraction represents numbers that are less than one. |
| | See also binary point, bit, fixed-point representation |
| fraction length | Number of bits to the right of the binary point in a fixed-point representation of a number. |
| | See also binary point, bit, fixed-point representation, fraction |
| fractional slope | Part of the numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as |
| | real-world value $=($ slope \times integer $)+$ bias |
| | where the slope can be expressed as |
| | slope $=$ fractional slope $\times 2^{\text {exponent }}$ |
| | The term slope adjustment is sometimes used as a synonym for fractional slope. |
| | See also bias, exponent, fixed-point representation, integer, slope |
| guard bits | Extra bits in either a hardware register or software simulation that are added to the high end of a binary word to ensure that no information is lost in case of overflow. |
| | See also binary word, bit, overflow |
| integer | 1. Part of a fixed-point number represented by the bits to the left of the binary point. The integer represents numbers that are greater than or equal to one. |
| | 2. Also called the "stored integer." The raw binary number, in which the binary point is assumed to be at the far right of the word. The integer is part of the |

Glossary-4

numerical representation used to express a fixed-point number. Fixed-point numbers can be represented as

$$
\begin{aligned}
& \text { real-world value }=2^{- \text {fraction length }} \times \text { integer } \\
& \text { or } \\
& \text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
\end{aligned}
$$

where the slope can be expressed as

$$
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
$$

See also bias, fixed-point representation, fractional slope, integer, real-world value, slope
integer length Number of bits to the left of the binary point in a fixed-point representation of a number.

See also binary point, bit, fixed-point representation, fraction length, integer

least significant
 bit (LSB)

Bit in a binary word that can represent the smallest value. The LSB is the
logical shift
mantissa
rightmost bit in a big-endian-ordered binary word. The weight of the LSB is related to the fraction length according to

$$
\text { weight of } L S B=2^{- \text {fraction length }}
$$

See also big-endian, binary word, bit, most significant bit
Shift of the bits of a binary word, for which a zero is incorporated into the most significant bit for each bit shift to the right and into the least significant bit for each bit shift to the left.

See also arithmetic shift, binary point, binary word, bit, most significant bit
Part of the numerical representation used to express a floating-point number. Floating-point numbers are typically represented as

$$
\text { real-world value }=\text { mantissa } \times 2^{\text {exponent }}
$$

See also exponent, floating-point representation

most significant bit (MSB)
nearest (round toward)

noncontiguous binary point

```
one's
complement
representation
```

Bit in a binary word that can represent the largest value. The MSB is the leftmost bit in a big-endian-ordered binary word.

See also binary word, bit, least significant bit
Rounding mode that rounds to the closest representable number, with the exact midpoint rounded to the closest representable number in the direction of positive infinity. This is equivalent to the round mode in Fixed-Point Toolbox.

See also ceiling (round toward), convergent rounding, floor (round toward), rounding, truncation, zero (round toward)

Binary point that is understood to fall outside the word length of a data type. For example, the binary point for the following 4 -bit word is understood to occur two bits to the right of the word length,

$$
0000_{-} \text {_ }
$$

thereby giving the bits of the word the following potential values:

$$
2^{5} 2^{4} 2^{3} 2^{2}-
$$

See also binary point, data type, word length
Representation of signed fixed-point numbers. Negating a binary number in one's complement requires a bitwise complement. That is, all 0's are flipped to 1's and all 1's are flipped to 0's. In one's complement notation there are two ways to represent zero. A binary word of all 0's represents "positive" zero, while a binary word of all 1's represents "negative" zero.

See also binary number, binary word, sign/magnitude representation, signed fixed-point, two's complement representation

overflow

padding
precision

Situation that occurs when the magnitude of a calculation result is too large for the range of the data type being used. In many cases you can choose to either saturate or wrap overflows.

See also saturation, wrapping
Extending the least significant bit of a binary word with one or more zeros.
See also least significant bit

1. Measure of the smallest numerical interval that a fixed-point data type and scaling can represent, determined by the value of the number's least significant

Glossary-6

Q format
 quantization
 quantization error
 radix point
 Representation used by Texas Instruments to encode signed two's complement fixed-point data types. This fixed-point notation takes the form
 Qm.n
 where
 - Q indicates that the number is in Q format.
 - m is the number of bits used to designate the two's complement integer part of the number.
 - n is the number of bits used to designate the two's complement fractional part of the number, or the number of bits to the right of the binary point.
 In Q format notation, the most significant bit is assumed to be the sign bit.
 See also binary point, bit, data type, fixed-point representation, fraction, integer, two's complement
 Representation of a value by a data type that has too few bits to represent it exactly.
 See also bit, data type, quantization error
 Error introduced when a value is represented by a data type that has too few bits to represent it exactly, or when a value is converted from one data type to a shorter data type. Quantization error is also called quantization noise.
 See also bit, data type, quantization
 Symbol in the shape of a period that separates the integer and fractional parts of a number in any base system. Bits to the left of the radix point are integer and/or sign bits, and bits to the right of the radix point are fraction bits.

bit. The precision is given by the slope, or the number of fractional bits. The term resolution is sometimes used as a synonym for this definition.
2. Measure of the difference between a real-world numerical value and the value of its quantized representation. This is sometimes called quantization error or quantization noise.

See also data type, fraction, least significant bit, quantization, quantization error, range, slope

See also binary point, bit, fraction, integer, sign bit

range	Span of numbers that a certain data type can represent.
	See also data type, precision
real-world value	Stored integer value with fixed-point scaling applied. Fixed-point numbers can be represented as
	real-world value $=2^{\text {-fraction length }} \times$ integer
	or
	real-world value $=($ slope \times integer $)+$ bias
	where the slope can be expressed as
	slope $=$ fractional slope $\times 2^{\text {exponent }}$
	See also integer
resolution	See precision
rounding	Limiting the number of bits required to express a number. One or more least significant bits are dropped, resulting in a loss of precision. Rounding is necessary when a value cannot be expressed exactly by the number of bits designated to represent it.
	See also bit, ceiling (round toward), convergent rounding, floor (round toward), least significant bit, nearest (round toward), precision, truncation, zero (round toward)
saturation	Method of handling numeric overflow that represents positive overflows as the largest positive number in the range of the data type being used, and negative overflows as the largest negative number in the range.
	See also overflow, wrapping
scaling	1. Format used for a fixed-point number of a given word length and signedness. The slope and bias together form the scaling of a fixed-point number.
	2. Changing the slope and/or bias of a fixed-point number without changing the stored integer.
	See also bias, fixed-point representation, integer, slope
shift	Movement of the bits of a binary word either toward the most significant bit ("to the left") or toward the least significant bit ("to the right"). Shifts to the

Glossary-8

sign bit Bit (or bits) in a signed binary number that indicates whether the number is

sign bitpositive or negative.
See also binary number, bit
sign extension Addition of bits that have the value of the most significant bit to the high end of a two's complement number. Sign extension does not change the value of the binary number.
See also binary number, guard bits, most significant bit, two's complement representation, word
sign/magnitude representation
Representation of signed fixed-point or floating-point numbers. In sign/magnitude representation, one bit of a binary word is always the dedicated sign bit, while the remaining bits of the word encode the magnitude of the number. Negation using sign/magnitude representation consists of flipping the sign bit from 0 (positive) to 1 (negative), or from 1 to 0 .
See also binary word, bit, fixed-point representation, floating-point representation, one's complement representation, sign bit, signed fixed-point, two's complement representation
Fixed-point number or data type that can represent both positive and negative numbers.
See also data type, fixed-point representation, unsigned fixed-point
Part of the numerical representation used to express a fixed-point number. Along with the bias, the slope forms the scaling of a fixed-point number. Fixed-point numbers can be represented as
real-world value $=($ slope \times integer $)+$ bias
where the slope can be expressed as

$$
\text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
$$

See also bias, fixed-point representation, fractional slope, integer, scaling, [Slope Bias]
right can be either logical, where the spaces emptied at the front of the word with each shift are filled in with zeros, or arithmetic, where the word is sign extended as it is shifted to the right.

See also arithmetic shift, logical shift, sign extension

slope

 adjustmentstored integer
trivial scaling

truncation

two's
complement representation

See fractional slope

Representation used to define the scaling of a fixed-point number.
See also bias, scaling, slope
See integer
Scaling that results in the real-world value of a number being simply equal to its stored integer value:

```
real-world value = integer
```

In [Slope Bias] representation, fixed-point numbers can be represented as

$$
\text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
$$

In the trivial case, slope $=1$ and bias $=0$.
In terms of binary point-only scaling, the binary point is to the right of the least significant bit for trivial scaling, meaning that the fraction length is zero:

$$
\text { real-world value }=\text { integer } \times 2^{- \text {fraction length }}=\text { integer } \times 2^{0}
$$

Scaling is always trivial for pure integers, such as int8, and also for the true floating-point types single and double.

See also bias, binary point, binary point-only scaling, fixed-point representation, fraction length, integer, least-significant bit, scaling, slope, [Slope Bias]
Rounding mode that drops one or more least significant bits from a number.
See also ceiling (round toward), convergent rounding, floor (round toward), nearest (round toward), rounding, zero (round toward)

Common representation of signed fixed-point numbers. Negation using signed two's complement representation consists of a translation into one's complement followed by the binary addition of a one.
See also binary word, one's complement representation, sign/magnitude representation, signed fixed-point

Glossary-10

unsigned fixed-point	Fixed-point number or data type that can only represent numbers greater than or equal to zero.
	See also data type, fixed-point representation, signed fixed-point
word	Fixed-length sequence of binary digits (1's and 0's). In digital hardware, numbers are stored in words. The way hardware components or software functions interpret this sequence of 1 's and 0 's is described by a data type.
	See also binary word, data type
word length	Number of bits in a binary word or data type.
	See also binary word, bit, data type
wrapping	Method of handling overflow. Wrapping uses modulo arithmetic to cast a number that falls outside of the representable range the data type being used back into the representable range.
	See also data type, overflow, range, saturation
zero (round toward)	Rounding mode that rounds to the closest representable number in the direction of zero. This is equivalent to the fix mode in Fixed-Point Toolbox.
	See also ceiling (round toward), convergent rounding, floor (round toward), nearest (round toward), rounding, truncation

A

accumulator
fixed-point parameters 8-25
Acoustic Noise Cancellation demo 3-53
acquiring data
blocks for 9-17
adaptive filter designs
FIR 9-563
Kalman 9-529
LMS 9-563
RLS 9-809
adaptive filters 3-53
creating 3-54
customizing 3-60
add
samples 2-26
addition
cumulative 9-185
algebraic loop errors 2-59
algorithmic delay 2-51
adjustable 2-54
and initial conditions 2-54
basic 2-54
excess 2-58
relation to latency $2-58$
zero 2-51
Analog Filter Design block 9-21
analog filter designs 9-21
See also filter designs
analytic signal 9-25
Analytic Signal block 9-25
angular frequency 1-4
See also periods
arithmetic operations
fixed-point 8-12
arrays
importing 1-60
attenuation
stopband 3-51
audio
From Wave Device block 9-453
From Wave File block 9-459
To Wave Device block 9-941
To Wave File block 9-947
autocorrelation
and Levinson-Durbin recursion 9-551
of a real vector 9-27
sequence 9-1149
Autocorrelation block 9-27
Autocorrelation LPC block 9-36
autocorrelation method 9-1143
auto-promoting rates $1-10$
autoregressive models, using
Burg AR Estimator block 9-59
Burg Method block 9-63
Covariance AR Estimator block 9-165
Covariance Method block 9-168
Modified Covariance AR Estimator block 9-686
Modified Covariance Method block 9-688
Yule-Walker AR Estimator block 9-1143
Yule-Walker Method block 9-1149
avoiding unintended rate conversion 2-19

B

Backward Substitution block 9-40
band configurations 3-51
bandpass filter designs
analog, available parameters 3-51
using Analog Filter Design block 9-21
bandstop filter designs
analog, available parameters 3-51
using Analog Filter Design block 9-21
Bartlett windows 9-1132
basic
statistical operations 6-2
basic algorithmic delay 2-54
benefits
frame-based processing 2-50
binary clock signals 9-691
bins
histogram 9-467
bit-reversed order 9-379
Blackman windows 9-1132
Block LMS Filter block 9-45
block parameters
fixed-point 8-21
block rate types 2-59
blocks
multirate 2-59
single-rate 2-59
Buffer block 9-52
initial state of 9-55
Buffer overlap parameter
negative values for 2-38
buffering 2-26
altering the sample period of the signal 2-31
altering the signal 2-27
blocks for 9-13
Buffer block 9-52
causing unintentional rate conversions 2-25
Delay Line block 9-222
first input, first output (FIFO) register 9-770
frame-based signals into other frame-based signals 2-41
internal 2-37
last input, first output (LIFO) register 9-898
preserving the sample period of the signal 2-28

Queue block 9-770
sample-based signals into frame-based signals 2-34
sample-based signals into frame-based signals with overlap 2-38
Stack block 9-898
Burg AR Estimator block 9-59
Burg Method block 9-63
power spectrum estimation 9-63
butter function 3-52
Butterworth filter designs
analog 3-51
band configurations for 3-51
using Analog Filter Design block 9-21

C

casts
fixed-point 8-17
changing
frame size 2-16
size of frames 9-52
the frame size of a signal 2-28
channels
of a sample-based signal 1-13
cheby 1 function 3-52
cheby2 function 3-52
Chebyshev type I filter designs
analog 3-51
band configurations for 3-51
using Analog Filter Design block 9-21
Chebyshev type II filter designs
analog 3-51
band configurations for 3-51
using Analog Filter Design block 9-21
Chebyshev windows 9-1132
Check Signal Attributes block 9-68

Index-2

Chirp block 9-76
Cholesky Factorization block 9-94
Cholesky Inverse block 9-98
Cholesky Solver block 9-100
choosing
filter design blocks 3-19
clocks
binary 9-691
multiphase 9-691
code generation
fixed-point 8-3
generic real-time (GRT) 2-51
combining
frame-based signals 1-39
multichannel sample-based signals 1-36
single-channel sample-based signals 1-33
complex analytic signal 9-25
Complex Cepstrum block 9-121
Complex Exponential block 9-123
complex exponentials 9-123
complex multiplication
fixed-point 8-15
computational delay 2-49
reducing 2-50
computing
frequency distributions 9-467
histograms 9-467
concatenating
frame-based signals 1-39
multichannel sample-based signals 1-36
single-channel sample-based signals 1-33
concepts
frame rate
sample rate
configuring
vector quantization model 5-13
Constant Diagonal Matrix block 9-124

Constant Ramp block 9-128
constants
matrix 9-124
ramp 9-128
continuous-time
discretizing signals 1-11
signals 1-11
source blocks 1-11
control signals, for
Triggered Shift Register block 9-953
Triggered Signal From Workspace block 9-961
Triggered Signal To Workspace block 9-965
controller canonical forms 9-22
conventions
time and frequency 1-3
Convert 1-D to 2-D block 9-134
Convert 2-D to 1-D block 9-137
converting
frame rates 2-14
frame-based signals into other frame-based signals 2-41
sample-based signals into frame-based signals 2-34
sample-based signals into frame-based signals with overlap 2-38
See also rate conversion
convolution
of two real vectors 9-139
Convolution block 9-139
correlation
of two real vectors 9-147
Correlation block 9-147
correlation matrices 9-530
Counter block 9-155
Covariance AR Estimator block 9-165
Covariance Method block 9-168
spectral analysis 9-168

Create Diagonal Matrix block 9-171
creating
1-D vector signal 1-21
adaptive filters 3-54
fixed-point filters 3-32
frame-based signals 1-26
multichannel frame-based signals 1-39
multichannel sample-based signals 1-33
sample-based signals 1-19
scalar quantizers 5-5
vector quantizers 5-11
Cumulative Product block 9-173
Cumulative Sum block 9-185
customizing
adaptive filters 3-60

D

data types
labeling signals with 7-14
Simulink custom data type 7-15
dB
converting to 9-196
dB Conversion block 9-196
dB Gain block 9-199
dBm
converting to 9-196
DC component of an analytic signal 9-25
DCT block 9-201
DCTs
computing 9-201
decimation
process of 9-400
using FIR Decimation block 9-400
using FIR Rate Conversion block 9-428
deconstructing
multichannel frame-based signals 1-49
multichannel frame-based signals into individual signals 1-49
multichannel sample-based signals 1-43
multichannel sample-based signals into individual signals 1-43
multichannel sample-based signals into other multichannel signals 1-46
delay
algorithmic 2-51
computational 2-49
fractional 9-1026
rebuffer_delay function 10-8
rebuffering 2-44
relation to latency 2-58
Delay block 9-209
Delay Line block 9-222
delete
samples 2-26
demos
Acoustic Noise Cancellation 3-53
LPC Analysis and Synthesis of Speech 5-2
multirate filtering 3-75
designing
adaptive filters 3-54
fixed-point filters 3-32
scalar quantizers 5-5
vector quantizers 5-11
Detrend block 9-227
diagonal matrix constants 9-124
difference
between elements in a vector 9-228
Difference block 9-228
Digital Filter block 9-235
filtering noise with 3-5
Digital Filter Design block 9-282
filtering noise with 3-26
digital frequency

Index-4

defined 1-4
See also periods
discrete cosine transforms 9-201
Discrete Impulse block 9-305
discrete wavelet transform 9-340
discrete-time signals
characteristics 1-4
defined 1-3
terminology 1-3
See also signals
discretizing a continuous-time signal 1-11
display span
Vector Scope Block 9-1081
displaying
blocks for 9-16
frame-based data 9-1081
frequency-domain data 4-9
line widths 2-14
matrices as images 9-646
time-domain data 4-2
Downsample block 9-310
downsampling
Downsample block 9-310
FIR Decimation block 9-400
FIR Rate Conversion block 9-428
See also rate conversion
DSP Constant block 9-319
DSP Fixed-Point Attributes block 9-323
DSP Gain block 9-323, 9-330
DSP Product block 9-323, 9-334
DSP Sum block 9-337
dsplib function 10-4
dspstartup M-file 10-5
DWT block 9-340
Dyadic Analysis Filter Bank block 9-342
Dyadic Synthesis Filter Bank block 9-352

E

Edge Detector block 9-362
elements of a vector
selecting 9-1040
ellip function 3-52
elliptic filter designs
analog 3-51
band configurations for 3-51
using Analog Filter Design block 9-21
errors
algebraic loop 2-59
due to continuous-time input to a discrete-time block 1-11
due to insufficient audio buffer size 9-943
sample-rate mismatch 1-7
estimation
blocks for 9-3
Burg AR Estimator block 9-59
Burg Method block 9-63
Covariance AR Estimator block 9-165
Covariance Method block 9-168
Modified Covariance AR Estimator block 9-686
Modified Covariance Method block 9-688
nonparametric with Magnitude FFT block 9-613
nonparametric with Short-Time FFT block 9-751, 9-854
power spectrum 6-5
Yule-Walker AR Estimator block 9-1143
Yule-Walker Method block 9-1149
Event-Count Comparator block 9-365
events, triggering for
N-Sample Enable block 9-698
N-Sample Switch block 9-702
Sample and Hold block 9-820
Stack block 9-899

Triggered Shift Register block 9-953
Triggered Signal From Workspace block 9-961
Triggered Signal To Workspace block 9-965
examples
latency 2-60
exponentials
complex 9-123
exporting
blocks for 9-16
frame-based signals 1-72
sample-based signals 1-64
using Triggered Signal To Workspace block 9-965
Extract Diagonal block 9-368
Extract Triangular Matrix block 9-369

F

factoring matrices 6-8
Fast Block LMS Filter block 9-372
fast Fourier transform (FFT) 9-377
FDATool
in the Signal Processing Blockset 9-282
FFT block 9-377
using 4-5
FFT length parameter 2-22
FFTs
computing 9-377
overlap-add filtering 9-715
overlap-save filtering 9-719
filter band configurations 3-51
filter design blocks
choosing 3-19
filter designs
available parameters 3-51
butter function 3-52

Butterworth 3-51
cheby 1 function 3-52
cheby2 function 3-52
Chebyshev type I 3-51
Chebyshev type II 3-51
continuous-time 3-51
Digital Filter block 9-235
Digital Filter Design block 9-282
ellip function 3-52
elliptic 3-51
Levinson-Durbin block 9-552
passband ripple 3-51
stopband attenuation 3-51
using Analog Filter Design block 9-21
Filter Realization Wizard 9-390
filter realizations
using Filter Realization Wizard 9-390
filters
adaptive 3-53
blocks for 9-5
creating a highpass filter 3-24
creating a lowpass filter 3-21
Filter Realization Wizard 3-32
filtering noise with Digital Filter blocks 3-5
filtering noise with Digital Filter Design blocks 3-26
fixed-point 8-30
implementing a highpass filter 3-4
implementing a lowpass filter 3-3
multirate 3-67
overlap-add method 9-715
overlap-save method 9-719
FIR
interpolation 9-516
FIR Decimation block 9-400
FIR filter designs
using Levinson-Durbin block 9-552

Index-6

with prescribed autocorrelation sequence 9-552
FIR Interpolation block 9-414
FIR Rate Conversion block 9-428
first-input, first-output (FIFO) registers 9-770
fixed-point attributes, specification
at the block level 8-21
at the system level 8-27
fixed-point block parameters
setting 8-21
fixed-point code generation 8-3
fixed-point data types 8-7
accumulator parameters 8-25
addition 8-14
arithmetic operations 8-12
attributes 8-21
casts 8-17
complex multiplication 8-15
concepts 8-7
filters 8-30
intermediate product parameters 8-24
list of supported blocks 8-5
logging 8-27
modular arithmetic 8-12
multiplication 8-15
output parameters 8-27
overflow handling 8-9
overflow parameter 8-23
precision 8-9
range 8-9
rounding 8-10
rounding parameter 8-23
saturation 8-9
scaling 8-8
subtraction 8-14
supported features 8-32
terminology 8-7
two's complement 8-13
wrapping 8-9
fixed-point development benefits 8-2
fixed-point DSP applications 8-3
fixed-point filters
designing and implementing 3-32
Fixed-Point Settings interface 8-27
fixed-step solvers 1-7
Flip block 9-438
forms
controller canonical 9-22
state-space 9-22
Forward Substitution block 9-440
Frame Conversion 9-442
frame periods
altered by unbuffering 2-44
constant 2-13
converting 2-12
multiple 2-14
related to sample period and frame size 2-3
Simulink Probe block 2-6
See also rate conversion
frame rates
auto-promoting 1-10
color coding 2-10
concepts
inspecting 2-10
See also frame periods
frame rebuffering
blocks for 2-25
frame size
changing 2-28
frame sizes
constant 2-13
converting 2-12
converting by rebuffering 2-12
direct rate conversion 2-12
maintaining a constant frame rate 2-13
maintaining a constant sample rate $2-26$
related to sample period and frame period 2-3
See also rate conversion
Frame Status Conversion block 9-444
frame-based multichannel signals
See also signals
frame-based processing
benefits 2-50
latency 1-17
frame-based signals
benefits of 1-16
combining 1-39
concatenating 1-39
converting to other frame-based signals 2-41
creating 1-26
deconstructing multichannel signals 1-49
exporting 1-72
importing 1-69
importing and exporting 1-69
multichannel 1-15, 1-39
reordering channels in a multichannel signal 1-54
separating multichannel signals 1-49
single channel 1-15
unbuffering to sample-based signals 2-44
frame-matrices
format of 1-15
frame-rate adjustment
rate conversion
frames
changing size of 9-52
unbuffering to scalars 9-997
frame-size adjustment
rate conversion 2-16
frequencies
normalized 3-51
normalized linear 1-4
terminology 1-3
See also periods
frequency distributions 9-467
computing 9-467
frequency-domain data
displaying 4-9
transforming it into the time domain 4-13
From Multimedia File block 9-448
From Wave Device block 9-453
From Wave File block 9-459
functions, utility
dsplib 10-4
dspstartup 10-5
rebuffer_delay 10-8

G

G. 711 Codec block 9-463
gain
applying in dB 9-199
generated code
generic real-time (GRT) 2-51

H

Hamming windows 9-1132
Hann windows 9-1132
highpass filter designs
continuous-time 3-51
using Analog Filter Design block 9-21
Hilbert transformer filter designs 9-25
Histogram block 9-467
histograms
computing 9-467
Hz (hertz)

Index-8

defined 1-4
See also sample periods

I

IDCT block 9-476
IDCTs 9-476
computing 9-476
identity matrices 9-484
Identity Matrix block 9-484
IDWT block 9-489
IFFT block 9-490
using 4-13
IFFTs
computing 9-490
images
displaying matrices as 9-646
importing
arrays 1-60
blocks for 9-17
frame-based signals 1-69
pages of an array 1-60
sample-based matrices 1-60
sample-based signals 1-57
sample-based vector signals 1-57
scalars 9-459
signals from the workspace 9-858
Triggered Signal From Workspace block 9-961
vectors 9-459
importing and exporting
frame-based signals 1-69
sample-based signals 1-57
Inherit Complexity block 9-504
inheriting sample periods 1-12
initial conditions
with basic algorithmic delay 2-54
input frame periods
defined 2-2
inspecting
frame periods 2-6
frame rates 2-10
sample periods 2-4
sample rates 2-9
Integer Delay block 9-507
intermediate product
fixed-point parameters 8-24
interpolating
FIR Interpolation block 9-414
FIR Rate Conversion block 9-428
procedure 9-414
Interpolation block 9-516
inverse discrete cosine transforms 9-476
Inverse Short-Time FFT block 9-525
inversion of matrices 6-9

K

Kaiser windows 9-1132
Kalman Adaptive Filter block 9-529

L

last-input, first-output (LIFO) registers 9-898
latency 2-58
due to frame-based processing 1-17
predicting 2-60
reducing 2-58
relation to delay $2-58$
LDL Factorization block 9-534
LDL Inverse block 9-537
LDL Solver block 9-539
least mean-square algorithm 9-563
Least Squares Polynomial Fit block 9-547
Levinson-Durbin block 9-550
libraries
displaying link information 10-3
Statistics 6-2
line widths
displaying 2-14
linear algebra
blocks for 9-8
solving linear systems 6-6
linear prediction
using Autocorrelation LPC block 9-36
LMS Adaptive Filter block 9-559
LMS algorithm
Block LMS Filter block 9-45
Fast Block LMS Filter block 9-372
LMS Filter block 9-563
LMS Filter block 9-563
logging
fixed-point data types 8-27
lowpass filter designs
continuous-time 3-51
using Analog Filter Design block 9-21
LPC to LSP/LSF Conversion block 9-578
LPC to/from Cepstral Coefficients block 9-594
LPC to/from RC block 9-599
LPC/RC to Autocorrelation block 9-603
LSF/LSP to LPC Conversion block 9-592
LU Factorization block 9-606
LU Inverse block 9-609
LU Solver block 9-611

M

Magnitude FFT block 9-613
magnitude response of filters 9-21
magnitudes
converting to dB 9-196
matrices

2-norm 9-880
constant diagonal 9-124
create diagonal 9-171
displaying as images 9-646
extracting diagonal of 9-368
extracting triangle from 9-369
factoring 6-8
format of frame-based 1-15
identity 9-124
Identity Matrix block 9-484
inverting 6-9
multiplying 9-622
multiplying within 9-624
normalizing 9-617
overwriting elements of 9-723
permuting 9-755
scaling 9-631
selecting elements from 9-914
summing 9-641
Toeplitz 9-933
transposing 9-950
Matrix 1-Norm block 9-617
Matrix Exponential block 9-621
Matrix Multiply block 9-622
matrix operations
blocks for 9-8
Matrix Product block 9-624
Matrix Scaling block 9-631
Matrix Square block 9-639
Matrix Sum block 9-641
Matrix Viewer block 9-646
maximum 6-2
Maximum block 9-652
mean 6-2
computing 9-662
Mean block 9-662
Median block 9-670

M-files
dspstartup 10-5
minimum 6-2
Minimum block 9-676
minimum mean-square estimate (MMSE) 9-529
models
multirate 2-14
modes
tasking 2-58
Modified Covariance AR Estimator block 9-686
Modified Covariance Method block 9-688
modular arithmetic 8-12
multichannel
frame-based signals 1-39
sample-based signals 1-33
multichannel signals
See also signals
Multiphase Clock block 9-691
multiplication
cumulative 9-173
fixed-point 8-15
multiplying
by dB gain 9-199
matrices 9-622
Multiport Selector block 9-695
multirate
blocks 2-59
demos 3-75
models 2-59
multitasking mode 2-58

N

Normalization block 9-706
normalized frequencies
defined
See also frequencies
norms
2-norm 9-880
N-Sample Enable block 9-698
N-Sample Switch block 9-702
n-step forward linear predictors 9-36
Nyquist frequency
defined 1-4
Nyquist rate 1-4

0

Offset block 9-712
ones
outputting 9-698
output
fixed-point parameters 8-27
output frame periods
defined 2-2
overflow
fixed-point parameter 8-23
overflow handling 8-9
Overlap-Add FFT Filter block 9-715, 9-716
overlap-add method 9-715
overlapping buffers
causing unintentional rate conversions 2-25
Overlap-Save FFT Filter block 9-719
overlap-save method 9-719
Overwrite Values block 9-723

P

Pad block 9-740
padding 8-18
pages of an array
importing 1-60
parameters
Buffer overlap, negative values for 2-38
continuous-time filter 3-51
FFT length 2-22
normalized frequency 3-51
Partial Unbuffer block 2-27
partial unbuffering 2-26
passband ripple
analog filter 3-51
Peak Finder block 9-744
performance
improving 1-16
Periodogram block 9-751
periodograms 9-613
periods
defined 1-4
See also sample periods and frame periods
Permute Matrix block 9-755
phase angles
9-1010
phase unwrap 9-1010
Polynomial Evaluation block 9-760
Polynomial Stability Test block 9-762
polyphase filter structures
FIR Decimation 9-400
FIR Interpolation block 9-414
FIR Rate Conversion block 9-428
power spectrum estimation 6-5
power spectrum estimation, using
Burg method 9-63
short-time, fast Fourier transform (ST-FFT) 9-854
Yule-Walker AR method 9-1149
precision
fixed-point data types 8-9
predicting
tasking latency 2-60
prediction
linear 9-36
predictor algorithm 9-529
preventing unintended rate conversion 2-19
Probe block 2-4
Pseudoinverse block 9-764

Q

QR Factorization block 9-766
QR Solver block 9-768
quantizers
scalar 5-2
Queue block 9-770

R

ramp signal 9-128
random signals 9-780
Random Source block 9-780
random-walk Kalman filter 9-530
range
fixed-point data types 8-9
rate conversion 2-13
avoiding 2-19
avoiding rate-mismatch errors 1-7
blocks for 2-13
by unbuffering 2-44
direct 2-12
frame-rate adjustment
frame-size adjustment 2-16
rate types
block 2-59
model 2-59
rates
auto-promoting 1-10
See also sample periods and frame periods
Real Cepstrum block 9-789
Real-Time Workshop
generating generic real-time (GRT) code 2-51
rebuffer_delay function 10-8
rebuffering 2-26
altering the sample period of the signal 2-31
altering the signal 2-27
causing unintentional rate conversions 2-25
delay 2-44
preserving the sample period of the signal 2-28
rebuffer_delay function 10-8
with the Buffer block 9-52
Reciprocal Condition block 9-791
rectangular windows 9-1132
recursive least-squares (RLS) algorithm 9-809
reducing
latency 2-58
reflection coefficients
identifying 5-4
registers
first-input, first-output (FIFO) 9-770
last-input, first-output (LIFO) 9-898
Remez exchange algorithm 9-25
reordering channels
in multichannel frame-based signals 1-54
Repeat block 9-798
resampling
by inserting zeros 9-1019
Downsample block 9-310
FIR Decimation block 9-400
FIR Interpolation block 9-414
FIR Rate Conversion block 9-428
procedure 9-428
Repeat block 9-798
residual signal
identifying 5-4
ripple
passband 3-51

RLS Adaptive Filter block 9-805
RLS Filter block 9-809
RMS block 9-815
root-mean-square (RMS)
computing 9-815
rounding
fixed-point data types 8-10
fixed-point parameter 8-23
running
vector quantization model 5-13
running operations 6-4

S

Sample and Hold block 9-820
sample frequency
definition 1-4
See also sample periods
sample modes 2-59
sample periods
altered by unbuffering 2-44
Buffer block 2-27
continuous-time 1-11
defined 1-3
for frame-based signals 2-3
inherited 1-12
maintaining constant 2-26
nonsource blocks 1-12
of source blocks 1-11
Rebuffer block 2-27
related to frame period and frame size 2-3
Simulink Probe block 2-4
See also frame periods and sample times
sample rates
auto-promoting 1-10
changing 9-310
color coding 2-9
concepts 2-2
defined 1-3
inspecting 2-9
See also sample periods
sample time
of original time series parameter 2-25
sample times
defined 1-3
in the Signal Processing Blockset 1-5
shifting with sample-time offsets 2-4, 2-7
See also sample periods and frame periods
sample-based signals 1-13
combining multichannel signals 1-36
combining single-channel signals 1-33
concatenating multichannel signals 1-36
concatenating single-channel signals 1-33
converting to frame-based 2-34
converting to frame-based with overlap 2-38
creating 1-19
deconstructing multichannel signals 1-43
exporting 1-64
importing 1-57
importing and exporting 1-57
multichannel 1-33
single channel 1-13
splitting multichannel signals 1-43
samples
adding 2-26
deleting 2-26
rearranging 2-27
sampling 9-820
See also sample periods and frame periods
saturation 8-9
Scalar Quantizer block 9-823, 9-831
Scalar Quantizer Design block 9-837
Scalar Quantizer Encoder block 9-845
scalar quantizers 5-2
creating 5-5
scalars
converting to vectors 9-222
creating from vectors 9-997
exporting 9-965
importing 9-459
importing from the workspace 9-858
scaling 8-8
selecting
elements of a vector 9-1040
separating
multichannel frame-based signals 1-49
sequences
defining a discrete-time signal 1-3
Shift Register block
initial state of 9-224
Short-Time FFT block 9-854
short-time, fast Fourier transform (ST-FFT) method 9-854
Signal From Workspace block 9-858
compared to Simulink To Workspace block 9-858
signal operations
blocks for 9-15
Signal To Workspace block 9-863
signals
benefits of frame-based 1-16
characteristics 1-4
continuous-time 1-11
control 9-953
converting frame-based to sample-based 2-44
definition of discrete-time 1-3
definition of frequency 1-4
discrete-time terminology 1-3
frame-based 1-15
inspecting the frame period of 2-6
inspecting the sample period of 2-4

Index-14

multichannel 1-13
Nyquist frequency 1-4
Nyquist rate 1-4
random 9-780
sample-based 1-13
terminology 1-5
Triggered Signal From Workspace block 9-961
simulations
running from the command line 2-50
Sine Wave block 9-870
single channel signals
frame-based 1-15
sample-based 1-13
single-rate
blocks 2-59
models 2-59
single-tasking mode 2-58
Singular Value Decomposition block 9-880
size of a frame 2-12
sliding windows
example 6-3
solvers
fixed-step 1-7
variable-step 1-7
solving
linear systems 6-6
Sort block 9-882
sound
From Wave Device block 9-453
From Wave File block 9-459
To Wave Device block 9-941
To Wave File block 9-947
source blocks
defined 1-11
sample periods of 1-11
sources
sample periods of 1-11
spectral analysis
Burg method 9-63
covariance method 9-168
magnitude FFT method 9-613
modified covariance method 9-688
short-time FFT method 9-751, 9-854
Yule-Walker method 9-1149
See also power spectrum estimation
Spectrum Scope block 9-888
speech
analysis and synthesis 5-2
splitting
multichannel frame-based signals into individual signals 1-49
multichannel sample-based signals 1-43
multichannel sample-based signals into individual signals 1-43
multichannel sample-based signals into other multichannel signals 1-46
Stack block 9-898
stack events 9-899
standard deviation 6-2
computing 9-908
Standard Deviation block 9-908
state-space forms 9-22
statistical operations
blocks for 9-18
statistics
operations 6-2
RMS 9-815
standard deviation 9-908
variance 9-1045
Statistics library 6-2
ST-FFT method 9-854
stopband attenuation 3-51
Submatrix block 9-914
SVD Solver block 9-923
swept cosine 9-84
swept-frequency cosine 9-76
switching
between two inputs 9-702
symbols
time and frequency 1-3
system-level settings
fixed-point 8-27

T

tasking latency 2-58
example 2-60
predicting 2-60
tasking modes 2-58
terminology
sample time and sample period 1-5
time and frequency 1-3
throughput rates
increasing 1-17
Time Scope block 9-925
time-domain data
displaying 4-2
transforming it into the frequency domain 4-5
To Multimedia File block 9-937
To Wave Device block 9-941
To Wave File block 9-947
Toeplitz block 9-933
transforming
frequency-domain data 4-13
time-domain data 4-5
transforms
blocks for 9-18
discrete cosine 9-201
discrete wavelet 9-340
Fourier 9-377

Transpose block 9-950
transposing matrices 9-950
trends removing 9-227
triangular windows 9-1133
Triggered Delay Line block 9-953
Triggered Shift Register block initial state of 9-954
Triggered Signal From Workspace block 9-961
Triggered To Workspace block 9-965
triggering, for
N-Sample Enable block 9-698
N-Sample Switch block 9-702
Sample and Hold block 9-820
Triggered Shift Register block 9-953
Triggered Signal From Workspace block 9-961
Triggered Signal To Workspace block 9-965
two's complement 8-13
Two-Channel Analysis Subband Filter block 9-968
Two-Channel Synthesis Subband Filter block 9-983

U

Unbuffer block 9-997
initial state of 9-998
unbuffering 2-44
and rate conversion 2-44
partial 2-26
to a sample-based signal 2-26
with the Buffer block 9-52
Uniform Decoder block 9-1001
Uniform Encoder block 9-1005
units of time and frequency measures 1-4
Unwrap block 9-1010
unwrapping radian phase angles 9-1010

Upsample block 9-1019
upsampling 2-12
by inserting zeros 9-1019
FIR Interpolation block 9-414
FIR Rate Conversion block 9-428
Repeat block 9-798
See also rate conversion
using
the FFT block 4-5
the IFFT block 4-13
utility functions
dsplib 10-4
dspstartup 10-5
rebuffer_delay 10-8

V

Variable Fractional Delay block 9-1026
initial conditions for 9-1026
Variable Integer Delay block 9-1031
initial conditions for 9-1033
Variable Selector block 9-1040
variable-step solver 1-7
variance 9-1045
tracking 9-1045
Variance block 9-1045
Vector Quantizer Decoder block 9-1055
Vector Quantizer Design 9-1061
Vector Quantizer Encoder block 9-1071
vector quantizers
configuring the model 5-13
creating 5-11
quantizers
vector 5-11
running the model 5-13
Vector Scope block 9-1081
vectors
converting to scalars 9-997
creating from scalars 9-953
exporting 9-965
importing 9-459
importing from the workspace 9-858
viewing
frequency-domain data 4-9
time-domain data 4-2

W

Waterfall block 9-1098
Window Function block 9-1131
windows
applying 9-1131
Bartlett 9-1132
Blackman 9-1132
Chebyshev 9-1132
Hamming 9-1132
Hann 9-1132
Kaiser 9-1132
rectangular 9-1132
triangular 9-1133
wrapping
fixed-point data types 8-9

Y

Yule-Walker AR Estimator block 9-1143
Yule-Walker Method block 9-1149

Z

zero algorithmic delay 2-51
Zero Crossing block 9-1152
Zero Pad block 9-1157
Zero-Order Hold block 1-11
zero-padding 2-22
causing unintentional rate conversions 2-25
Pad block 9-740
Zero Pad block 9-1157
zeros
Counter block 9-158
Discrete Impulse block 9-305
inserting 9-414
N-Sample Enable block 9-698
padding with 2-27
Signal From Workspace block 9-858
Triggered Signal From Workspace block 9-962

[^0]: 1 Open the Multiport Selector Example 1 model by typing
 doc_splitmltichsbsigsind
 at the MATLAB command line.

[^1]: ideal accumulator word length = ideal product output word length + floor $(\log 2($ number of accumulations $))+1$

[^2]: (Input port width)/(Output port width) must equal the

[^3]: Signal Processing Blockset
 Simulink
 Simulink
 Simulink

[^4]: Supported

 - Double-precision floating point

 Data Types

 - Single-precision floating point

[^5]: Supported

 - Double-precision floating point

 Data Types

 - Single-precision floating point

[^6]: exponent
 fixed-point representation

 Part of the numerical representation used to express a floating-point or fixed-point number.

 1. Floating-point numbers are typically represented as

 $$
 \text { real-world value }=\text { mantissa } \times 2^{\text {exponent }}
 $$

 2. Fixed-point numbers can be represented as real-world value $=($ slope \times integer $)+$ bias
 where the slope can be expressed as

 $$
 \text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
 $$

 The exponent of a fixed-point number is equal to the negative of the fraction length:

    ```
    exponent = -1\timesfraction length
    ```

 See also bias, fixed-point representation, floating-point representation, fraction length, fractional slope, integer, mantissa, slope

 Method for representing numerical values and data types that have a set range and precision.

 1. Fixed-point numbers can be represented as

 $$
 \text { real-world value }=(\text { slope } \times \text { integer })+\text { bias }
 $$

 where the slope can be expressed as

 $$
 \text { slope }=\text { fractional slope } \times 2^{\text {exponent }}
 $$

 The slope and the bias together represent the scaling of the fixed-point number.
 2. Fixed-point data types can be defined by their word length, their fraction length, and whether they are signed or unsigned.

 See also bias, data type, exponent, fraction length, fractional slope, integer, precision, range, scaling, slope, word length
 floating-point representation

 Method for representing numerical values and data types that can have changing range and precision.

 1. Floating-point numbers can be represented as
